## Computational Methods for Kinetic Processes in Plasma Physics



#### Ken Nishikawa

National Space Science & Technology Center/UAH



#### Basics of PIC Simulation methods

- \* Collisionless plasmas
- \* Finite-size particles
- \* Electrostatic codes
- \* Charge assignment and force interpolation (already in 3-D system)
- \* Filtering action of shape function
- \* Summary





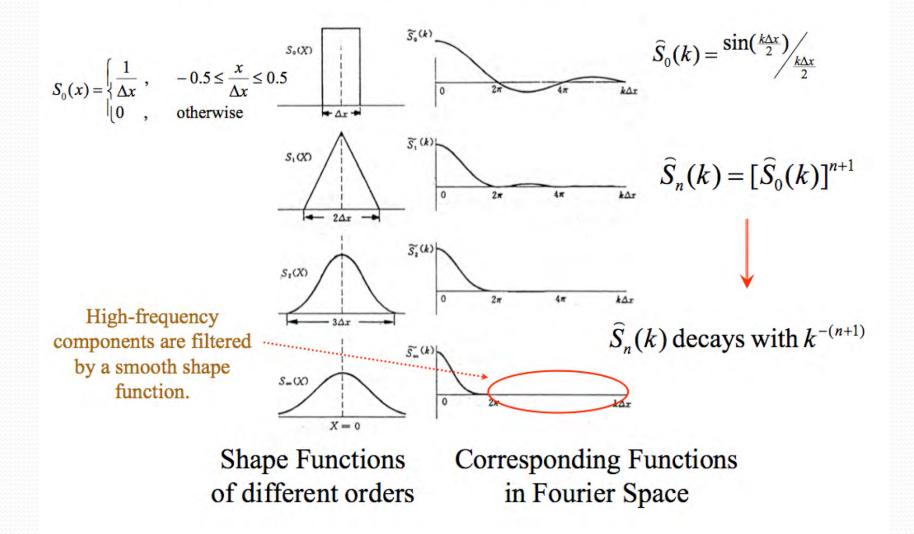




Context

- Integration of equations
- Aliasing and Reducing noises
- Collisions
- Finite-size particle effects
- Restriction of time step and grid size
- Accuracy and stability of the time integration
- Current deposition seven-boundary move
- Current deposition ten-boundary move
- Charge and current deposition
- Zigzag scheme in two-dimensional systems

Filtering Action of Shape Functions



Integration of the field equations

Fourier transform

$$E_{x} = -\frac{\partial \phi}{\partial x}$$

$$\frac{\partial E_{x}}{\partial x} = \rho$$

$$\frac{\partial^{2} \phi}{\partial^{2} x} = -\rho$$

$$\downarrow \text{ finit defference}$$

$$E_{j} = \frac{\phi_{j-1} - \phi_{j+1}}{2\Delta x}$$

$$\frac{\phi_{j-1} - 2\phi_{j} + \phi_{j+1}}{2}$$

$$\frac{2\Delta x}{\left(\Delta x\right)^2} = -\rho_j$$

$$\hat{E}(k_l) = -ik_l\hat{\phi}(k_l)$$

$$\hat{\phi}(k_l) = \frac{\hat{\rho}(k_l)}{k_l^2} \quad k_l = \frac{2\pi l}{L}$$

$$\uparrow \Delta x = 0$$

$$\hat{E}(k_l) = -iK_l\hat{\phi}(k_l)$$

$$\hat{\phi}(k_l) = \frac{\hat{\rho}(k_l)}{K_l^2}$$

$$K_l^2 = k_l^2 \left(\frac{\sin(\frac{1}{2}k_l\Delta x)}{\frac{1}{2}k_l\Delta x}\right)^2$$

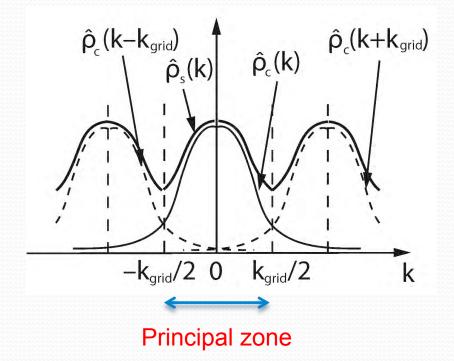
The spurious fluctuation which appears as as result of the loss of displacement invariance, manifest themselves in *k*-space as non-physical mode coupling, known as `aliasing'.

Aliasing

By introducing a mesh we reduced our representation of  $\rho(x)$  from a continuous representation  $\rho_c(x)$  to a sampled representation  $\rho_s(x)$ .

$$\hat{\rho}_c(k) = \int_{-\infty}^{\infty} dx \rho_c(x) e^{-ikx}$$

$$\hat{\rho}_{s}(k) = \sum_{n=-\infty}^{n=\infty} \hat{\rho}_{c}(k + nk_{grid})$$



The extra contributions (from |n|>0) to inside the principal zone are called aliasing

# Aliasing and reducing noise

- The spurious fluctuations of high frequency cause the noise and error in the main lobe, which might make the numerical system to be unstable.
- The high-k components of S(k) is determined by the smoothness of S(x); The high-k components of n<sub>c</sub>(k) is determined by the smoothness of n(x), The number of particles.
- The major noise exists in the particle-in-cell method mainly comes from the aliasing effect. Two methods for reducing the aliasing effects:
  - 1. Increase the particle number.
  - 2. Increase the order of the shape function S(x).

## **Collisional effects**

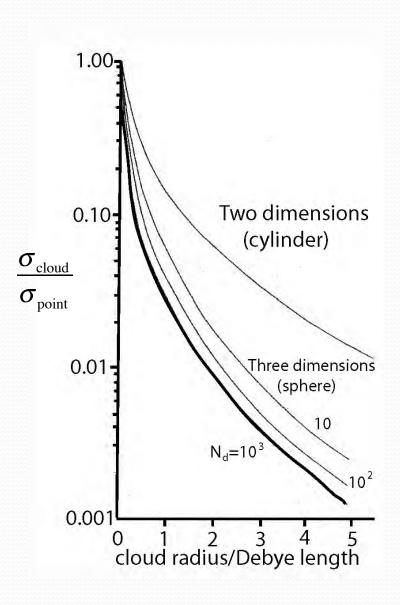
The ratio of the cross sections for finite–sized particles to that for point particles in in two and three dimensions (taken from Okuda and Birdsall 1970)

Examples of collision rates: (a) two dimensions:

System  $100\lambda_{\rm D} \times 100\lambda_{\rm D}$   $N = 3 \times 10^5$  particles  $n\lambda_{\rm D}^2 = N_{\rm p} = 30$ particle radius  $a = \lambda_{\rm D}$  $v = R\omega_{\rm pe}/16N_{\rm D} \approx 2 \times 10^{-4}\omega_{\rm p}$ 

(b) three dimensions:

System  $50\lambda_{\rm D} \times 50\lambda_{\rm D} \times 50\lambda_{\rm D}$   $N = 10^{6}$  particles  $n\lambda_{\rm D}^{2} = N_{\rm p} = 10$ particle radius  $a = \lambda_{\rm D}$  $v = R\omega_{\rm pe}/16N_{\rm D} \approx 10^{-3}\omega_{\rm p}$ 



Finite-size particle effects

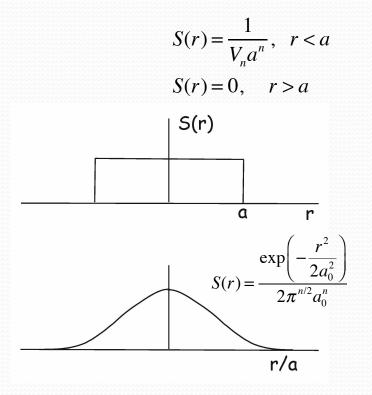
$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{F}{m} \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$
  
$$F(\mathbf{r}_j) = q \int S(\mathbf{r} - \mathbf{r}_j) \mathbf{E}(\mathbf{r}) d^n \mathbf{r}$$
  
$$\nabla \cdot \mathbf{E} = 4\pi q \int f(\mathbf{r}', \mathbf{v}') S(\mathbf{r} - \mathbf{r}') d^n \mathbf{r}' d^n \mathbf{v}'$$

Dispersion function with finite-size particles

$$\varepsilon(\boldsymbol{k},\boldsymbol{\omega}) = 1 + \frac{\omega_p |S(\boldsymbol{k})|^2}{k^2} \int_{-\infty}^{\infty} \frac{\boldsymbol{k} \cdot \partial f_0 / \partial v}{(\boldsymbol{\omega} - \boldsymbol{k} \cdot \boldsymbol{v} + i\boldsymbol{v})} d^n v$$

Plasma frequency is modified by smoothing  $\omega^2(k) = \omega_p^2 |S(k)|^2$ 

Fourier space modification reduces collisions



$$|S(k)|^{2} = \frac{e^{-k^{2}a^{2}}}{(2\pi)^{n_{a}n_{a}}}$$

Restrictions on time step and grid size

1. Courant condition (Cartesian coordinate) this condition comes from the electromagnetic code (light wave)  $cdt < 1/\sqrt{1/dx_1^2 + 1/dx_2^2 + 1/dx_3^2}$ 

2.  $\omega_{\max} dt < 0.25$   $\omega_{\max} = \max(\omega_{pe}, \omega_{ce})$ 

- 3.  $v_{\text{max}}dt < \min(dx_1, dx_2, dx_3)$ particle move in one step < 1 cell (grid size)
- 4. More particles are better, however it takes more memory and computing time

#### Accuracy and stability of time integration

In vacuum ( $\boldsymbol{E}, \boldsymbol{B}$ ) = ( $\boldsymbol{E}_0, \boldsymbol{B}_0$ )exp(i $\boldsymbol{k} \cdot \boldsymbol{x} - i\omega t$ )  $\boldsymbol{J}$ =0 from Maxwell equations

$$\Omega B = cK \times E$$
  

$$\Omega E = -cK \times B$$
  

$$\Omega = \omega \left| \frac{\sin(\omega \Delta t/2)}{\omega \Delta t/2} \right|, K = k \left| \frac{\sin(k \Delta x/2)}{k \Delta x/2} \right|$$
  

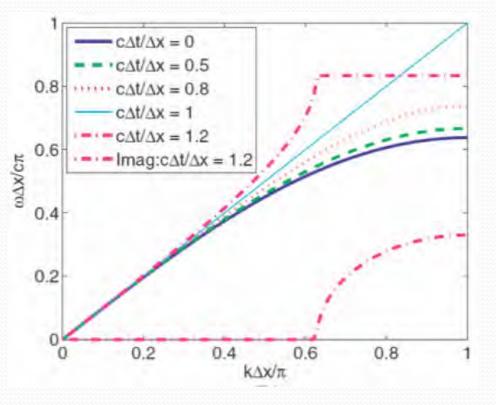
$$\Omega^{2} = c^{2}K^{2}$$
  

$$\left| \frac{\sin(\omega \Delta t/2)}{c \Delta t/2} \right|^{2} = \left| \frac{\sin(k \Delta x_{1}/2)}{\Delta x_{1}/2} \right|^{2} + \left| \frac{\sin(k \Delta x_{2}/2)}{\Delta x_{2}/2} \right|^{2}$$
  

$$\cos(\omega \Delta t) = \left( c \frac{\Delta t}{\Delta x} \right)^{2} [\cos(k \Delta x) - 1] + 1$$

Courant-Levy stability criterion

$$\Delta t \leq \frac{1}{c} \left( \sum_{i} \frac{1}{\left( \Delta x_i \right)^2} \right)^{-1/2}$$



Vacuum dispersion curve for leapfrog difference for wave equation

Relativistic particles which move faster than numerical speed of light cause numerical Cherenkov radiation in high wave-numbers

Calculation of vacuum dispersion solution (homework)

$$\cos(\omega\Delta t) = \left(c\frac{\Delta t}{\Delta x}\right)^{2} [\cos(k\Delta x) - 1] + 1$$
  

$$\cos\left(\frac{\omega\Delta x}{c}\frac{cdt}{dx}\right) - 1 = \left(c\frac{\Delta t}{\Delta x}\right)^{2} [\cos(k\Delta x) - 1]$$
  

$$\cos(\alpha y) - 1 = (\alpha)^{2} [\cos(x) - 1]$$
  

$$y = \frac{\omega\Delta x}{c}, \qquad x = k\Delta x, \qquad \alpha = \frac{cdt}{dx}$$
  

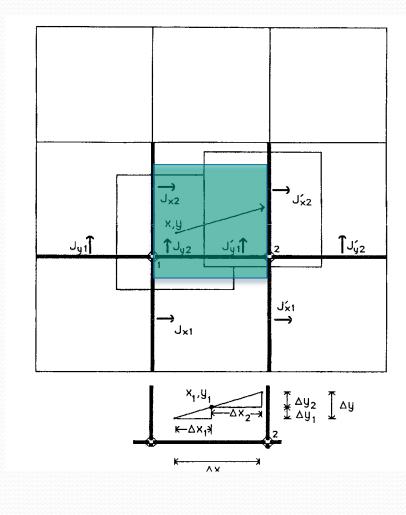
$$\frac{\cos(\alpha y) - 1}{(\alpha)^{2}} = \cos(x) - 1, \qquad \cos(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n} (x)^{2n}}{(2n)!}$$
  

$$-0.5y^{2} + \frac{1}{24}y^{4}\alpha^{2} + \cdots = \cos(x) - 1$$
  

$$y = \sqrt{2 \cdot (1 - \cos(x))} \qquad (\alpha = 0)$$

#### Current deposition seven-boundary move

 $\Delta x_1 = 0.5 - x_1$  $\Delta y_1 = (\Delta y / \Delta x) \Delta x_1$  $x_1 = -0.5$ ,  $y_1 = y + \Delta y_1$  $\Delta x_2 = \Delta x - \Delta x_1$ ,  $\Delta y_2 = \Delta y - \Delta y_1$  $J_{r1} = q\Delta x_1(\frac{1}{2} - y - \frac{1}{2}\Delta y_1)$  $J_{x^2} = q\Delta x_1(\frac{1}{2} + y + \frac{1}{2}\Delta y_1)$  $J_{y_1} = q \Delta y_1 (\frac{1}{2} - x - \frac{1}{2} \Delta x_1)$  $J_{v2} = q\Delta y_1(\frac{1}{2} + x + \frac{1}{2}\Delta x_1)$  $J'_{r1} = q\Delta x_2(\frac{1}{2} - y_1 - \frac{1}{2}\Delta y_2)$  $J'_{x^2} = q\Delta x_2(\frac{1}{2} + y_1 + \frac{1}{2}\Delta y_2)$  $J'_{v_1} = q \Delta y_2(\frac{1}{2} - x_1 - \frac{1}{2}\Delta x_2)$  $J'_{y^2} = q\Delta y_2(\frac{1}{2} + x_1 + \frac{1}{2}\Delta x_2)$ 



### Current deposition ten-boundary move

$$\Delta x_1 = 0.5 - x,$$
  

$$\Delta y_1 = (\Delta y / \Delta x) \Delta x_1,$$
  

$$x_1 = -0.5,$$
  

$$y_1 = y + \Delta y_1,$$
  

$$\Delta y_2 = 0.5 - y - \Delta y_1,$$
  

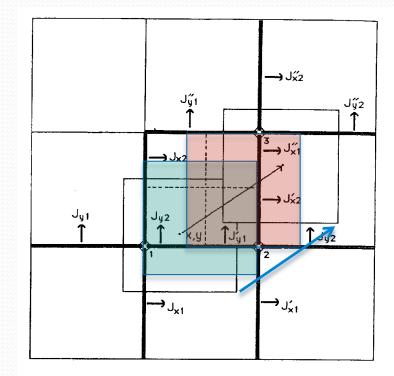
$$\Delta x_2 = (\Delta x / \Delta y) \Delta y_2,$$
  

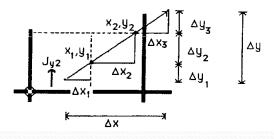
$$x_2 = \Delta x_2 - 0.5,$$
  

$$y_2 = 0.5,$$
  

$$\Delta x_3 = \Delta x - \Delta x_1 - \Delta x_2,$$
  

$$\Delta y_3 = \Delta y - \Delta y_1 - \Delta y_2$$





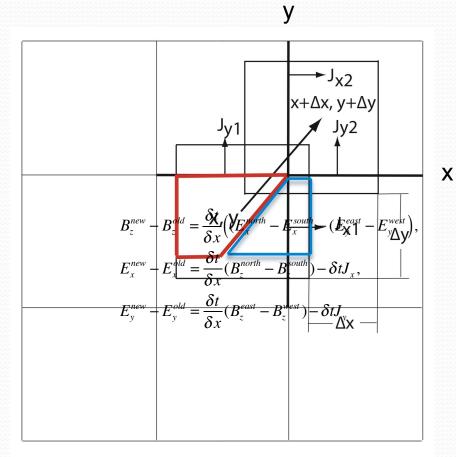
# Current deposit scheme (2-D)

$$\nabla \cdot E = 4\pi\rho, \ \nabla \cdot \frac{\partial E}{\partial t} = 4\pi \frac{\partial \rho}{\partial t}, \ \nabla \cdot (c\nabla \times B - 4\pi J) = 4\pi \frac{\partial \rho}{\partial t},$$
$$\frac{\partial \rho}{\partial t} = -\nabla \cdot J$$

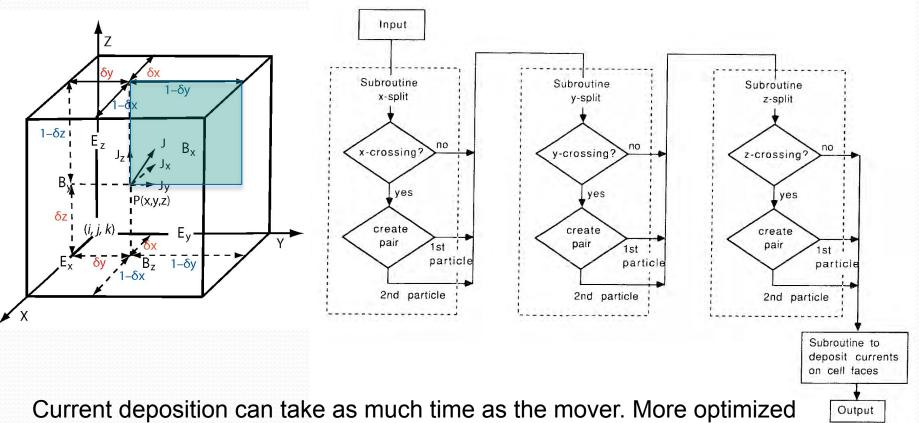
$$J_{x1} = q\Delta x \left(\frac{1}{2} - y - \frac{1}{2}\Delta y\right)$$
$$J_{x2} = q\Delta x \left(\frac{1}{2} + y + \frac{1}{2}\Delta y\right)$$

$$J_{y1} = q\Delta y(\frac{1}{2} - x - \frac{1}{2}\Delta x)$$
$$J_{y2} = q\Delta y(\frac{1}{2} + x + \frac{1}{2}\Delta x)$$

L



## Charge and current deposition



deposits exist (Umeda 2003).

Charge conservation makes the whole Maxwell solver local and hyperbolic. Static fields can be established dynamically. Zigzag scheme in two-dimensional systems

$$\begin{aligned} \frac{J_x^{t+\Delta t/2}(i+\frac{1}{2},j) - J_x^{t+\Delta t/2}(i-\frac{1}{2},j)}{\Delta x} + \frac{J_y^{t+\frac{\Delta t}{2}}(i,j+\frac{1}{2}) - J_y^{t+\Delta t/2}(i,j-\frac{1}{2})}{\Delta y} \\ &= \frac{\rho^t(i,j) - \rho^{t+\Delta t}(i,j)}{\Delta t}. \\ J_x(i_1+\frac{1}{2},j_1) &= \frac{1}{\Delta x \Delta y} F_x(1-W_y), \quad J_x(i_1+\frac{1}{2},j_1+1) = \frac{1}{\Delta x \Delta y} F_x W_y, \\ J_y(i_1,j_1+\frac{1}{2}) &= \frac{1}{\Delta x \Delta y} F_y(1-W_x), \quad J_y(i_1+1,j_1+\frac{1}{2}) = \frac{1}{\Delta x \Delta y} F_y W_x, \end{aligned}$$
$$i_1 = \text{floor}(x_1/\Delta x), \quad i_2 = \text{floor}(x_2/\Delta x), \\ j_1 = \text{floor}(y_1/\Delta y), \quad j_2 = \text{floor}(y_2/\Delta y), \end{aligned}$$
$$F_x = q \frac{x_2 - x_1}{\Delta t}, \quad F_y = q \frac{y_2 - y_1}{\Delta t}, \end{aligned}$$
$$W_x = \frac{x_1 + x_2}{2\Delta x} - i_1, \quad W_y = \frac{y_1 + y_2}{2\Delta y} - j_1. \end{aligned}$$

see Umeda (2003) for detailed numerical method