Midterm #2

Note: You need to give Justification to all your Answers in order to have full CREDIT.

Exercise 1. (40 points) Is the following statements True or False? Justify your answers.

- 1. $\mathbb{Z}_4 \setminus \{[0]\}$ is a group with respect to \odot
- 2. (S_7, o) is commutative.
- 3. If (ab, c) = 1 then (a, c) = 1 and (b, c) = 1.
- 4. If c/ab and (a, c) = d then c/bd.
- 5. The number of positive divisors of $2^r 3^s$ equals the number of positive divisors of $5^s 7^r$.
- 6. If (G, \cdot) is a group and $\exists a, b \in G$ such that ab = ba then G is commutative.
- 7. Let a, b be two elements of a group G. Then ab = ba iff $(ab)^2 = a^2b^2$.
- 8. $\mathbb{Z}_5 \times \mathbb{Z}_{11}$ is a cyclic group.
- 9. In S_3 , $[S_3; H] = 2$ if $H = \{(1), (12)\}$
- 10. If G is a group and |G| = p with p prime, then G has p + 1 subgroups.

Exercise 2. (30 points) Let $\Phi : G \longrightarrow H$ be a group Homomorphism

1. Let K be a subgroup of H. Prove that $\Phi^{-1}(K) = \{g \in G; \Phi(g) \in K\}$ is a subgroup of G.

2. Let A be a subgroup of G. Prove that $\Phi(A)$ is a subgroup of H

3. Let $\Phi_a : \mathbb{Z} \longrightarrow \mathbb{Z}_8$ be defined by $\Phi_a(k) = [ak]_8$. Φ_a is a group homomorphism for each positive integer a.

(a) $K = \{[0], [2], [4], [6]\}$ is a subgroup of \mathbb{Z}_8 , find $\Phi_2^{-1}(K)$

(b) $A = 3\mathbb{Z}$ is a subgroup of \mathbb{Z} , find $\Phi_2(A)$

Exercise 3. (20 points)

1. Let H be a subgroup of a group G such that |H| = 8, [G:H] > 3 and |G| < 41. What are the possibilities for |G|?

2. Prove that if G is a group of order p^2 with p prime and G not cyclic, then $a^p = e$ for each $a \in G$.

Exercise 4. (20 points)

Let G be a group and A be a nonempty subset of G. The Centralizer of A in G is the set $C_G(A) = \{g \in G | gag^{-1} = a, \forall a \in A\}$. This is the set of elements of G which commute with every element of A.

1. Show that $C_G(A)$ is a subgroup of G.

2. (a) Find the center of G defined by $Z(G) = C_G(G)$ if G is Abelian.

(b) Find $C_G(A)$ if $A = \{(12), (1)\}$ and $G = S_3$