SECTION I: CLASSICAL AND STATISTICAL MECHANICS

I.1: Classical Mechanics: Answer 2 questions

I.2: Statistical Mechanics: Answer 1 Question
Comprehensive Examination 2011: Classical mechanics

Section 1: Answer two questions from this section.

(1) A flexible cord of uniform density \(\rho \) and fixed length \(l_0 \) is suspended from two points of equal height, located at \((x, z) = (-a, 0)\) and \((x, z) = (a, 0)\). The acceleration due to gravity is taken to be the constant \(g \) in the negative \(z \) direction.

(a) Write the expressions for the potential energy \(U \) and the length \(l \) for a given curve \(z = z(x) \) that may represent the shape of the hanging cord.

(b) The actual shape is defined by minimizing \(U \) for a fixed \(l = l_0 \). The Lagrangian for finding this minimal shape is \(L = U - \lambda (l - l_0) \), where \(\lambda \) is arbitrary. If \(L \) is expressed as the integral of a Lagrangian density \(\mathcal{L} \), i.e. \(L = \int_0^a \mathcal{L} \, dx \), show that \(\mathcal{L} = \rho g \sqrt{1 + z'^2} (z + \lambda) \), and write explicitly the terms of the Euler-Lagrange equation of motion

\[
\frac{d}{dx} \frac{\partial \mathcal{L}}{\partial z'} = \frac{\partial \mathcal{L}}{\partial z}
\]

(c) Which coordinate does \(\mathcal{L} \) not depend on? Explain why, as a consequence, the quantity \(\lambda = z' \frac{\partial \mathcal{L}}{\partial z'} - \mathcal{L} \) is a constant of the motion. Write this constant in terms of \(z, z' \), and \(\lambda \), and show that the ensuing equation is satisfied by \(z = \cosh(x/A) - \lambda \) for some constant \(A \).

(d) The shape of the rope is completely specified once \(A \) and \(\lambda \) are known. Show that \(A \) is fixed by the condition \(l = l_0 \), resulting in the equation \(2A \sinh (a/A) = l_0 \). Describe qualitatively how one may determine \(\lambda \).

(2) The dynamic variables of a one dimensional harmonic oscillator are \(q \) and \(p \).

(a) Show that the integral \(I = \int pdq \) over one cycle of oscillation with total energy \(E \) is given by \(I = E/\omega \).

(b) A mass \(m \) slides on a frictionless horizontal track. It is connected to the wall via a spring that gradually loses its elasticity with time. Initially, the amplitude of the oscillation is \(A_1 \) and the spring constant is \(K_1 \). Assuming the integral \(I \) in (a) is constant after many cycles of oscillation, show that by the time the spring constant became \(K_2 \) the amplitude would have evolved to the value \(A_2 \), where \(A_2 = A_1 (K_1/K_2)^{1/4} \).
(3) One end of each of two springs with spring constants k_1 and k_2 is attached to a separate wall. A ball of mass m connects the other ends. The ball can only displace horizontally, with its equilibrium position at $x = 0$. A massless rigid rod of length l is now attached to the ball, and is free to rotate by the angle θ about a horizontal axis passing through the ball, with $\theta = 0$ occurring when the rod is vertical. Another ball of mass M is attached to the lower end of the rod.

(a) Neglecting the vertical displacement of mass m, find the Lagrangian and establish the Euler-Lagrange equations of motion for x and θ.

(b) When $m \ll M$ and the amplitude of the oscillation is small, show that $\theta \approx (k_1 + k_2)x/(Mg)$.

(c) With the help of (a) and (b), or otherwise, find the frequency of small oscillations.
Statistical Mechanics and Kinetic Theory Questions

(Choose one to answer)

1. Let N free electrons be confined to quantum states on a conducting sheet. In the corresponding two-dimensional k-space, an electron quantum state occupies an area equal to $(2\pi/L)^2$, where L is the length of the side of the sheet.

(a) Let m be the electron mass, and show that the Fermi energy, ε_F, for N electrons confined in two dimensions is given by

$$N = \frac{4\pi m}{\hbar^2} \left(\frac{L}{2\pi} \right)^2 \varepsilon_F$$ \hspace{1cm} (1.1)

Hint: Calculate the number of electrons that can be accommodated within a circle of radius, k.

(b) Show that the density of states is given by

$$D(\varepsilon) = \frac{4\pi m}{\hbar^2} \left(\frac{L}{2\pi} \right)^2$$ \hspace{1cm} (1.2)

(c) Let $n = N/L^2$ be the number of electrons per unit area and use the Fermi-Dirac energy distribution

$$f(\varepsilon) = \frac{1}{\exp[\beta(\varepsilon - \mu)] + 1}$$

to show that n and the chemical potential, μ, are related by the following formula:

$$n = \frac{m}{\pi \hbar^2 \beta} \ln \left(1 + e^{\beta \mu} \right)$$ \hspace{1cm} (1.3)

Hint: Sommerfeld's theorem does not work in this case. You should use instead the integral,

$$\int \frac{dx}{1 + e^x} = - \ln \left(1 + e^{-x} \right)$$ \hspace{1cm} (1.4)
2. The classical energy of a harmonically bound particle of mass, \(m \), is given by

\[
\varepsilon = \frac{p^2}{2m} + \frac{kq^2}{2}
\]

where \(p \) is the linear momentum, \(q \) is the displacement, and \(k \) is the spring constant.

(a) Let \(p \) and \(q \) have continuous values, and use the semiclassical density of states \(dpdq/\hbar \), to show that the canonical partition function is given by

\[
Q = \sqrt{\frac{2m\pi k_b T}{\hbar^2}} \sqrt{\frac{2\pi k_b T}{k}}
\]

The integral

\[
\int_{-\infty}^{\infty} e^{-\omega t} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}
\]

will prove to be helpful.

(b) Show that the Helmholtz free energy has the form

\[
A = -RT \ln(sT^n)
\]

and evaluate the constants, \(r, s, \) and \(v \).
SECTION II: ELECTROMAGNETISM AND SPECIAL RELATIVITY

II.1: Electromagnetism: Answer 2 questions

II.2: Special Relativity: Answer 1 Question
Electromagnetism

1. A large parallel plate capacitor is oriented horizontally and is filled with a linear dielectric material with permittivity \(\epsilon = a + bz \), where \(z \) is the vertical distance measured from the bottom plate. The potential difference between the plates is \(\Phi_0 \) (top plate is at a higher potential), the distance between the plates is \(d \). Calculate the density of polarization charge inside the dielectric \(\rho_p(z) \) and the surface density of polarization charge at the top of the dielectric \(\sigma_p \). Ignore fringe effects.

2. A solid metal sphere of radius \(a \), conductivity \(\sigma \) and magnetic permeability \(\mu \) is placed in a uniform magnetic field slowly varying with time as

\[
B = B_0 \cos(\omega t) \hat{z}.
\]

Find (a) the magnetic field inside the sphere in the static approximation \((\omega = 0) \), and (b) the eddy current density \(J = \sigma E \) flowing in the sphere in the next approximation, by assuming that magnetic field inside the sphere found in (a) has the same dependence on time as the external field. Hint: the magnetic field inside a sphere is uniform and parallel to the external field.

3. A plane electromagnetic wave is normally incident from vacuum on a slab of dielectric with permittivity \(\epsilon \) and permeability \(\mu \). The thickness of the slab is \(d \). Find the amplitude of the reflected wave expressing your answer through the index of refraction \(n \) in the dielectric. Hint: Place the leading edge of the slab at \(x = 0 \) and obtain four matching conditions at the edges.

4. The magnetic energy of a localized current \(J \) in an external field \(B \) (neglecting the field produced by the current itself) is

\[
U = \int (J \cdot A) d^3x,
\]

where \(A \) is the vector potential of the field \(B \). Starting from the above equation, show that for \(B = \text{const} \) (uniform external field) the magnetic energy can be expressed as

\[
U = -m \cdot B,
\]

where \(m \) is the magnetic moment associated with the current \(J \). Hint: align \(B \) with the \(z \) axis and express \(A \) through \(B \) in cylindrical coordinates.
Special Relativity Section – choose 1

1) Hyperspatial Yacht Regatta

a) In a boat race between two very well matched yachts, the faster ship gets a handicap, which means that it crosses the starting line after the first ship by a delay time, call it \(T \), in the rest frame \(K \). Assuming both cross the starting line at different points, separated by a distance \(d \), for what range of \(T \) is there a frame \(K' \) where the handicap disappears? Also, for what range of \(T \) is there a 'true' handicap?

b) Determine explicitly the Lorentz transformations between \(K' \) and \(K \) for each of the cases above.

2) Angular Momentum

Given a space-time point \(A \), the four-vector angular momentum of a particle with momentum \(p \) at point \(B \) about \(A \) is given by \(J = \Delta x \otimes p - p \otimes \Delta x \), where \(\Delta x \) is the space-time separation between \(A \) and \(B \) and \(\otimes \) is the tensor (or outer) product: \(A \otimes B \) has components \(A^\alpha B^\beta \).

Show that for a freely moving (unaccelerated) particle, \(J \) is conserved; that is: \(dJ/d\tau = 0 \).
SECTION III: QUANTUM MECHANICS

Answer 3 questions
QUANTUM MECHANICS

Do any 3 of the 4 problems. Circle and clearly indicate final answers.

1. Hamiltonians. The quantum mechanical system “compium” is known to have exactly two stationary states, which we can represent by the orthonormal ket vectors $|1\rangle$ and $|2\rangle$. Suppose that the Hamiltonian for compium is

$$H^0 = a|1\rangle\langle 1| + b|2\rangle\langle 2|$$

(a) What kind of numbers are a and b? Explain.
(b) What are the energy eigenvalues associated with the states $|1\rangle$ and $|2\rangle$?
(c) Suppose that the Hamiltonian for compium becomes (after a suitable change to the physical system) $H = H^0 + H'$, where

$$H' = c|1\rangle\langle 2| + d|2\rangle\langle 1|$$

What is the relation between the numbers c and d?
(d) Find the eigenkets and eigenenergies for the new Hamiltonian H. (Hint: What is the matrix representation of H in the $|1\rangle,|2\rangle$ basis?)

2. Spin and Spatial States. Consider two identical spin-1/2 particles in a 1-D infinite square well extending from $x = 0$ to $x = a$. Let $E_1 = \pi^2\hbar^2/2ma^2$.

(a) Construct the total (properly symmetrized and normalized) wavefunction corresponding to a total energy $E = 2E_1$. (Neglect any interaction between the particles.)
(b) Same as part (a), but for $E = 5E_1$.
3. **Hydrogen Atom.** At time \(t = 0 \) a hydrogen atom is in the (spatial) state

\[
\psi = \frac{1}{\sqrt{2}} \psi_{100} - \frac{i}{3\sqrt{2}} \psi_{211} + \frac{1}{3\sqrt{2}} \psi_{21-1} + \frac{\sqrt{7}}{3\sqrt{2}} \psi_{210}
\]

where \(\psi_{n\ell m} \) is a usual stationary state.

(a) What values of \(L^2 \) will be found upon measurement, and with what probabilities?

(b) What is \(\langle L^2 \rangle \)?

(c) If no measurements are made, what is the state of the system at a later time \(t \)?

(d) If a measurement of \(L_z \) at \(t = 0 \) yields \(\hbar \), what is the subsequent time evolution of the system?

(e) If a weak electric field is applied at \(t = 0 \), will there be a nonzero first-order energy perturbation?

4. **Perturbation Theory.** Consider a particle of mass \(m \) and charge \(q \) confined inside an infinite spherical well of radius \(R \). (That is, the potential is zero for \(r \leq R \) and infinity for \(r > R \).)

(a) Find the ground state energy and the corresponding properly normalized wavefunction.

(b) Suppose a weak electric field \(E \hat{z} \) is now applied. Find the first order shift in the ground state energy.