Midterm #1

Note: You need to give Justification to all your Answers in order to have full CREDIT.

Exercise 1. (25 points)

1. Let $\alpha(n) = n^3 - 1$ be defined from \mathbb{Z} to \mathbb{Z} (a) is α 1 to 1 ?

(b) is α onto ?

- (c) is α invertible?
- 2. Let α and β be defined from S to T. Complete the following statements
 (a) α is not one to one iff
 (b) α is not onto iff
 (c) β ≠ α iff

Exercise 2. (25 points)

1. Let $\alpha : \mathbb{Z} \to \mathbb{Z}$ defined by $\alpha(n) = n+1$ and $\beta : \mathbb{Z} \to \mathbb{Z}$ defined by $\beta(n) = [\alpha(n)]^2$ (a) Write the formula for $\alpha \circ \alpha$

(b) is $\alpha \circ \alpha = \beta$?

2. Prove that if $\beta: S \to T, \gamma: S \to T, \alpha: T \to U, \alpha$ is one to one and $\alpha \circ \beta = \alpha \circ \gamma$ then $\beta = \gamma$ Exercise 3. (25 points)

1. Let (H, \star) and (K, \dagger) be two groups, define $G = H \times K = \{(h, k); h \in H \text{ and } k \in K\},$ and define on G the operation \otimes by $(h_1, k_1) \otimes (h_2, k_2) = (h_1 \star h_2, k_1 \dagger k_2).$ Show that (G, \otimes) is a group. (You can assume that \otimes is associative in G).

2. Let $G = \{z \in \mathbb{C}; z^n = 1, \text{ for some positive integrer } n\}$, show that (G, \cdot) is a group under multiplication.

Exercise 4. (25 points)

- 1. Let $\alpha = (13)(24)$ and $\beta = (1423)$ be two permutations in S_4 . Compute the following permutations
 - (a) $\alpha \circ \beta$

(b) $(\alpha \circ \beta)^{-1}$

(c) $\alpha^{-1} \circ \beta^{-1}$

2. Determine the group of symmetries of a rectangle.

3. Prove that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$.

Exercise 5. (Bonus: 20 points) Prove that if p and q are two distinct primes numbers and n = pq, then $(\mathbb{Z}_n^{\star}, \odot)$ is not a group. ($\mathbb{Z}_n^{\star} = \mathbb{Z}_n - \{[0]\}$ and $[x] \odot [y] = [x \cdot y]$)