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Basics of PIC Simulation methods 
    * Collisionless plasmas 
    * Finite-size particles 
    * Electrostatic codes 
    * Charge assignment and force interpolation (already in 3-D system) 
    * Filtering action of shape function 
    * Summary   
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Integration of the field equations 
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Aliasing 
The spurious fluctuation which appears as as result of the loss of displacement 
invariance, manifest themselves in k-space as non-physical mode coupling, 
known as `aliasing’. 

By introducing a mesh we reduced  
our representation of ρ(x) from a 
continuous representation ρc(x) to a 
sampled representation ρs(x). 
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Principal zone 

The extra contributions (from |n|>0) to inside the principal zone are called aliasing 



Aliasing and reducing noise 

•  The spurious fluctuations of high frequency cause the  
    noise and error in the main lobe, which might make the  
    numerical system to be unstable. 
•  The high-k components of S(k) is determined by the  
    smoothness of S(x); The high-k components of nc(k) is  
     determined by the smoothness of n(x), The number of  
     particles. 
•  The major noise exists in the particle-in-cell method  
    mainly comes from the aliasing effect. Two methods  
    for reducing the aliasing effects: 
     1. Increase the particle number. 
     2. Increase the order of the shape function S(x). 



Collisional effects 
The ratio of the cross sections for 
finite–sized particles to that for point  
particles in in two and three dimensions 
(taken from Okuda and Birdsall 1970)  

! cloud

! point

Examples of collision rates: 
(a) two dimensions: 

System 100λD × 100λD 
N = 3×105 particles 
nλD

2 = Np=30 
particle radius a = λD 
ν=Rωpe/16ND≈ 2×10-4ωp 

(b) three dimensions: 

System 50λD × 50λD × 50λD 
N = 106 particles 
nλD

2 = Np=10 
particle radius a = λD 
ν=Rωpe/16ND≈ 10-3ωp 



Finite-size particle effects 
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Dispersion function with finite-size particles 
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Plasma frequency is modified by smoothing 
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Fourier space modification reduces collisions 
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Restrictions on time step and grid size 

1.  Courant condition (Cartesian coordinate) this condition comes  
      from the electromagnetic code (light wave) 

cdt <1/ 1 / dx1
2 +1/ dx2

2 +1/ dx3
2

2.  !maxdt < 0.25 !max = max(! pe,! ce )

3. 
      particle move in one step < 1 cell (grid size) 
vmaxdt <min(dx1,dx2,dx3)

4. More particles are better, however it takes more memory and 
    computing time 



Accuracy and stability of time integration 

In vacuum (E, B) = (E0, B0)exp(ikx −iωt) J=0 from Maxwell equations 
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Vacuum dispersion curve for leapfrog 
difference for wave equation 

Courant-Levy stability criterion 
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Relativistic particles which move faster than numerical speed of light cause 
numerical Cherenkov radiation in high wave-numbers 



Calculation of vacuum dispersion solution (homework) 
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Current deposition seven-boundary move 

Δx1=0.5 −x, 
Δy1=(Δy/Δx)Δx1, 
x1=−0.5, 
y1=y+Δy1, 
Δx2=Δx−Δx1, 
Δy2=Δy−Δy1 
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Current deposition ten-boundary move 

Δx1=0.5 −x, 
Δy1=(Δy/Δx)Δx1, 
x1=−0.5, 
y1=y+Δy1, 
Δy2=0.5−y−Δy1, 
Δx2=(Δx/Δy)Δy2, 
x2=Δx2−0.5, 
y2=0.5, 
Δx3=Δx−Δx1−Δx2, 
Δy3=Δy−Δy1−Δy2 



Current	
  deposit	
  scheme	
  (2-­‐D)	
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Charge and current deposition 

Current deposition can take as much time as the mover. More optimized 
deposits exist (Umeda 2003). 
 
Charge conservation makes the whole Maxwell solver local and hyperbolic. 
Static fields can be established dynamically.   



Zigzag scheme in two-dimensional systems  

see Umeda (2003) for detailed numerical method  


