
3
Programming with MATLAB

48

CHAPTER OBJECTIVES
The primary objective of this chapter is to learn how to write M-file programs to
implement numerical methods. Specific objectives and topics covered are

• Learning how to create well-documented M-files in the edit window and invoke
them from the command window.

• Understanding how script and function files differ.
• Understanding how to incorporate help comments in functions.
• Knowing how to set up M-files so that they interactively prompt users for

information and display results in the command window.
• Understanding the role of subfunctions and how they are accessed.
• Knowing how to create and retrieve data files.
• Learning how to write clear and well-documented M-files by employing

structured programming constructs to implement logic and repetition.
• Recognizing the difference between if...elseif and switch constructs.
• Recognizing the difference between for...end and while structures.
• Knowing how to animate MATLAB plots.
• Understanding what is meant by vectorization and why it is beneficial.
• Understanding how anonymous functions can be employed to pass functions to

function function M-files.

YOU’VE GOT A PROBLEM

I n Chap. 1, we used a force balance to develop a mathematical model to predict the
fall velocity of a bungee jumper. This model took the form of the following differential
equation:

dv

dt
= g − cd

m
v|v|

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 48 CONFIRMING PAGES

We also learned that a numerical solution of this equation could be obtained with Euler’s
method:

vi+1 = vi + dvi

dt
�t

This equation can be implemented repeatedly to compute velocity as a function of
time. However, to obtain good accuracy, many small steps must be taken. This would be
extremely laborious and time consuming to implement by hand. However, with the aid of
MATLAB, such calculations can be performed easily.

So our problem now is to figure out how to do this. This chapter will introduce you to
how MATLAB M-files can be used to obtain such solutions.

3.1 M-FILES

The most common way to operate MATLAB is by entering commands one at a time in the
command window. M-files provide an alternative way of performing operations that
greatly expand MATLAB’s problem-solving capabilities. An M-file consists of a series of
statements that can be run all at once. Note that the nomenclature “M-file” comes from the
fact that such files are stored with a .m extension. M-files come in two flavors: script files
and function files.

3.1.1 Script Files

A script file is merely a series of MATLAB commands that are saved on a file. They are
useful for retaining a series of commands that you want to execute on more than one occa-
sion. The script can be executed by typing the file name in the command window or by
invoking the menu selections in the edit window: Debug, Run.

EXAMPLE 3.1 Script File

Problem Statement. Develop a script file to compute the velocity of the free-falling
bungee jumper for the case where the initial velocity is zero.

Solution. Open the editor with the menu selection: File, New, M-file. Type in the follow-
ing statements to compute the velocity of the free-falling bungee jumper at a specific time
[recall Eq. (1.9)]:

g = 9.81; m = 68.1; t = 12; cd = 0.25;
v = sqrt(g * m / cd) * tanh(sqrt(g * cd / m) * t)

Save the file as scriptdemo.m. Return to the command window and type

>>scriptdemo

The result will be displayed as

v =
50.6175

Thus, the script executes just as if you had typed each of its lines in the command window.

3.1 M-FILES 49

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 49 CONFIRMING PAGES

As a final step, determine the value of g by typing

>> g

g =
9.8100

So you can see that even though g was defined within the script, it retains its value back in
the command workspace. As we will see in the following section, this is an important dis-
tinction between scripts and functions.

3.1.2 Function Files

Function files are M-files that start with the word function. In contrast to script files, they
can accept input arguments and return outputs. Hence they are analogous to user-defined
functions in programming languages such as Fortran, Visual Basic or C.

The syntax for the function file can be represented generally as

function outvar = funcname(arglist)
% helpcomments
statements
outvar = value;

where outvar = the name of the output variable, funcname = the function’s name,
arglist = the function’s argument list (i.e., comma-delimited values that are passed into
the function), helpcomments = text that provides the user with information regarding the
function (these can be invoked by typing Help funcname in the command window), and
statements = MATLAB statements that compute the value that is assigned to outvar.

Beyond its role in describing the function, the first line of the helpcomments, called
the H1 line, is the line that is searched by the lookfor command (recall Sec. 2.6). Thus,
you should include key descriptive words related to the file on this line.

The M-file should be saved as funcname.m. The function can then be run by typing
funcname in the command window as illustrated in the following example. Note that even
though MATLAB is case-sensitive, your computer’s operating system may not be.
Whereas MATLAB would treat function names like freefall and FreeFall as two dif-
ferent variables, your operating system might not.

EXAMPLE 3.2 Function File

Problem Statement. As in Example 3.1, compute the velocity of the free-falling bungee
jumper but now use a function file for the task.

Solution. Type the following statements in the file editor:

function v = freefall(t, m, cd)
% freefall: bungee velocity with second-order drag
% v=freefall(t,m,cd) computes the free-fall velocity
% of an object with second-order drag
% input:

50 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 50 CONFIRMING PAGES

% t = time (s)
% m = mass (kg)
% cd = second-order drag coefficient (kg/m)
% output:
% v = downward velocity (m/s)

g = 9.81; % acceleration of gravity
v = sqrt(g * m / cd)*tanh(sqrt(g * cd / m) * t);

Save the file as freefall.m. To invoke the function, return to the command window and
type in

>> freefall(12,68.1,0.25)

The result will be displayed as

ans =
50.6175

One advantage of a function M-file is that it can be invoked repeatedly for different
argument values. Suppose that you wanted to compute the velocity of a 100-kg jumper
after 8 s:

>> freefall(8,100,0.25)

ans =
53.1878

To invoke the help comments type

>> help freefall

which results in the comments being displayed

freefall: bungee velocity with second-order drag
v=freefall(t,m,cd) computes the free-fall velocity

of an object with second-order drag
input:
t = time (s)
m = mass (kg)
cd = second-order drag coefficient (kg/m)

output:
v = downward velocity (m/s)

If at a later date, you forgot the name of this function, but remembered that it involved
bungee jumping, you could enter

>> lookfor bungee

and the following information would be displayed

freefall.m - bungee velocity with second-order drag

Note that, at the end of the previous example, if we had typed

>> g

3.1 M-FILES 51

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 51 CONFIRMING PAGES

the following message would have been displayed

??? Undefined function or variable 'g'.

So even though g had a value of 9.81 within the M-file, it would not have a value in the
command workspace. As noted previously at the end of Example 3.1, this is an important
distinction between functions and scripts. The variables within a function are said to be
local and are erased after the function is executed. In contrast, the variables in a script
retain their existence after the script is executed.

Function M-files can return more than one result. In such cases, the variables contain-
ing the results are comma-delimited and enclosed in brackets. For example, the following
function, stats.m, computes the mean and the standard deviation of a vector:

function [mean, stdev] = stats(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^2/(n-1)));

Here is an example of how it can be applied:

>> y = [8 5 10 12 6 7.5 4];
>> [m,s] = stats(y)

m =
7.5000

s =
2.8137

Although we will also make use of script M-files, function M-files will be our primary
programming tool for the remainder of this book. Hence, we will often refer to function
M-files as simply M-files.

3.1.3 Subfunctions

Functions can call other functions. Although such functions can exist as separate M-files,
they may also be contained in a single M-file. For example, the M-file in Example 3.2
(without comments) could have been split into two functions and saved as a single
M-file1:

function v = freefallsubfunc(t, m, cd)
v = vel(t, m, cd);
end

function v = vel(t, m, cd)
g = 9.81;
v = sqrt(g * m / cd)*tanh(sqrt(g * cd / m) * t);
end

52 PROGRAMMING WITH MATLAB

1 Note that although end statements are not used to terminate single-function M-files, they are included when
subfunctions are involved to demarcate the boundaries between the main function and the subfunctions.

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 52 CONFIRMING PAGES

This M-file would be saved as freefallsubfunc.m. In such cases, the first function is
called the main or primary function. It is the only function that is accessible to the com-
mand window and other functions and scripts. All the other functions (in this case, vel) are
referred to as subfunctions.

A subfunction is only accessible to the main function and other subfunctions within
the M-file in which it resides. If we run freefallsubfunc from the command window,
the result is identical to Example 3.2:

>> freefallsubfunc(12,68.1,0.25)

ans =
50.6175

However, if we attempt to run the subfunction vel, an error message occurs:

>> vel(12,68.1,.25)
??? Undefined function or method 'vel' for input arguments
of type 'double'.

3.2 INPUT-OUTPUT

As in Section 3.1, information is passed into the function via the argument list and is out-
put via the function’s name. Two other functions provide ways to enter and display infor-
mation directly using the command window.

The input Function. This function allows you to prompt the user for values directly
from the command window. Its syntax is

n = input('promptstring')

The function displays the promptstring, waits for keyboard input, and then returns the
value from the keyboard. For example,

m = input('Mass (kg): ')

When this line is executed, the user is prompted with the message

Mass (kg):

If the user enters a value, it would then be assigned to the variable m.
The input function can also return user input as a string. To do this, an 's' is ap-

pended to the function’s argument list. For example,

name = input('Enter your name: ','s')

The disp Function. This function provides a handy way to display a value. Its syntax is

disp(value)

where value = the value you would like to display. It can be a numeric constant or vari-
able, or a string message enclosed in hyphens. Its application is illustrated in the following
example.

3.2 INPUT-OUTPUT 53

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 53 CONFIRMING PAGES

EXAMPLE 3.3 An Interactive M-File Function

Problem Statement. As in Example 3.2, compute the velocity of the free-falling bungee
jumper, but now use the input and disp functions for input/output.

Solution. Type the following statements in the file editor:

function freefalli
% freefalli: interactive bungee velocity
% freefalli interactive computation of the
% free-fall velocity of an object
% with second-order drag.
g = 9.81; % acceleration of gravity
m = input('Mass (kg): ');
cd = input('Drag coefficient (kg/m): ');
t = input('Time (s): ');
disp(' ')
disp('Velocity (m/s):')
disp(sqrt(g * m / cd)*tanh(sqrt(g * cd / m) * t))

Save the file as freefalli.m. To invoke the function, return to the command window and
type

>> freefalli

Mass (kg): 68.1
Drag coefficient (kg/m): 0.25
Time (s): 12

Velocity (m/s):
50.6175

The fprintf Function. This function provides additional control over the display of
information. A simple representation of its syntax is

fprintf('format', x, ...)

where format is a string specifying how you want the value of the variable x to be dis-
played. The operation of this function is best illustrated by examples.

A simple example would be to display a value along with a message. For instance, sup-
pose that the variable velocity has a value of 50.6175. To display the value using eight
digits with four digits to the right of the decimal point along with a message, the statement
along with the resulting output would be

>> fprintf('The velocity is %8.4f m/s\n', velocity)

The velocity is 50.6175 m/s

This example should make it clear how the format string works. MATLAB starts at
the left end of the string and displays the labels until it detects one of the symbols: % or \.
In our example, it first encounters a % and recognizes that the following text is a format
code. As in Table 3.1, the format codes allow you to specify whether numeric values are

54 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 54 CONFIRMING PAGES

displayed in integer, decimal, or scientific format. After displaying the value of velocity,
MATLAB continues displaying the character information (in our case the units: m/s) until
it detects the symbol \. This tells MATLAB that the following text is a control code. As in
Table 3.1, the control codes provide a means to perform actions such as skipping to the
next line. If we had omitted the code \n in the previous example, the command prompt
would appear at the end of the label m/s rather than on the next line as would typically be
desired.

The fprintf function can also be used to display several values per line with differ-
ent formats. For example,

>> fprintf('%5d %10.3f %8.5e\n',100,2*pi,pi);

100 6.283 3.14159e+000

It can also be used to display vectors and matrices. Here is an M-file that enters two
sets of values as vectors. These vectors are then combined into a matrix, which is then dis-
played as a table with headings:

function fprintfdemo
x = [1 2 3 4 5];
y = [20.4 12.6 17.8 88.7 120.4];
z = [x;y];
fprintf(' x y\n');
fprintf('%5d %10.3f\n',z);

The result of running this M-file is

>> fprintfdemo

x y
1 20.400
2 12.600
3 17.800
4 88.700
5 120.400

3.2 INPUT-OUTPUT 55

TABLE 3.1 Commonly used format and control codes employed
with the fprintf function.

Format Code Description

%d Integer format
%e Scientific format with lowercase e
%E Scientific format with uppercase E
%f Decimal format
%g The more compact of %e or %f

Control Code Description

\n Start new line
\t Tab

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 55 CONFIRMING PAGES

3.2.1 Creating and Accessing Files

MATLAB has the capability to both read and write data files. The simplest approach in-
volves a special type of binary file, called a MAT-file, which is expressly designed for
implementation within MATLAB. Such files are created and accessed with the save and
load commands.

The save command can be used to generate a MAT-file holding either the entire work-
space or a few selected variables. A simple representation of its syntax is

save filename var1 var2 ... varn

This command creates a MAT-file named filename.mat that holds the variables var1
through varn. If the variables are omitted, all the workspace variables are saved. The load
command can subsequently be used to retrieve the file:

load filename var1 var2 ... varn

which retrieves the variables var1 through varn from filename.mat. As was the case
with save, if the variables are omitted, all the variables are retrieved.

For example, suppose that you use Eq. (1.9) to generate velocities for a set of drag
coefficients:

>> g=9.81;m=80;t=5;
>> cd=[.25 .267 .245 .28 .273]';
>> v=sqrt(g*m ./cd).*tanh(sqrt(g*cd/m)*t);

You can then create a file holding the values of the drag coefficients and the velocities with

>> save veldrag v cd

To illustrate how the values can be retrieved at a later time, remove all variables from
the workspace with the clear command,

>> clear

At this point, if you tried to display the velocities you would get the result:

>> v
??? Undefined function or variable 'v'.

However, you can recover them by entering

>> load veldrag

Now, the velocities are available as can be verified by typing

>> who

Your variables are:
cd v

Although MAT-files are quite useful when working exclusively within the MATLAB
environment, a somewhat different approach is required when interfacing MATLAB with
other programs. In such cases, a simple approach is to create text files written in ASCII
format.

56 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 56 CONFIRMING PAGES

ASCII files can be generated in MATLAB by appending –ascii to the save com-
mand. In contrast to MAT-files where you might want to save the entire workspace, you
would typically save a single rectangular matrix of values. For example,

>> A=[5 7 9 2;3 6 3 9];
>> save simpmatrix.txt –ascii

In this case, the save command stores the values in A in 8-digit ASCII form. If you want
to store the numbers in double precision, just append –ascii –double. In either case, the
file can be accessed by other programs such as spreadsheets or word processors. For
example, if you open this file with a text editor, you will see

5.0000000e+000 7.0000000e+000 9.0000000e+000 2.0000000e+000
3.0000000e+000 6.0000000e+000 3.0000000e+000 9.0000000e+000

Alternatively, you can read the values back into MATLAB with the load command,

>> load simpmatrix.txt

Because simpmatrix.txt is not a MAT-file, MATLAB creates a double precision array
named after the filename:

>> simpmatrix

simpmatrix =
5 7 9 2
3 6 3 9

Alternatively, you could use the load command as a function and assign its values to a
variable as in

>> A = load('simpmatrix.txt')

The foregoing material covers but a small portion of MATLAB’s file management ca-
pabilities. For example, a handy import wizard can be invoked with the menu selections:
File, Import Data. As an exercise, you can demonstrate the import wizards convenience by
using it to open simpmatrix.txt. In addition, you can always consult help to learn more
about this and other features.

3.3 STRUCTURED PROGRAMMING

The simplest of all M-files perform instructions sequentially. That is, the program state-
ments are executed line by line starting at the top of the function and moving down to the
end. Because a strict sequence is highly limiting, all computer languages include state-
ments allowing programs to take nonsequential paths. These can be classified as

• Decisions (or Selection). The branching of flow based on a decision.
• Loops (or Repetition). The looping of flow to allow statements to be repeated.

3.3.1 Decisions

The if Structure. This structure allows you to execute a set of statements if a logical
condition is true. Its general syntax is

if condition
statements

end

3.3 STRUCTURED PROGRAMMING 57

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 57 CONFIRMING PAGES

where condition is a logical expression that is either true or false. For example, here is a
simple M-file to evaluate whether a grade is passing:

function grader(grade)
% grader(grade):
% determines whether grade is passing
% input:
% grade = numerical value of grade (0-100)
% output:
% displayed message
if grade >= 60
disp('passing grade')

end

The following illustrates the result

>> grader(95.6)

passing grade

For cases where only one statement is executed, it is often convenient to implement
the if structure as a single line,

if grade > 60, disp('passing grade'), end

This structure is called a single-line if. For cases where more than one statement is
implemented, the multiline if structure is usually preferable because it is easier to
read.

Error Function. A nice example of the utility of a single-line if is to employ it for rudi-
mentary error trapping. This involves using the error function which has the syntax,

error(msg)

When this function is encountered, it displays the text message msg, indicates where
the error occurred, and causes the M-file to terminate and return to the command
window.

An example of its use would be where we might want to terminate an M-file to avoid
a division by zero. The following M-file illustrates how this could be done:

function f = errortest(x)
if x == 0, error('zero value encountered'), end
f = 1/x;

If a nonzero argument is used, the division would be implemented successfully as in

>> errortest(10)

ans =
0.1000

However, for a zero argument, the function would terminate prior to the division and the
error message would be displayed in red typeface:

>> errortest(0)

??? Error using ==> errortest at 2
zero value encountered

58 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 58 CONFIRMING PAGES

Logical Conditions. The simplest form of the condition is a single relational expres-
sion that compares two values as in

value1 relation value2

where the values can be constants, variables, or expressions and the relation is one of
the relational operators listed in Table 3.2.

MATLAB also allows testing of more than one logical condition by employing logical
operators. We will emphasize the following:

• ~ (Not). Used to perform logical negation on an expression.

~expression

If the expression is true, the result is false. Conversely, if the expression is false,
the result is true.

• & (And). Used to perform a logical conjunction on two expressions.

expression1 & expression2

If both expressions evaluate to true, the result is true. If either or both expres-
sions evaluates to false, the result is false.

• | (Or). Used to perform a logical disjunction on two expressions.

expression1 | expression2

If either or both expressions evaluate to true, the result is true.

Table 3.3 summarizes all possible outcomes for each of these operators. Just as for
arithmetic operations, there is a priority order for evaluating logical operations. These

3.3 STRUCTURED PROGRAMMING 59

TABLE 3.2 Summary of relational operators in MATLAB.

Example Operator Relationship

x == 0 == Equal
unit ~= 'm' ~= Not equal
a < 0 < Less than
s > t > Greater than
3.9 <= a/3 <= Less than or equal to
r >= 0 >= Greater than or equal to

TABLE 3.3 A truth table summarizing the possible outcomes for logical operators
employed in MATLAB. The order of priority of the operators is shown at
the top of the table.

Highest Lowest
x y ~x x & y x | y

T T F T T
T F F F T
F T T F T
F F T F F

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 59 CONFIRMING PAGES

are from highest to lowest: ~, & and |. In choosing between operators of equal priority,
MATLAB evaluates them from left to right. Finally, as with arithmetic operators, paren-
theses can be used to override the priority order.

Let’s investigate how the computer employs the priorities to evaluate a logical expres-
sion. If a = -1, b = 2, x = 1, and y = 'b', evaluate whether the following is true or false:

a * b > 0 & b == 2 & x > 7 | ~(y > 'd')

To make it easier to evaluate, substitute the values for the variables:

-1 * 2 > 0 & 2 == 2 & 1 > 7 | ~('b' > 'd')

The first thing that MATLAB does is to evaluate any mathematical expressions. In this
example, there is only one: -1 * 2,

-2 > 0 & 2 == 2 & 1 > 7 | ~('b' > 'd')

Next, evaluate all the relational expressions

-2 > 0 & 2 == 2 & 1 > 7 | ~('b' > 'd')
F & T & F | ~ F

At this point, the logical operators are evaluated in priority order. Since the ~ has highest
priority, the last expression (~F) is evaluated first to give

F & T & F | T

The & operator is evaluated next. Since there are two, the left-to-right rule is applied and
the first expression (F & T) is evaluated:

F & F | T

The & again has highest priority

F | T

Finally, the | is evaluated as true. The entire process is depicted in Fig. 3.1.

The if...else Structure. This structure allows you to execute a set of statements if
a logical condition is true and to execute a second set if the condition is false. Its general
syntax is

if condition
statements1

else
statements2

end

The if...elseif Structure. It often happens that the false option of an if...else
structure is another decision. This type of structure often occurs when we have more than
two options for a particular problem setting. For such cases, a special form of decision
structure, the if...elseif has been developed. It has the general syntax

if condition1

statements1

elseif condition2

statements2

60 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 60 CONFIRMING PAGES

elseif condition3

statements3

.

.

.
else
statementselse

end

EXAMPLE 3.4 if Structures

Problem Statement. For a scalar, the built-in MATLAB sign function returns the sign
of its argument (−1, 0, 1). Here’s a MATLAB session that illustrates how it works:

>> sign(25.6)

ans =
1

>> sign(-0.776)

ans =
-1

>> sign(0)

ans =
0

Develop an M-file to perform the same function.

3.3 STRUCTURED PROGRAMMING 61

a * b > 0 & b == 2 & x > 7 | ~(y > 'd')

T

T

F

-1 * 2 > 0 & 2 == 2 & 1 > 7 | ~('b' > 'd')

F & T & F | ~F

 F & F |

Substitute constants

Evaluate mathematical
expressions

Evaluate relational
expressions

Evaluate compound
expressions

T|

-2 > 0 & 2 == 2 & 1 > 7 | ~('b' > 'd')

FIGURE 3.1
A step-by-step evaluation of a complex decision.

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 61 CONFIRMING PAGES

Solution. First, an if structure can be used to return 1 if the argument is positive:

function sgn = mysign(x)
% mysign(x) returns 1 if x is greater than zero.
if x > 0
sgn = 1;

end

This function can be run as

>> mysign(25.6)

ans =
1

Although the function handles positive numbers correctly, if it is run with a negative
or zero argument, nothing is displayed. To partially remedy this shortcoming, an
if...else structure can be used to display –1 if the condition is false:

function sgn = mysign(x)
% mysign(x) returns 1 if x is greater than zero.
% -1 if x is less than or equal to zero.
if x > 0
sgn = 1;

else
sgn = -1;

end

This function can be run as

>> mysign(-0.776)

ans =
-1

Although the positive and negative cases are now handled properly, -1 is erroneously
returned if a zero argument is used. An if...elseif structure can be used to incorporate
this final case:

function sgn = mysign(x)
% mysign(x) returns 1 if x is greater than zero.
% -1 if x is less than zero.
% 0 if x is equal to zero.
if x > 0

sgn = 1;
elseif x < 0

sgn = -1;
else

sgn = 0;
end

The function now handles all possible cases. For example,

>> mysign(0)

ans =
0

62 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 62 CONFIRMING PAGES

The switch Structure. The switch structure is similar in spirit to the if...elseif
structure. However, rather than testing individual conditions, the branching is based on the
value of a single test expression. Depending on its value, different blocks of code are im-
plemented. In addition, an optional block is implemented if the expression takes on none of
the prescribed values. It has the general syntax

switch testexpression
case value1

statements1

case value2

statements2

.

.

.
otherwise

statementsotherwise

end

As an example, here is function that displays a message depending on the value of the
string variable, grade.

grade = 'B';
switch grade
case 'A'
disp('Excellent')

case 'B'
disp('Good')

case 'C'
disp('Mediocre')

case 'D'
disp('Whoops')

case 'F'
disp('Would like fries with your order?')

otherwise
disp('Huh!')

end

When this code was executed, the message “Good” would be displayed.

Variable Argument List. MATLAB allows a variable number of arguments to be passed
to a function. This feature can come in handy for incorporating default values into your
functions. A default value is a number that is automatically assigned in the event that the
user does not pass it to a function.

As an example, recall that earlier in this chapter, we developed a function freefall,
which had three arguments:

v = freefall(t,m,cd)

Although a user would obviously need to specify the time and mass, they might not have a
good idea of an appropriate drag coefficient. Therefore, it would be nice to have the pro-
gram supply a value if they omitted it from the argument list.

MATLAB has a function called nargin that provides the number of input arguments
supplied to a function by a user. It can be used in conjunction with decision structures like

3.3 STRUCTURED PROGRAMMING 63

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 63 CONFIRMING PAGES

the if or switch constructs to incorporate default values as well as error messages into
your functions. The following code illustrates how this can be done for freefall:

64 PROGRAMMING WITH MATLAB

function v = freefall2(t, m, cd)
% freefall2: bungee velocity with second-order drag
% v=freefall2(t,m,cd) computes the free-fall velocity
% of an object with second-order drag.
% input:
% t = time (s)
% m = mass (kg)
% cd = drag coefficient (default = 0.27 kg/m)
% output:
% v = downward velocity (m/s)
switch nargin
case 0
error('Must enter time and mass')

case 1
error('Must enter mass')

case 2
cd = 0.27;

end
g = 9.81; % acceleration of gravity
v = sqrt(g * m / cd)*tanh(sqrt(g * cd / m) * t);

Notice how we have used a switch structure to either display error messages or set the
default, depending on the number of arguments passed by the user. Here is a command
window session showing the results:

>> freefall2(12,68.1,0.25)

ans =
50.6175

>> freefall2(12,68.1)

ans =
48.8747

>> freefall2(12)

??? Error using ==> freefall2 at 15
Must enter mass

>> freefall2()

??? Error using ==> freefall2 at 13
Must enter time and mass

Note that nargin behaves a little differently when it is invoked in the command
window. In the command window, it must include a string argument specifying the func-
tion and it returns the number of arguments in the function. For example,

>> nargin('freefall2')

ans =
3

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 64 CONFIRMING PAGES

3.3.2 Loops

As the name implies, loops perform operations repetitively. There are two types of loops,
depending on how the repetitions are terminated. A for loop ends after a specified number
of repetitions. A while loop ends on the basis of a logical condition.

The for...end Structure. Afor loop repeats statements a specific number of times. Its
general syntax is

for index = start:step:finish
statements

end

The for loop operates as follows. The index is a variable that is set at an initial value,
start. The program then compares the index with a desired final value, finish. If the
index is less than or equal to the finish, the program executes the statements. When
it reaches the end line that marks the end of the loop, the index variable is increased by
the step and the program loops back up to the for statement. The process continues until
the index becomes greater than the finish value. At this point, the loop terminates as the
program skips down to the line immediately following the end statement.

Note that if an increment of 1 is desired (as is often the case), the step can be dropped.
For example,

for i = 1:5
disp(i)

end

When this executes, MATLAB would display in succession, 1, 2, 3, 4, 5. In other
words, the default step is 1.

The size of the step can be changed from the default of 1 to any other numeric value.
It does not have to be an integer, nor does it have to be positive. For example, step sizes of
0.2, –1, or –5, are all acceptable.

If a negative step is used, the loop will “countdown” in reverse. For such cases, the
loop’s logic is reversed. Thus, the finish is less than the start and the loop terminates
when the index is less than the finish. For example,

for j = 10:-1:1
disp(j)

end

When this executes, MATLAB would display the classic “countdown” sequence: 10, 9,
8, 7, 6, 5, 4, 3, 2, 1.

EXAMPLE 3.5 Using a for Loop to Compute the Factorial

Problem Statement. Develop an M-file to compute the factorial.2

0! = 1
1! = 1
2! = 1 × 2 = 2

3.3 STRUCTURED PROGRAMMING 65

2 Note that MATLAB has a built-in function factorial that performs this computation.

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 65 CONFIRMING PAGES

3! = 1 × 2 × 3 = 6
4! = 1 × 2 × 3 × 4 = 24
5! = 1 × 2 × 3 × 4 × 5 = 120

...

Solution. A simple function to implement this calculation can be developed as

function fout = factor(n)
% factor(n):
% Computes the product of all the integers from 1 to n.
x = 1;
for i = 1:n
x = x * i;

end
fout = x;
end

which can be run as

>> factor(5)

ans =
120

This loop will execute 5 times (from 1 to 5). At the end of the process, x will hold a value
of 5! (meaning 5 factorial or 1 × 2 × 3 × 4 × 5 = 120).

Notice what happens if n = 0. For this case, the for loop would not execute, and we
would get the desired result, 0! = 1.

Vectorization. The for loop is easy to implement and understand. However, for
MATLAB, it is not necessarily the most efficient means to repeat statements a specific
number of times. Because of MATLAB’s ability to operate directly on arrays, vectorization
provides a much more efficient option. For example, the following for loop structure:

i = 0;
for t = 0:0.02:50
i = i + 1;
y(i) = cos(t);

end

can be represented in vectorized form as

t = 0:0.02:50;
y = cos(t);

It should be noted that for more complex code, it may not be obvious how to vectorize the
code. That said, wherever possible, vectorization is recommended.

Preallocation of Memory. MATLAB automatically increases the size of arrays every
time you add a new element. This can become time consuming when you perform actions
such as adding new values one at a time within a loop. For example, here is some code that

66 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 66 CONFIRMING PAGES

sets value of elements of y depending on whether or not values of t are greater than one:

t = 0:.01:5;
for i = 1:length(t)
if t(i)>1
y(i) = 1/t(i);

else
y(i) = 1;

end
end

For this case, MATLAB must resize y every time a new value is determined. The follow-
ing code preallocates the proper amount of memory by using a vectorized statement to
assign ones to y prior to entering the loop.

t = 0:.01:5;
y = ones(size(t));
for i = 1:length(t)
if t(i)>1
y(i) = 1/t(i);

end
end

Thus, the array is only sized once. In addition, preallocation helps reduce memory frag-
mentation, which also enhances efficiency.

The while Structure. A while loop repeats as long as a logical condition is true. Its
general syntax is

while condition
statements

end

The statements between the while and the end are repeated as long as the condition is
true. A simple example is

x = 8
while x > 0
x = x - 3;
disp(x)

end

When this code is run, the result is

x =
8
5
2
-1

The while...break Structure. Although the while structure is extremely useful, the
fact that it always exits at the beginning of the structure on a false result is somewhat
constraining. For this reason, languages such as Fortran 90 and Visual Basic have special
structures that allow loop termination on a true condition anywhere in the loop. Although
such structures are currently not available in MATLAB, their functionality can be mimicked

3.3 STRUCTURED PROGRAMMING 67

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 67 CONFIRMING PAGES

by a special version of the while loop. The syntax of this version, called a while...
break structure, can be written as

while (1)
statements
if condition, break, end
statements

end

where break terminates execution of the loop. Thus, a single line if is used to exit the
loop if the condition tests true. Note that as shown, the break can be placed in the middle
of the loop (i.e., with statements before and after it). Such a structure is called a midtest
loop.

If the problem required it, we could place the break at the very beginning to create a
pretest loop. An example is

while (1)
If x < 0, break, end
x = x - 5;

end

Notice how 5 is subtracted from x on each iteration. This represents a mechanism so that
the loop eventually terminates. Every decision loop must have such a mechanism. Other-
wise it would become a so-called infinite loop that would never stop.

Alternatively, we could also place the if...break statement at the very end and cre-
ate a posttest loop,

while (1)
x = x - 5;
if x < 0, break, end

end

It should be clear that, in fact, all three structures are really the same. That is, depend-
ing on where we put the exit (beginning, middle, or end) dictates whether we have a pre-,
mid- or posttest. It is this simplicity that led the computer scientists who developed
Fortran 90 and Visual Basic to favor this structure over other forms of the decision loop
such as the conventional while structure.

The pause Command. There are often times when you might want a program to tem-
porarily halt. The command pause causes a procedure to stop and wait until any key is hit.
A nice example involves creating a sequence of plots that a user might want to leisurely
peruse before moving on to the next. The following code employs a for loop to create a
sequence of interesting plots that can be viewed in this manner:

for n = 3:10
mesh(magic(n))
pause

end

The pause can also be formulated as pause(n), in which case the procedure will halt
for n seconds. This feature can be demonstrated by implementing it in conjunction with
several other useful MATLAB functions. The beep command causes the computer to emit

68 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 68 CONFIRMING PAGES

a beep sound. Two other functions, tic and toc, work together to measure elapsed time.
The tic command saves the current time that toc later employs to display the elapsed
time. The following code then confirms that pause(n)works as advertised complete with
sound effects:

tic
beep
pause(5)
beep
toc

When this code is run, the computer will beep. Five seconds later it will beep again and dis-
play the following message:

Elapsed time is 5.006306 seconds.

By the way, if you ever have the urge to use the command pause(inf), MATLAB will go
into an infinite loop. In such cases, you can return to the command prompt by typing
Ctrl+c or Ctrl+Break.

Although the foregoing examples might seem a tad frivolous, the commands can be
quite useful. For instance, tic and toc can be employed to identify the parts of an algo-
rithm that consume the most execution time. Further, the Ctrl+c or Ctrl+Break key com-
binations come in real handy in the event that you inadvertently create an infinite loop in
one of your M-files.

3.3.3 Animation

There are two simple ways to animate a plot in MATLAB. First, if the computations are
sufficiently quick, the standard plot function can be employed in a way that the animation
can appear smooth. Here is a code fragment that indicates how a for loop and standard
plotting functions can be employed to animate a plot,

% create animation with standard plot functions
for j=1:n
plot commands

end

Thus, because we do not include hold on, the plot will refresh on each loop iteration.
Through judicious use of axis commands, this can result in a smoothly changing image.

Second, there are special functions, getframe and movie, that allow you to capture a
sequence of plots and then play them back. As the name implies, the getframe function
captures a snapshot (pixmap) of the current axes or figure. It is usually used in a for loop
to assemble an array of movie frames for later playback with the movie function, which
has the following syntax:

movie(m,n,fps)

where m � the vector or matrix holding the sequence of frames constituting the movie,
n � an optional variable specifying how many times the movie is to be repeated (if it is
omitted, the movie plays once), and fps � an optional variable that specifies the
movie’s frame rate (if it is omitted, the default is 12 frames per second). Here is a code

3.3 STRUCTURED PROGRAMMING 69

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 69 CONFIRMING PAGES

fragment that indicates how a for loop along with the two functions can be employed
to create a movie,

% create animation with standard plot functions
for j=1:n
plot commands
M(j) = getframe;

end
movie(M)

Each time the loop executes, the plot commands create an updated version of a plot,
which is then stored in the vector M. After the loop terminates, the n images are then played
back by movie.

EXAMPLE 3.6 Animation of Projectile Motion

Problem Statement. In the absence of air resistance, the Cartesian coordinates of a pro-
jectile launched with an initial velocity (v0) and angle (θ 0) can be computed with

x = v0 cos(θ 0)t
y = v0 sin(θ 0)t � 0.5gt2

where g = 9.81 m/s2. Develop a script to generate an animated plot of the projectile’s
trajectory given that v0 = 5 m/s and θ 0 = 45�.

Solution. A script to generate the animation can be written as

clc,clf,clear
g=9.81; theta0=45*pi/180; v0=5;
t(1)=0;x=0;y=0;
plot(x,y,'o','MarkerFaceColor','b','MarkerSize',8)
axis([0 3 0 0.8])
M(1)=getframe;
dt=1/128;
for j = 2:1000
t(j)=t(j-1)+dt;
x=v0*cos(theta0)*t(j);
y=v0*sin(theta0)*t(j)-0.5*g*t(j)^2;
plot(x,y,'o','MarkerFaceColor','b','MarkerSize',8)
axis([0 3 0 0.8])
M(j)=getframe;
if y<=0, break, end

end
pause
movie(M,1)

Several features of this script bear mention. First, notice that we have fixed the ranges for
the x and y axes. If this is not done, the axes will rescale and cause the animation to jump
around. Second, we terminate the for loop when the projectile’s height y falls below zero.

When the script is executed, two animations will be displayed (we’ve placed a pause
between them). The first corresponds to the sequential generation of the frames within the
loop, and the second corresponds to the actual movie. Although we cannot show the results
here, the trajectory for both cases will look like Fig. 3.2. You should enter and run the fore-
going script in MATLAB to see the actual animation.

70 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 70 CONFIRMING PAGES

3.4 NESTING AND INDENTATION 71

FIGURE 3.2
Plot of a projectile’s trajectory.

3.4 NESTING AND INDENTATION

We need to understand that structures can be “nested” within each other. Nesting refers to
placing structures within other structures. The following example illustrates the concept.

EXAMPLE 3.7 Nesting Structures

Problem Statement. The roots of a quadratic equation

f (x) = ax2 + bx + c

can be determined with the quadratic formula

x = −b ± √
b2 − 4ac

2a

Develop a function to implement this formula given values of the coeffcients.

Solution. Top-down design provides a nice approach for designing an algorithm to com-
pute the roots. This involves developing the general structure without details and then
refining the algorithm. To start, we first recognize that depending on whether the parameter
a is zero, we will either have “special” cases (e.g., single roots or trivial values) or conven-
tional cases using the quadratic formula. This “big-picture” version can be programmed as

function quadroots(a, b, c)
% quadroots: roots of quadratic equation
% quadroots(a,b,c): real and complex roots
% of quadratic equation
% input:
% a = second-order coefficient

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.5 1 1.5 2 2.5 3

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 71 CONFIRMING PAGES

72 PROGRAMMING WITH MATLAB

% b = first-order coefficient
% c = zero-order coefficient
% output:
% r1 = real part of first root
% i1 = imaginary part of first root
% r2 = real part of second root
% i2 = imaginary part of second root
if a == 0
%special cases

else
%quadratic formula

end

Next, we develop refined code to handle the “special” cases:

%special cases
if b ~= 0
%single root
r1 = -c / b

else
%trivial solution
disp('Trivial solution. Try again')

end

And we can develop refined code to handle the quadratic formula cases:

%quadratic formula
d = b ^ 2 - 4 * a * c;
if d >= 0
%real roots
r1 = (-b + sqrt(d)) / (2 * a)
r2 = (-b - sqrt(d)) / (2 * a)

else
%complex roots
r1 = -b / (2 * a)
i1 = sqrt(abs(d)) / (2 * a)
r2 = r1
i2 = -i1

end

We can then merely substitute these blocks back into the simple “big-picture” frame-
work to give the final result:

function quadroots(a, b, c)
% quadroots: roots of quadratic equation
% quadroots(a,b,c): real and complex roots
% of quadratic equation
% input:
% a = second-order coefficient
% b = first-order coefficient
% c = zero-order coefficient
% output:
% r1 = real part of first root
% i1 = imaginary part of first root

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 72 CONFIRMING PAGES

3.4 NESTING AND INDENTATION 73

% r2 = real part of second root
% i2 = imaginary part of second root
if a == 0

%special cases
if b ~= 0

%single root
r1 = -c / b

else
%trivial solution
disp('Trivial solution. Try again')

end

else

%quadratic formula
d = b ^ 2 - 4 * a * c; %discriminant
if d >= 0

%real roots
r1 = (-b + sqrt(d)) / (2 * a)
r2 = (-b - sqrt(d)) / (2 * a)

else
%complex roots
r1 = -b / (2 * a)
i1 = sqrt(abs(d)) / (2 * a)
r2 = r1
i2 = -i1

end

end

As highlighted by the shading, notice how indentation helps to make the underlying
logical structure clear. Also notice how “modular” the structures are. Here is a command
window session illustrating how the function performs:

>> quadroots(1,1,1)

r1 =
-0.5000

i1 =
0.8660

r2 =
-0.5000

i2 =
-0.8660

>> quadroots(1,5,1)

r1 =
-0.2087

r2 =
-4.7913

>> quadroots(0,5,1)

r1 =
-0.2000

cha01102_ch03_048-087.qxd 11/11/10 12:43 PM Page 73 CONFIRMING PAGES

74 PROGRAMMING WITH MATLAB

>> quadroots(0,0,0)

Trivial solution. Try again

3.5 PASSING FUNCTIONS TO M-FILES

Much of the remainder of the book involves developing functions to numerically evaluate
other functions. Although a customized function could be developed for every new equa-
tion we analyzed, a better alternative is to design a generic function and pass the particular
equation we wish to analyze as an argument. In the parlance of MATLAB, these functions
are given a special name: function functions. Before describing how they work, we will
first introduce anonymous functions, which provide a handy means to define simple user-
defined functions without developing a full-blown M-file.

3.5.1 Anonymous Functions

Anonymous functions allow you to create a simple function without creating an M-file.
They can be defined within the command window with the following syntax:

fhandle = @(arglist) expression

where fhandle = the function handle you can use to invoke the function, arglist = a
comma separated list of input arguments to be passed to the function, and expression =

any single valid MATLAB expression. For example,

>> f1=@(x,y) x^2 + y^2;

Once these functions are defined in the command window, they can be used just as other
functions:

>> f1(3,4)

ans =
25

Aside from the variables in its argument list, an anonymous function can include vari-
ables that exist in the workspace where it is created. For example, we could create an
anonymous function f(x) = 4x2 as

>> a = 4;
>> b = 2;
>> f2=@(x) a*x^b;
>> f2(3)

ans = 36

Note that if subsequently we enter new values for a and b, the anonymous function
does not change:

>> a = 3;
>> f2(3)

ans = 36

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 74 CONFIRMING PAGES

3.5 PASSING FUNCTIONS TO M-FILES 75

Thus, the function handle holds a snapshot of the function at the time it was created. If we
want the variables to take on values, we must recreate the function. For example, having
changed a to 3,

>> f2=@(x) a*x^b;

with the result

>> f2(3)

ans =
27

It should be noted that prior to MATLAB 7, inline functions performed the same
role as anonymous functions. For example, the anonymous function developed above, f1,
could be written as

>> f1=inline('x^2 + y^2','x','y');

Although they are being phased out in favor of anonymous function, some readers might be
using earlier versions, and so we thought it would be helpful to mention them. MATLAB
help can be consulted to learn more about their use and limitations.

3.5.2 Function Functions

Function functions are functions that operate on other functions which are passed to it as
input arguments. The function that is passed to the function function is referred to as the
passed function. A simple example is the built-in function fplot, which plots the graphs
of functions. A simple representation of its syntax is

fplot(func,lims)

where func is the function being plotted between the x-axis limits specified by lims =

[xmin xmax]. For this case, func is the passed function. This function is “smart” in that it
automatically analyzes the function and decides how many values to use so that the plot
will exhibit all the function’s features.

Here is an example of how fplot can be used to plot the velocity of the free-falling
bungee jumper. The function can be created with an anonymous function:

>> vel=@(t) ...
sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t);

We can then generate a plot from t = 0 to 12 as

>> fplot(vel,[0 12])

The result is displayed in Fig. 3.3.
Note that in the remainder of this book, we will have many occasions to use MATLAB’s

built-in function functions. As in the following example, we will also be developing
our own.

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 75 CONFIRMING PAGES

76 PROGRAMMING WITH MATLAB

EXAMPLE 3.8 Building and Implementing a Function Function

Problem Statement. Develop an M-file function function to determine the average value
of a function over a range. Illustrate its use for the bungee jumper velocity over the range
from t = 0 to 12 s:

v(t) =
√

gm

cd
tanh

(√
gcd

m
t

)

where g = 9.81, m = 68.1, and cd = 0.25.

Solution. The average value of the function can be computed with standard MATLAB
commands as

>> t=linspace(0,12);
>> v=sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t);
>> mean(v)

ans =
36.0870

Inspection of a plot of the function (Fig. 3.3) shows that this result is a reasonable estimate
of the curve’s average height.

FIGURE 3.3
A plot of velocity versus time generated with the fplot function.

60

50

40

30

20

10

0
0 2 4 6 8 10 12

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 76 CONFIRMING PAGES

3.5 PASSING FUNCTIONS TO M-FILES 77

We can write an M-file to perform the same computation:

function favg = funcavg(a,b,n)
% funcavg: average function height
% favg=funcavg(a,b,n): computes average value
% of function over a range
% input:
% a = lower bound of range
% b = upper bound of range
% n = number of intervals
% output:
% favg = average value of function
x = linspace(a,b,n);
y = func(x);
favg = mean(y);
end

function f = func(t)
f=sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t);
end

The main function first uses linspace to generate equally spaced x values across
the range. These values are then passed to a subfunction func in order to generate the cor-
responding y values. Finally, the average value is computed. The function can be run from
the command window as

>> funcavg (0,12,60)

ans =
36.0127

Now let’s rewrite the M-file so that rather than being specific to func, it evaluates a
nonspecific function name f that is passed in as an argument:

function favg = funcavg (f,a,b,n)
% funcavg: average function height
% favg=funcavg(f,a,b,n): computes average value
% of function over a range
% input:
% f = function to be evaluated
% a = lower bound of range
% b = upper bound of range
% n = number of intervals
% output:
% favg = average value of function
x = linspace(a,b,n);
y = f(x);
favg = mean(y);

Because we have removed the subfunction func, this version is truly generic. It can be run
from the command window as

>> vel=@(t) ...
sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t);
>> funcavg(vel,0,12,60)

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 77 CONFIRMING PAGES

ans =
36.0127

To demonstrate its generic nature, funcavg can easily be applied to another case by
merely passing it a different function. For example, it could be used to determine the aver-
age value of the built-in sin function between 0 and 2π as

>> funcavg(@sin,0,2*pi,180)

ans =
-6.3001e-017

Does this result make sense?
We can see that funcavg is now designed to evaluate any valid MATLAB expression.

We will do this on numerous occasions throughout the remainder of this text in a
number of contexts ranging from nonlinear equation solving to the solution of differential
equations.

3.5.3 Passing Parameters

Recall from Chap. 1 that the terms in mathematical models can be divided into dependent
and independent variables, parameters, and forcing functions. For the bungee jumper
model, the velocity (v) is the dependent variable, time (t) is the independent variable, the
mass (m) and drag coefficient (cd) are parameters, and the gravitational constant (g) is the
forcing function. It is commonplace to investigate the behavior of such models by per-
forming a sensitivity analysis. This involves observing how the dependent variable changes
as the parameters and forcing functions are varied.

In Example 3.8, we developed a function function, funcavg, and used it to determine
the average value of the bungee jumper velocity for the case where the parameters were set
at m = 68.1 and cd = 0.25. Suppose that we wanted to analyze the same function, but with
different parameters. Of course, we could retype the function with new values for each
case, but it would be preferable to just change the parameters.

As we learned in Sec. 3.5.1, it is possible to incorporate parameters into anonymous
functions. For example, rather than “wiring” the numeric values, we could have done the
following:

>> m=68.1;cd=0.25;
>> vel=@(t) sqrt(9.81*m/cd)*tanh(sqrt(9.81*cd/m)*t);
>> funcavg(vel,0,12,60)

ans =
36.0127

However, if we want the parameters to take on new values, we must recreate the anony-
mous function.

MATLAB offers a better alternative by adding the term varargin as the function
function’s last input argument. In addition, every time the passed function is invoked
within the function function, the term varargin{:} should be added to the end of its

78 PROGRAMMING WITH MATLAB

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 78 CONFIRMING PAGES

argument list (note the curly brackets). Here is how both modifications can be implemented
for funcavg (omitting comments for conciseness):

function favg = funcavg(f,a,b,n,varargin)
x = linspace(a,b,n);
y = f(x,varargin{:});
favg = mean(y);

When the passed function is defined, the actual parameters should be added at the end
of the argument list. If we used an anonymous function, this can be done as in

>> vel=@(t,m,cd) sqrt(9.81*m/cd)*tanh(sqrt(9.81*cd/m)*t);

When all these changes have been made, analyzing different parameters becomes easy. To
implement the case where m = 68.1 and cd = 0.25, we could enter

>> funcavg(vel,0,12,60,68.1,0.25)

ans =
36.0127

An alternative case, say m = 100 and cd = 0.28, could be rapidly generated by merely
changing the arguments:

>> funcavg(vel,0,12,60,100,0.28)

ans =
38.9345

3.6 CASE STUDY 79

3.6 CASE STUDY BUNGEE JUMPER VELOCITY

Background. In this section, we will use MATLAB to solve the free-falling bungee
jumper problem we posed at the beginning of this chapter. This involves obtaining a solu-
tion of

dv

dt
= g − cd

m
v|v|

Recall that, given an initial condition for time and velocity, the problem involved iter-
atively solving the formula,

vi+1 = vi + dvi

dt
�t

Now also remember that to attain good accuracy, we would employ small steps. Therefore,
we would probably want to apply the formula repeatedly to step out from our initial time
to attain the value at the final time. Consequently, an algorithm to solve the problem would
be based on a loop.

Solution. Suppose that we started the computation at t = 0 and wanted to predict
velocity at t = 12 s using a time step of �t = 0.5 s. We would therefore need to apply the
iterative equation 24 times—that is,

n = 12

0.5
= 24

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 79 CONFIRMING PAGES

80 PROGRAMMING WITH MATLAB

where n = the number of iterations of the loop. Because this result is exact (i.e., the ratio is
an integer), we can use a for loop as the basis for the algorithm. Here’s an M-file to do this
including a subfunction defining the differential equation:

function vend = velocity1(dt, ti, tf, vi)
% velocity1: Euler solution for bungee velocity
% vend = velocity1(dt, ti, tf, vi)
% Euler method solution of bungee
% jumper velocity
% input:
% dt = time step (s)
% ti = initial time (s)
% tf = final time (s)
% vi = initial value of dependent variable (m/s)
% output:
% vend = velocity at tf (m/s)
t = ti;
v = vi;
n = (tf - ti) / dt;
for i = 1:n
dvdt = deriv(v);
v = v + dvdt * dt;
t = t + dt;

end
vend = v;
end

function dv = deriv(v)
dv = 9.81 - (0.25 / 68.1) * v*abs(v);
end

This function can be invoked from the command window with the result:

>> velocity1(0.5,0,12,0)

ans =
50.9259

Note that the true value obtained from the analytical solution is 50.6175 (Exam-
ple 3.1). We can then try a much smaller value of dt to obtain a more accurate numeri-
cal result:

>> velocity1(0.001,0,12,0)

ans =
50.6181

Although this function is certainly simple to program, it is not foolproof. In partic-
ular, it will not work if the computation interval is not evenly divisible by the time step.
To cover such cases, a while . . . break loop can be substituted in place of the
shaded area (note that we have omitted the comments for conciseness):

3.6 CASE STUDY continued

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 80 CONFIRMING PAGES

3.6 CASE STUDY 81

3.6 CASE STUDY continued

function vend = velocity2(dt, ti, tf, vi)
t = ti;
v = vi;
h = dt;
while(1)
if t + dt > tf, h = tf - t; end
dvdt = deriv(v);
v = v + dvdt * h;
t = t + h;
if t >= tf, break, end

end
vend = v;
end

function dv = deriv(v)
dv = 9.81 - (0.25 / 68.1) * v*abs(v);
end

As soon as we enter the while loop, we use a single line if structure to test whether
adding t + dt will take us beyond the end of the interval. If not (which would usually be
the case at first), we do nothing. If so, we would shorten up the interval—that is, we set the
variable step h to the interval remaining: tf - t. By doing this, we guarantee that the last
step falls exactly on tf. After we implement this final step, the loop will terminate because
the condition t >= tf will test true.

Notice that before entering the loop, we assign the value of the time step dt to another
variable h. We create this dummy variable so that our routine does not change the given
value of dt if and when we shorten the time step. We do this in anticipation that we might
need to use the original value of dt somewhere else in the event that this code were inte-
grated within a larger program.

If we run this new version, the result will be the same as for the version based on the
for loop structure:

>> velocity2(0.5,0,12,0)

ans =
50.9259

Further, we can use a dt that is not evenly divisible into tf – ti:

>> velocity2(0.35,0,12,0)

ans =
50.8348

We should note that the algorithm is still not foolproof. For example, the user could
have mistakenly entered a step size greater than the calculation interval (e.g., tf - ti = 5
and dt = 20). Thus, you might want to include error traps in your code to catch such errors
and then allow the user to correct the mistake.

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 81 CONFIRMING PAGES

82 PROGRAMMING WITH MATLAB

As a final note, we should recognize that the foregoing code is not generic. That is, we
have designed it to solve the specific problem of the velocity of the bungee jumper. A more
generic version can be developed as

function yend = odesimp(dydt, dt, ti, tf, yi)
t = ti; y = yi; h = dt;
while (1)
if t + dt > tf, h = tf - t; end
y = y + dydt(y) * h;
t = t + h;
if t >= tf, break, end

end
yend = y;

Notice how we have stripped out the parts of the algorithm that were specific to
the bungee example (including the subfunction defining the differential equation)
while keeping the essential features of the solution technique. We can then use this
routine to solve the bungee jumper example, by specifying the differential equation
with an anonymous function and passing its function handle to odesimp to generate
the solution

>> dvdt=@(v) 9.81-(0.25/68.1)*v*abs(v);
>> odesimp(dvdt,0.5,0,12,0)

ans =
50.9259

We could then analyze a different function without having to go in and modify the
M-file. For example, if y = 10 at t = 0, the differential equation dy/dt = −0.1y has the ana-
lytical solution y = 10e−0.1t. Therefore, the solution at t = 5 would be y(5) = 10e−0.1(5) =
6.0653. We can use odesimp to obtain the same result numerically as in

>> odesimp(@(y) -0.1*y,0.005,0,5,10)

ans =
6.0645

3.6 CASE STUDY continued

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 82 CONFIRMING PAGES

PROBLEMS 83

3.1 Figure P3.1 shows a cylindrical tank with a conical
base. If the liquid level is quite low, in the conical part, the
volume is simply the conical volume of liquid. If the liquid
level is midrange in the cylindrical part, the total volume of
liquid includes the filled conical part and the partially filled
cylindrical part.

Use decisional structures to write an M-file to compute
the tank’s volume as a function of given values of R and d.
Design the function so that it returns the volume for all cases

interest rate of i. The formula to compute the annual pay-
ment A is

A = P
i(1 + i)n

(1 + i)n − 1

Write an M-file to compute A. Test it with P = $100,000 and
an interest rate of 3.3% (i = 0.033). Compute results for n =
1, 2, 3, 4, and 5 and display the results as a table with head-
ings and columns for n and A.
3.4 The average daily temperature for an area can be ap-
proximated by the following function:

T = Tmean + (Tpeak − Tmean) cos(ω(t − tpeak))

where Tmean = the average annual temperature, Tpeak = the
peak temperature, ω = the frequency of the annual variation
(= 2π/365), and tpeak = day of the peak temperature
(∼=205 d). Parameters for some U.S. towns are listed here:

City Tmean (°C) Tpeak (°C)

Miami, FL 22.1 28.3
Yuma, AZ 23.1 33.6
Bismarck, ND 5.2 22.1
Seattle, WA 10.6 17.6
Boston, MA 10.7 22.9

Develop an M-file that computes the average temperature
between two days of the year for a particular city. Test it
for (a) January–February in Yuma, AZ (t = 0 to 59) and
(b) July–August temperature in Seattle, WA (t = 180 to 242).
3.5 The cosine function can be evaluated by the following
infinite series:

sin x = x − x3

3!
+ x5

5!
− · · ·

Create an M-file to implement this formula so that it com-
putes and displays the values of sin x as each term in the
series is added. In other words, compute and display in
sequence the values for

sin x = x

sin x = x − x3

3!

sin x = x − x3

3!
+ x5

5!
...

PROBLEMS

2R

R

d

FIGURE P3.1

where the depth is less than 3R. Return an error message
(“Overtop”) if you overtop the tank—that is, d > 3R. Test it
with the following data:

R 0.9 1.5 1.3 1.3
d 1 1.25 3.8 4.0

Note that the tank’s radius is R.
3.2 An amount of money P is invested in an account where
interest is compounded at the end of the period. The future
worth F yielded at an interest rate i after n periods may be
determined from the following formula:

F = P(1 + i)n

Write an M-file that will calculate the future worth of an in-
vestment for each year from 1 through n. The input to the
function should include the initial investment P, the interest
rate i (as a decimal), and the number of years n for which the
future worth is to be calculated. The output should consist of
a table with headings and columns for n and F. Run the pro-
gram for P = $100,000, i = 0.05, and n = 10 years.
3.3 Economic formulas are available to compute annual
payments for loans. Suppose that you borrow an amount of
money P and agree to repay it in n annual payments at an

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 83 CONFIRMING PAGES

up to the order term of your choosing. For each of the pre-
ceding, compute and display the percent relative error as

%error = true − series approximation

true
× 100%

As a test case, employ the program to compute sin(0.9) for
up to and including eight terms—that is, up to the term
x15/15!.
3.6 Two distances are required to specify the location of a
point relative to an origin in two-dimensional space
(Fig. P3.6):

• The horizontal and vertical distances (x, y) in Cartesian
coordinates.

• The radius and angle (r, θ) in polar coordinates.

It is relatively straightforward to compute Cartesian coordi-
nates (x, y) on the basis of polar coordinates (r, θ). The
reverse process is not so simple. The radius can be computed
by the following formula:

r =
√

x2 + y2

If the coordinates lie within the first and fourth coordi-
nates (i.e., x > 0), then a simple formula can be used to
compute θ :

θ = tan−1
(y

x

)

84 PROGRAMMING WITH MATLAB

The difficulty arises for the other cases. The following table
summarizes the possibilities:

x y θ

<0 >0 tan−1(y/x) + π
<0 <0 tan−1(y/x) − π
<0 =0 π
=0 >0 π/2
=0 <0 −π/2
=0 =0 0

Write a well-structured M-file using if...elseif struc-
tures to calculate r and θ as a function of x and y. Express the
final results for θ in degrees. Test your program by evaluat-
ing the following cases:

x y r θ

2 0
2 1
0 3

−3 1
−2 0
−1 −2

0 0
0 −2
2 2

3.7 Develop an M-file to determine polar coordinates as
described in Prob. 3.6. However, rather than designing the
function to evaluate a single case, pass vectors of x and y.
Have the function display the results as a table with columns
for x, y, r, and θ . Test the program for the cases outlined in
Prob. 3.6.
3.8 Develop an M-file function that is passed a numeric
grade from 0 to 100 and returns a letter grade according to
the scheme:

Letter Criteria

A 90 ≤ numeric grade ≤ 100
B 80 ≤ numeric grade < 90
C 70 ≤ numeric grade < 80
D 60 ≤ numeric grade < 70
F numeric grade < 60

The first line of the function should be

function grade = lettergrade(score)
FIGURE P3.6

y

x
�

III

III IV

r

cha01102_ch03_048-087.qxd 11/11/10 12:43 PM Page 84 CONFIRMING PAGES

Design the function so that it displays an error message and
terminates in the event that the user enters a value of score
that is less than zero or greater than 100. Test your function
with 89.9999, 90, 45 and 120.
3.9 Manning’s equation can be used to compute the velocity
of water in a rectangular open channel:

U =
√

S

n

(
B H

B + 2H

)2/3

where U = velocity (m/s), S = channel slope, n = roughness
coefficient, B = width (m), and H = depth (m). The follow-
ing data are available for five channels:

n S B H

0.036 0.0001 10 2
0.020 0.0002 8 1
0.015 0.0012 20 1.5
0.030 0.0007 25 3
0.022 0.0003 15 2.6

Write an M-file that computes the velocity for each of these
channels. Enter these values into a matrix where each col-
umn represents a parameter and each row represents a chan-
nel. Have the M-file display the input data along with
the computed velocity in tabular form where velocity is the
fifth column. Include headings on the table to label the
columns.
3.10 A simply supported beam is loaded as shown in
Fig. P3.10. Using singularity functions, the displacement
along the beam can be expressed by the equation:

uy(x) = −5

6
[〈x − 0〉4 − 〈x − 5〉4] + 15

6
〈x − 8〉3

+ 75〈x − 7〉2 + 57

6
x3 − 238.25x

PROBLEMS 85

By definition, the singularity function can be expressed as
follows:

〈x − a〉n =
{

(x − a)n when x > a
0 when x ≤ a

}

Develop an M-file that creates a plot of displacement
(dashed line) versus distance along the beam, x. Note that
x = 0 at the left end of the beam.
3.11 The volume V of liquid in a hollow horizontal cylinder of
radius r and length L is related to the depth of the liquid h by

V =
[

r2 cos−1
(

r − h

r

)
− (r − h)

√
2rh − h2

]
L

Develop an M-file to create a plot of volume versus depth.
Here are the first few lines:

function cylinder(r, L, plot_title)
% volume of horizontal cylinder
% inputs:
% r = radius
% L = length
% plot_title = string holding plot title

Test your program with

>> cylinder(3,5,...
'Volume versus depth for horizontal...
cylindrical tank')

3.12 Develop a vectorized version of the following code:

tstart=0; tend=20; ni=8;
t(1)=tstart;
y(1)=12 + 6*cos(2*pi*t(1)/(tend-tstart));
for i=2:ni+1
t(i)=t(i-1)+(tend-tstart)/ni;
y(i)=10 + 5*cos(2*pi*t(i)/ ...

(tend-tstart));
end

20 kips/ft

150 kip-ft 15 kips

5’ 2’ 1’ 2’

FIGURE P3.10

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 85 CONFIRMING PAGES

3.13 The “divide and average” method, an old-time method
for approximating the square root of any positive number a,
can be formulated as

x = x + a/x

2

Write a well-structured M-file function based on a
while...break loop structure to implement this algo-
rithm. Use proper indentation so that the structure is clear. At
each step estimate the error in your approximation as

ε =
∣∣∣∣ xnew − xold

xnew

∣∣∣∣
Repeat the loop until ε is less than or equal to a specified
value. Design your program so that it returns both the result
and the error. Make sure that it can evaluate the square root
of numbers that are equal to and less than zero. For the latter
case, display the result as an imaginary number. For exam-
ple, the square root of −4 would return 2i. Test your program
by evaluating a = 0, 2, 10 and −4 for ε = 1 × 10−4.
3.14 Piecewise functions are sometimes useful when the re-
lationship between a dependent and an independent variable
cannot be adequately represented by a single equation. For
example, the velocity of a rocket might be described by

v(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10t2 − 5t 0 ≤ t ≤ 8
624 − 5t 8 ≤ t ≤ 16

36t + 12(t − 16)2 16 ≤ t ≤ 26
2136e−0.1(t−26) t > 26

0 otherwise

Develop an M-file function to compute v as a function of t.
Then, develop a script that uses this function to generate a
plot of v versus t for t = −5 to 50.
3.15 Develop an M-file function called rounder to round a
number x to a specified number of decimal digits, n. The first
line of the function should be set up as

function xr = rounder(x, n)

Test the program by rounding each of the following to 2 dec-
imal digits: x = 477.9587, −477.9587, 0.125, 0.135, −0.125,
and −0.135.
3.16 Develop an M-file function to determine the elapsed
days in a year. The first line of the function should be set
up as

function nd = days(mo, da, leap)

where mo = the month (1–12), da = the day (1–31), and
leap = (0 for non–leap year and 1 for leap year). Test it for
January 1, 1997, February 29, 2004, March 1, 2001, June 21,

86 PROGRAMMING WITH MATLAB

2004, and December 31, 2008. Hint: A nice way to do this
combines the for and the switch structures.
3.17 Develop an M-file function to determine the elapsed
days in a year. The first line of the function should be set
up as

function nd = days(mo, da, year)

where mo = the month (1–12), da = the day (1–31), and
year = the year. Test it for January 1, 1997, February 29,
2004, March 1, 2001, June 21, 2004, and December 31, 2008.
3.18 Develop a function function M-file that returns the dif-
ference between the passed function’s maximum and mini-
mum value given a range of the independent variable. In
addition, have the function generate a plot of the function for
the range. Test it for the following cases:
(a) f(t) = 8e−0.25tsin(t − 2) from t = 0 to 6π.
(b) f(x) = e4xsin(1/x) from x = 0.01 to 0.2.
(c) The built-in humps function from x = 0 to 2.
3.19 Modify the function function odesimp developed at
the end of Sec. 3.6 so that it can be passed the arguments of
the passed function. Test it for the following case:

>> dvdt=@(v,m,cd) 9.81-(cd/m)*v^2;
>> odesimp(dvdt,0.5,0,12,-10,70,0.23)

3.20 A Cartesian vector can be thought of as representing
magnitudes along the x-, y-, and z-axes multiplied by a unit
vector (i, j, k). For such cases, the dot product of two of these
vectors {a} and {b} corresponds to the product of their mag-
nitudes and the cosine of the angle between their tails as in

{a}�{b} = ab cos�

The cross product yields another vector, {c} � {a} � {b},
which is perpendicular to the plane defined by {a} and {b}
such that its direction is specified by the right-hand rule.
Develop an M-file function that is passed two such vectors
and returns �, {c} and the magnitude of {c}, and generates a
three-dimensional plot of the three vectors {a}, {b}, and {c)
with their origins at zero. Use dashed lines for {a} and {b}
and a solid line for {c}. Test your function for the following
cases:

(a) a = [6 4 2]; b = [2 6 4];

(b) a = [3 2 -6]; b = [4 -3 1];

(c) a = [2 -2 1]; b = [4 2 -4];

(d) a = [-1 0 0]; b = [0 -1 0];

3.21 Based on Example 3.6, develop a script to produce an
animation of a bouncing ball where v0 � 5 m/s and �0 � 50�.
To do this, you must be able to predict exactly when the ball
hits the ground. At this point, the direction changes (the new
angle will equal the negative of the angle at impact), and the

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 86 CONFIRMING PAGES

velocity will decrease in magnitude to reflect energy loss
due to the collision of the ball with the ground. The change
in velocity can be quantified by the coefficient of restitution
CR which is equal to the ratio of the velocity after to the ve-
locity before impact. For the present case, use a value of
CR � 0.8.
3.22 Develop a function to produce an animation of a parti-
cle moving in a circle in Cartesian coordinates based on ra-
dial coordinates. Assume a constant radius, r, and allow the
angle, �, to increase from zero to 2 in equal increments.
The function’s first lines should be

PROBLEMS 87

function phasor(r, nt, nm)
% function to show the orbit of a phasor
% r = radius
% nt = number of increments for theta
% nm = number of movies

Test your function with

phasor(1, 256, 10)

3.23 Develop a script to produce a movie for the butterfly
plot from Prob. 2.22. Use a particle located at the x-y coordi-
nates to visualize how the plot evolves in time.

cha01102_ch03_048-087.qxd 11/9/10 11:13 AM Page 87 CONFIRMING PAGES

