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1. INTRODUCTION

The purpose of this paper is to completely prove a conjecture in J. R.
Haddock and R. Sacker [1] and further extend a result on asymptotic
integration obtained previously by O. Arino and 1. Gyori [24].

Asymptotic integration deals with non-autonomous evolution equations
which asymptotically are autonomous, and aims at relating the asymptotic
behavior of the solutions of these equations to the asymptotic behavior of
the solutions of the limit equation. Classical results on this problem exist
for ordinary differential equations (i.e., cf. [5-9]). For delay differential
equations, the earliest results are due to K. L. Cooke [10], and some later
results can be found in [1-4, 11-16].

In [1], in search of an extension of results by Hartman [5], Hartman
and Wintner [6], Atkinson [7], and Harris and Lutz [8], notably for
ordinary differential equations of the form

x(t)=(A+ A(1)) - x(1), (1.1)

where 4 =diag{4,, .., 4,} is a real diagonal matrix, A, # 4;, i # j, and A(-)
is a continuous matrix function defined on R*, R* =[0, + ), and L2
perturbation, Haddock and Sacker conjectured an asymptotic formula for
the solutions of the delay equation

X(t)=(A+ A(2)) x(t)+ B(t) x(t —r), (1.2)

where r> 0 is a constant, 4 and A are the same as in (1.1), and B(-) is a
matrix function and is in L They stated that there exists a matrix function
F(-), F(z) - 0 as t » +o00, such that for each solution x of (1.2), there exist
a constant vector ¢ and a function f(-), f(¢) = 0 as ¢t —» oo, such that

x(t)=(ld+ F(t)) -exp (Ll A(s) ds) “(c+f(1), (1.3)
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where
A(t)= A+ diag{A(r)} + diag{B(t)} -e ™.

The conjecture was proved in the scalar case in {1], and further proved
in the case of “quasi-triangular” systems by Arino and Gyori [2-4]. In
these two situations, the obtained resuits show that the formula (1.3) holds
with F(t)=0. For the general situation, a weaker result was also obtained
in [2-47. Indeed, Arino and Gyori in [2-4] considered a general system

(1) =A-x(t)+ L1, x,), (1.4)

where A is the same as above, and L: R* x C([ -+, 0], E"} > E" is con-
tinuous, with L(¢, -) linear on C([ —r, 0], £*) and | L(z, -)|, the norm of
L(t, -), in L% and x(t)e E", x, denotes, as usual, the function defined on
[—r,0] by x,(s)=x(t+5s), —r<s5s<0, here r is the maximum delay in
(1.4). By an inductive method, they obtained the following result: there
exists a functional G(¢) defined on the space C([ —2r, t], E"), |G(¢)]| = 0 as
t— +o00, such that for each solution x of (1.4), there exist a constant
vector ¢, a function #; with values in E”, #,(t)—>0 as t > 400, and a
function #,, #,(¢) € C([ —2r, t], E"), n,(t) > 0 as t > + o0 such that

x(t)=exp U’ A(s) ds} fe+n,0)]

+G(z)-{exp-jo'A(s)ds.[c+n2(t)]}, (L5)

where A(t) = A + diag{L(t, exp(A-))}. Obviously, when applying this result
to (1.2), the obtained formula for the solutions of (1.2) by (1.5) is generally
less agreeable than (1.3) for in (1.3) the function F(¢) is replaced by a func-
tional G(¢) defined on the space C([ —2r, ], E™). So, the conjecture still
remains to be proved.

In this paper, we consider a more general system

X(t)=(A+V(2))-x(t)+ L(1, x,), (1.6)

where x(t)e E", E" is the n-dimensional real Euclidean space, with the
norm |x| =37_, |x,| for x=col(x,, .., x,) in E”, and E= E'. We will state
now the assumptions on A, V, and L.

(H,) A=diag{i,..,4,}, with A, #4,,i# j;

(Hy) V(tr)y=diag{v,(1), .., v,(¢)}, with v, R* - E continuous and
sup,s, (1+s—0)"'-[So,(rydr—>0as t—>00,i=1,2,..,n;

(H;) For each r € R*, L( -) is linear continuous from
C([—r, 0], E") into E",t— L(t, -) is continuous, and ||L(z, -)|| is in
LP(RY), 1< p<2 Here r>0 is the maximum delay in (1.6), and
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C[—r, 0], E") is the Banach space of continuous functions mapping the
interval [—r, 0] into E” with the norm || =sup_, <, <o |@(s)]. Clearly,
the situation under consideration here covers the those in [1-4]. By a dif-
ferent method from the one used in [2-4], we get an asymptotic formula
for the solutions of (1.6). When applying our result to (1.2), we obtain a
slightly stronger result than the above conjecture. Also, our result is
stronger than the one in [2-4], at least in the general case (still, Arino and
Gyori’s result for quasi-triangular systems is stronger).

The method used in this paper is a similar to the one employed in [11].
That is, we first get a class of “special solutions” of (1.6), and then using
these solutions we obtain the asymptotic formula for all solutions of (1.6).

The plan of our paper is as follows. In Section 2, we establish some
lemmas needed in later discussion. In Section 3, using Lemma 4 established
in Section 2 and a fixed point theorem we get a class of “special solutions”
of (1.6). In the last section, using these special solutions we obtain an
asymptotic formula for all solutions of (1.6).

2. SoME LEMMAS

LemMa 1. Let YyeL?, 1 < p<2, be nonnegative and continuous on R™.
For t 20, ¢> 0, define

a(t, ) =J, Y(s)e U= ds, L, s)=ro Y(s)e - ds. (2.1)

Then, for any ¢>0,
(1) o(1,8)—>0,{(1,€) >0, 1> o0;
(2) ol e)els{(-,e)el? 1/p+1/g=1.
Proof. The first part of Lemma 1 concluded from [5, Example 4.1,
p.286]. From [5, Example4.2, p.286], we see that o(-,e)eL?, and

{(-,e)e L*. Noticing that p<2<gqg and the result (1), we can get the
second part of Lemma 1.

LEMMA 2. Let  be the same as in Lemmal. Let v: R —» E be con-
tinuous, with sup,,(1+s—1)""-{Sv(r)dr—>0 as t - 0. For >0, 1,20,
deﬁne 0.1(', o, tO)s Cl( 5 &, tO) on R+ as

o (L o, tg) = j W(s) - exp ( —j' r) dr> s,

!

Lot 1) = F W(s) - exp (-j i(r) a’r> ds,
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where A(t)=a+v(t), for t =0. Then, for any constant ¢, such that 0 <g<a,
there exists a constant t, >0, such that for t 2 t,,

Gl(z’ a, tO) <£’1 R O'(I, S)a Cl(ty o, ZO) <€1 ¢ 'C(ta 5),

where o(t, ¢), {(t, &) are defined as in Lemma 1.

Proof. Since sup,.,(1+s—1) j r)dr— 0 as t — oo, for any given
number ¢, 0 <¢<a, there exists a number t0 =0, such that for s> 121,,

(1+s—1t)"" <a—¢,

fs v(r)dr

r o(r) dr

<(x—¢e)-(1+s—1).

So, for t=2s5>1¢,,

exp (—j Ar) dr> = exp (—a(t —s) —j o(r) dr)

<exp(—aft—s)+(a—¢e) - (t—s+1))

<eo¢—s.efs(l~.\')’

and so, for 1> ¢,
t
o,(t, a, t0)<€“7gf Y(s)e U= ds<e* “oaft, e).
10

This completes the first inequality of Lemma 2. The second one can be
proved in a similar way.

LeMMA 3. Let ¢el?, 1< p<2, be continuous with ¢(t)=¢(0) for
—r<t<0. For t =20, let

h(s, 0)=<expj o(s) ds>— I,  —r<0<0.
r+

Then,

(1) A, HIP=0(f;_, lo(1)|” ds) as t - oo,
2) & I, 7 dt< o, 1p+1/g=1,
where |h(2, - )| =sup_, <o <o (1, 0)|.
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Proof. Since g e L, we see that |['*? ¢(s)ds| >0 as t - oo uniformly
in 8, —r<0<0. By the Holder inequality, we deduce

Az, )= sup |h(s,8)]= sup 0(

—r<0<0 —-r<6<0

of[ totonas)
' 1/p
0<U,JM””$> ) as {0,

f’:g @(s)ds

and so,
A, P =0 (r I(p(s)l”ds> as t— o0.

Thus, we complete the first part of this lemma.

From (1), it follows that [ |lA(z, -)|?dt< oo, and |A(z, -)| -0 as
t — oo. Noting that ¢ >2 > p, we can immediately get the second part of
this lemma.

LEMMA 4. Consider the equation
x(£)=M(t, x,)+ N(t, y,)+ R,(2), 22)
()= P(t, x,)+Q(1, y,) + R,(1),
with xe E", ye E™,
M(resp. P): [ ty, +o0)x C([—r, 0], E") > E"(resp. E™),
N(resp. Q): [ty, +0)x C([—r, 0], E™) > E"(resp. E™),
Ri(resp. R,): [, +00)— E"(resp. E™),

where M, N, P, Q are continuous linear functionals with respect to the second
variable. Assume that

(H,) the equation
x(1)=M(t, x,) (2.3)

is stable;

(Hs) the equation

»n=0(,y,) (2.4)
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is exponentially stable;
(Hg) |N(t, <)) and || P(t, -)| are in L?, with 1 < p<2;
(H;) R,(-) and Ry(-) are in L'.
Let (x, y) be a solution of (2.2). Then x is bounded and lim, _, , ., y(t}=0.

Moreover, if for all the solutions u(t) of (2.3), lim, _, , . u(t) exists, the same
holds with the solutions of (2.2).

The proof of Lemma 4 can be finished in a very similar way to the one
of Proposition 2 in [4], so we omit it. In fact, if R,(¢)= R,(¢)=0, this
lemma becomes Proposition 2 of [4]. From the proof, we can also get the
following important estimates, which are very useful in proving our
Theorem 1, for the solutions of (2.2) for =1, (where ¢, is large enough,
such that c(¢,) < 1, c(2,) is given below):

1 (20, X105 ¥ )l S (1 —c(t6)) ™" blo, Ixlls 1940, (2.5)

H
19:(t0, X )N <Ke 0 [yl +K [ o) |Rys)] ds

4]

+Kj e~ = )p(s) |x,| ds, (2.6)

o

where K, o are positive numbers, only dependent on Egs. (2.3) and (2.4),
n(-) and p(-) are in L?, such that

IN(t, @)l <n(2)-llel,  1P(, )l < p(r) [ll,

b(loa Ugs vg) = Kuo + K2 <j : n(s) P ) ds)

0

-uo+1<j°c IR,(s)| ds

0

+K? r n(s) <j e~ | Ry(r)] dr) &, 27

1o} to

c(t0)=K2JOO n(s) <Jse°‘"”-p(r)dr> ds. (2.8)

Lo 1o
It is not difficult to see that 5 and ¢ are uniformly bounded with respect to
t, and moreover c(t,) —» 0 as 1, > +co.

Corresponding to Corollary 1 in [4], we have the following corollary.

COROLLARY 1. Asssume (Hs), (Hg), (H,), and that |M(t, )| is in L'.
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Let (x, y) be a solution of (2.2). Then lim,_ , ., y(¢)=0,lim, , . x(¢)
exists, and have

lim x(1) = (1) + Wlto, s Y Ry Ro) +J{0 R/(s)ds,  (29)
where w is a mapping from R* xC([—r, 0], E")xC([ —r, 0], E™)x
L(R*,E")x L(R*, E™)—> E" and have the property that for each
to, Ry, Ry, w(ty, -, -, Ry, R,) satisfies the Lipschitz condition with respect
to the second and third variables. That is, there exists a function
d(-):R* - R*,d(ty) > 0 as ty—> +0, and independent of R, and R,, such
that

Iw(to, @1, Y1, Ry, Ry)—w(ty, @3, Y2, Ry, R,)]
<d(to) (o, — @l + I, — ). (2.10)

Moreover, there exists a constant T =0, which only depends on M, N, P, and
Q, such that if t,= T, then for each c in E”, there exists a solution of (2.2)
defined on [to—r, +o0) such that lim, _, , . x(1)=c.

Proof. From Proposition 1 in [4], we deduce that Eq. (2.3) is stable
and its solutions converge. So, all the conditions of Lemma 4 are satisfied,
which yields that lim, , , . y(£)=0, lim,_, , x(¢) exists for each solution
(x, y) of (2.2). We now show (2.9). Let (x, y) be a solution of (2.2). By the
bound of x and |M(z, -)|| is in L', it follows that M(¢, x,) is in L'. By the
estimate (2.6) and Lemma 1, we see that y, is in L% and so N(¢, y,) is in
L'. So, since R(-) is in L', by the first equation of (2.2) we get

lim (1o, X4, )= x(t0)+ | M(s, x,) ds
1

t— +o0

+[ N pyds+ [ Rits)as
1] 0]
and comparing this expression to (2.9), we have that
Wito, X Vi Ris R)= [ M(s,x)ds+[ Nis,y)ds.  (211)
L} Iy

Now, for ¢,, ¢, in C([—r,0], E") and y,, Y, in C([—r, 0], E™),
let (x;, i) =(x(to, 9, ¥,), y(to, 0, ¥,)),i=1,2. Let meL’ such that
| M(t, -)| <m(t). Then, by (2.11)

409/165/1-6
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W(IO’ (pla l//la Rl’ RZ)_ W(th @25 l//23 Rla RZ)

:4[ M(S,X]S—XZY)dS‘*‘J ’N(S’ yl,s‘_yZ.s')dS

<[ mis) I —xadds+ [ o) 1y—yalds(212)

Noticing that (x, —x,, y,;—y,) is a solution of (2.2) in the case R,(t)=
R,(1)=0, so by (2.5) and (2.6) we have

the left of (2.12)
<(1—c(tg))~H-bltg, o1 — @all, Iy, — sl

(Jw m(s) ds+KJOo n(s) (Jx e *57"p(r) dr> ds)

0] f o

FK [ n(s)em 0 ds [y, — . (2.13)

0

Now let

d(15) = (1 c(t,)) ™! (K+ K> ( [ a5y e ds))

0

-(jw mis)ds+K [ n(s)(jf

4] o 0

e 26 p(r) dr) ds)
+ wa n(s) e ds. (2.14)

By (2.7), (2.13), (2.14), we can easily deduce (2.10). Clearly, from (2.14) we
see that d(t,) depends only on M, N, P, O, no relation with R, and R,,
and that by Lemma 1, d(z,)=0(1) as t,— +00. Thus, the first part of
Corollary 1 is proved.

In order to show the second part, let us restrict our attention to constant
date x,,=x, and y,,=0. From (2.9) we get

lim  x(to, xq, 0)(¢) = xo + w (2o, Xo, Ry, R,)

t— 4o

+j°o R,(s) ds, (2.15)

where w,: R* x E" x L"(R*,E"y x L'"(R*, E™) — E" is defined by
wy(tg, X0, Ry, Ry)=w(tg, X0, 0, Ry, R,). Now let 0<a<1 be an arbitrary
constant. For such a fixed constant g, since d(z,) =o0(1) as 7, > +o0 we see
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that there exists a number T >0, which is independent of R, and R,, such
that for any 4> T, d(t,) <a, and so by (2.10) we have

|W1(t0, X0, R19 R2)_ wl(tOs )EO, Rla RZ)
<a|xy— Xgl, for xg, Xoin E”. (2.16)
So, by a well-known result we see that the mapping defined by the right

side of (2.15) from E" into E" is surjective (in fact is an isomorphism). This
gives the desired result of the second part.

Remark 2.1. By the second part of Corollary 1, we see that for all
(R, R,)e L'(R*, E")x L'(R™", E™) there exists a common 7 >0, which
depends only on M, N, P, Q, and have the property as stated as the second
part of Corollary 1.

LEMMA 5. Assume (Hs), (Hg), (H;) and that |M(z, -)|| is in L?, with
1< p<2. Then, there exist a constant T, >0 and two bounded functions
K,(-) and K,(-) defined on [T,, + o0), which are all determined by M, N,
P, and Q, such that for each solution (x, y)=(x(to, Xy, ¥4,), ¥(to, X1s V1))
of (2.2) with t,= T\, the following estimates hold for t,<t<t,+r:

[/l < Ki(2o) - (x4l + N1yl
+(1—Cl(t0))7l'bl(ZOaRl’RZ)y (2.17)
1y I < Ky(to) - (Ix ol + 1y 6ll) + b2(20, Ry, Ry),

where ¢\, by, and b, are given by

cl(t0)=j'0+rm(s)ds+K ’OHn(s <J.xeau 7) (r)dr)

[ 1]

b(to,Rl,R)j s)|ds+1<f n(s)

([[emoraonac) as

to+r
balto, Ris Ra)=K(1=¢,(t6) ™" by(to, Ri, Ro) - [ pls) ds

41}

+KJ'°+' |R,(5)] ds, (2.18)

0

in which K and o are the same constants as in Lemma 4, and m(-) is in L?
such that |M(1, o)l <ml2) - lig|l for g€ C([—r,0], E").
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Proof. Let (x, y) be a solution of (2.2). From the first equation of (2.2)
we can easily get

e < gl + [ mis) x) ds
0

1y

[ )y ds+ [ 1Ry(s)) do. (2.19)

4]

Noticing that in this Lemma, (2.6) still holds so replacing | y,|| in (2.19) by
the right side of (2.6) we can deduce (2.17), in which ¢, and b, are given
in (2.18), T,>0 is such a number that for 7> T, c,(t,)<1 (such a
number exists since ¢,(f,)=0(1) as 1, — +o0), and K,(¢,) can be chosen
as K(to)=(1—c,(t0)) " -(1+K[°* " n(s)e ** " ds). Now, using the
obtained estimate for |x | to the right side of (2.6), we can get the second
one of (2.17), where b,(t,, Ry, R,) is given in (2.18), and K,(t,) is chosen
as

Kalto)=K(1+ Ky(to) - | pls) ).

t

By the choice of T, and expressions of K,(-) and K,(-), it is clear that they
are all determined completely by M, N, P, and Q, and are no relation with
Ri(-) and R,(-). This completes the proof of Lemma 5.

LEMMA 6. Let p be measurable, locally bounded, and nonnegative on
Lto—r, +0), where r >0 and t, 2 0 are constants, and m be nonnegative on
[to, +0) and in L?. Suppose that

p(t)<m(t)~_[1 o(s)ds, for t>1,. (2.20)

Then,
(1) for any a <0, | e*'p(r) dt < +o0;
(2) forany a>0,{7 p(s)ds=o(e *)ast—> +o.

Remark 2.2. This lemma is a special case of Corollary 1 in [17]. For
the sake of clarity we give a direct proof.

Proof. Since m is in L?, we see that jj*’ m(s)ds=o0(1) as t = +c0. So,
there exists a 7,1, +r, such that for 1=17,, e {*" m(s) ds < 1/2. Now,
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multiplying both sides of (2.20) by e* and integrating from £, to T (T >{,)
we obtain

Jire“’p(t)dt\j e*m(r) - f p(s)dsdt

ty Iy

<c+frp(s)-fwe*fm(t)dtds, (221)

1o 5

where ¢ —j’b p(s)- f”’ *'m(t) dt ds. Changing the variable of integration

n—r

in the right-hand side of (2.21) to ¢ and moving it to the left-hand side of
(2.21) we get

(1/2) j‘r e p(1) di < [T<1 e [m m(s) ds) e p(r) dt

1o o
t+r
SJ. (e -J e ms)ds)-p(t)dtéc,

and so

T
J e - p(1) di < 2c. (2.22)

2

This implies (1). From (1) we easily conclude (2). Thus, this lemma is
proved.

3. SPECIAL SOLUTIONS

In this section, we shall get a class of solutions of (1.6) with special
asymptotic behavior more or less like exp(4;¢) v, i= 1, 2, ..., n, which will be
called the special solutions of (1.6).

We first define for each integer k, 1 <k <n,

Aty = A, +v,(2), fort =0, and A(t)=4,(0), for —r<2<0,

w1, 15)= ft Ai{s) ds, W(t, 1o} =diag{w (1, 15}, ., w. (1, o)},

Su(t)=el - Lit,explwy(t + - ) e, st o) = f (s) ds,

S(1, to) =diag{s (1, to), b 5,.(1, Lo) }, 1= —r 1,20, (3.1)

where e] = (0, .., 0, 1,0, ..., 0), and then introduce an operator P, mapping
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from C([—r, 0], E") to C([ —r, 0] E*), such that P, ¢ = col(¢,, .., @,) for
p=col(e,, .., ¢,) in C([—r,0], E”). Now we shall state our first theorem
under the assumption that the s are ordered: for i< j, 4,< 4,, since this
assumption does not restrict the generality.

THEOREM 1. For each integer k, 1 <k <n, there exists a number 1, =0,
such that for any ty>t, and each ¢* in C([ —r, 0], E¥), there exists at least
one solution x(ty, *) of (1.6), which is defined on [t,—r, + o) and satisfies
Pix, (1o, @) =%, such that as t > + o

X(to, ") 1) =exp{wi(t, to) +5:(1, 1)} - (ber + o(1)), (3.2)

where w, and s, are defined by (3.1), and b is a constant dependent on
x(to, ©%), and e, is a kth unit vector in E". Moreover, there exists a number
t, =0, such that for any t, > 1, and any given constant b, there exists a solu-
tion x(ty, k, b) of (1.6), which is defined on [t,—r, +0), such that
x(tg, k, b)(t) is equal to the right-hand side of (3.2) as t - +o0. Such solu-
tions x(ty, ¢*) and x(t4, k, b), 1 <k <n, are called special solutions of (1.6).

Remark 3.1. When applying this theorem to Eq. (1.1), we can obtain a
stronger result than the one obtained in [6, p. 71, Result (i}]. For in [6],
the result is only the second part of our theorem.

The proof given below is based on a change of variable and then on
employing the alternative method to the transformed equation. In the
process of the proof, we shall use Corollary1 and Lemma 5 and the
estimates (2.5), (2.6), and (2.17).

Proof. The first step of the proof is to make the change of variable
x(t)y=exp{w,(t, to) + s,(1, 1)} - ¥(2), 1,20, t=21t,—r, (3.3)
Then, for ¢t = t, Eq. (1.6) reduces to
PO = A+ V()= A4 (2) - 1d) - y(1) + L(1, exp{w(t + -, 1)
st 5 0} y)—e Lt exp{we(t+ 1)} ) - y(1)
=(A+V(t)—A2)- Id)- y(t) + G(¢, y,), (34)

where Id represents the nx n unit matrix, and G(t, y,)=col(g,(t, y,), -,
g(t, y,)) with
gi(t, y)=e - L{t,exp{w(t+ -, ) +se(t+ - 1)} y))

—el L(t,exp{wi(t+ ~ )} -e) -y, (1), i#k, (3.5)
gk(t’ yl) =€Z'L(t, exp{wk(t+ " t)}
(exp{sc(t+ - 1)} -y, — yult) ep)). (3.6)
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Since ||L(z, -)|| is in L?, we see that there exists a nonnegative function p
in L?, such that

[L(t, @)l < p(2) - [l@ll for t20,0in C([—r,0], E"). (3.7)
And so, from (3.5)-(3.7) we deduce

lg.(t, N <2M, - p() lol,  t20,0eC([—r,0], E"),  (3.8)
where

M =sup (exp(w,(t+ -, 1))+ exp(s(t+ -, 1))

t=0

+exp(we(t+ - t)+s,(t+ - 1)) (3.9)

By (3.1) and the assumptions (H,), (H,), and (H;), it follows that M, is
finite. So, from (3.8), | g;(¢, -}, 1 <i<n,isin L?, and so ||G(¢, -)| is in L.
Obviously, G(z, -) is linear with the second variable for each > 0.

Now, the second step of the proof is to decompose the variable
y=col(y(, .., y,)=col(Y,, Y,, ¥3), with Y, =col(y,, .., y,_,) in E*~1
Y,=y,in E', and Yy=col(ys, 1, Yks2, - ¥,) in E"* Then, Eq. (3.4)
becomes

Yi(t)=4,(2) Y,(1) + Gyy(t, Y1,) + Gt Yo )+ G5t Ysy),
Y,(1)=Gy(t, Yi)+Gult, Yy )+ Gyult, Yy, (3.10)
Ys(1) = A5(1) Y(t) + Gy (1, Y1) + Gyt Yy)+ Gyt Yy,

where

A () =diag{A,(t) = A1), ., 44 (1) — 4 (1)},
As(ty=diag{A, , (1) = A1), ... A (1) — A0},

Gy(t, Y;)=Gi(t, Q] Y,) (1, j=1,2,3) with Q,=(dy_1)4_1),0,0), a
(k—1)xn matrix, Q] representing the transpose of Q,, Q,=el, Q5=
(0,0,1d, _yyxin-x)» a (n—k)xn matrix, and G, -)=0,;-G(¢, )
(i=1,2,3). Obviously, G;(¢, -) (i, j=1, 2, 3) is linear with respect to its
second variable. Moreover, from (3.8) it readily follows

IG;(t, <M, p(t)  (My=2nM,), t>0. (3.11)
This implies |G ;(¢t, )|l (i, j=1,2,3) is in L?.

Consequently; by the above two steps we see that if the following
theorem is proved, our theorem will be completed.
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THEOREM 1.  For each integer k, 1 <k <n, there exists a number t, 20,
such that for any to2t, and each (Y,,,Y,,) in C([—r, 0], EX"")x
C([—r,01, EY), there exists at least one solution (Y (to, Yy,, Y, )
Yy(to, Yiiy You), Yalto, Yy Yo )= (Y1, Y5, Y35) of Eq.(3.10), which is
defined on [t,—r, +c0) and satisfies (Y, (1o, Y1ss You)s Yordtor Y1y Yau,))
=(Yyy, Yy,) such that

im (Y,(t), ¥,(2), Y5(2)) = (0, b, 0), (3.12)

1= +xc

where b is a constant dependent on (Y,, Y,, Y5). Moreover, there exists a
number t, =0, such that for any ty, > [, and any given constant b, there exists
a solution (Y ,(ty, k, b), Yy(14, k, b), Ys(to, k, b)) =(Y,, ¥,, ¥3) of (3.10),
which is defined on [ty —r, + o0 ) such that

lim (¥,(¢), ¥x(2), ¥o(1)) = (0, b, 0). (3.13)

t— +w

We shali employ the alternative method to prove Theorem 1'. Indeed, we
consider system (3.10) as two systems:

Y1(1)=A1(t) Y1(1)+Gu(t, Y}z)
+G (1, Ya)+Gis(t, Ys)), (3.14)
Yy(1)= Gy (t, Y1,) + Goo(t, Yo ) + G, ¥y,

and

Y3(t)= A3(1) Y3(6) + G (1, Yy,)
+Gylt, Yo ) +Gaslt, Ys,) (3.15)

Now, let (Y(to, Y14 Yo Y3) Ya(to, Yig, Yy ¥3)) denote the solution
of (3.14) for a given function Y, in C([to—r, +00), E"~*) and initial
data (Y,,, Y,,) in C([—r,0], E*"")xC([—r,0], E'). Then, Eq. (3.15)
becomes the equation of Y;:

Y3(t) = A5(t) Y5(1) + G, (8, Yidlto, Yiegs Yoy ¥3))
+ Gt Yolto, Yigs Yoo, Y3)) + Gas(t, Y3,). (3.16)

1t is clear that if Y; is a solution of (3.16), then (Y ,(t,, Yy, Y2y Ya),
Ys(to, Yiss Yo ¥3), Y3) is a solution of (3.10), satisfying that
Yllo(tO’ Ylt()’ YZI()’ Y,)= Ylt()’ szo(tos eroy YZtoa Y= Y2!0' We shall see by
the following two propositions that in such solutions there exist those as
stated in Theorem 1’. Now, we state these propositions:
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PROPOSITION 1. Assume that Y, is in C([to—r, +), E*"*) and

satisfies
wr=(]”

o+r

1/
|| Y3,||"dt> < too, (3.17)

where | ¥yl =Sup s, < <o | Ya(t +35)].

Let (Y,,Y,) be a solution of (3.14) with respect to this Y. Then,
lim, , ., Y,(£)=0, and lim,_, . Y,(t) exists. Moreover, there exists a
number £y, =0, which is independent of Y, such that for any 1,2 f; and any
constant b, there exists a solution (Y (1o, k, b, Y3), Ys(te, k, b, Y3)) of
(3.14), which is defined on [tqy—r, + o0), such that

hm (Yl(tO’ k7 b, Y})(t): YZ(IOa ka b7 Y3)(t)) = (Oa b)

t— +oo
Before stating Proposition 2, we introduce the space S(¢,) for 7,>0 as
S(ty)={Y;: Y3in C([t,—r, +0), E"~*) and satisfying (3.17)}
with the norm W(Y,) defined by (3.17).

PROPOSITION 2. There exists a number t;, =0, such that for any ty>1;
and each (Y, Y,,) in C{[—r,01, EX""yx C([—r, 0], E') there exists at
least one function Y, in S(t,), such that it satisfies Eq.(3.16) and
lim, , ., Y3(¢)=0. Such functions we denote by Yi(ty, Yy, Vi)
Moreover, there exists a number 1, > I, such that for any t,>{, and any
constant b, there exists at least one function Y;(ty, k, b) in S(1,), such that it
satisfies Eq. (3.16) as in which (Y, Y,)= (Y {0, k, b, Y3), Y510, k, b, Y3)),
where (Y {ty, k, b), Y(14, k, b)) is given in Proposition 1, and tim,_, , .
Yi(14, &, b)(£) = 0.

If these two propositions are proved, the proof of Theorem 1’ is
immediately completed. For in it, let ¢, =1, and i, =17;. We see that for
any ty=1t, (resp. t,>1;), the vector functions (Y,(ty, Yy, Y, Y3
(10’ Ylt()’ YZro)): Yz(tOs Yltm YZtO’ Y3(t05 Yltov YZI()))’ Y}(’Oa er()’ YZIQ))
(resp. (Y (19, k, b, Ysl(to, k, b)), Y,(29, k, b, Ys(to, k, b)), Yal2g, k, b))) given
by Propositions 1 and 2 are just the solutions required in Theorem 1°. That
is to say they are solutions of (3.10) and satisfy (3.12) (resp. (3.13)). Thus,
the rest of the proof is to prove Propositions 1 and 2.

We first show Proposition 1. The proof is based on the application of
Corollary 1 and Lemma 5. For this, we rewrite Eq. (3.14) for = f,+ r as

Y.(0)= My(t, ¥,,)+ No(t, 7o) + Ry(0),

- _ _ (3.18)
Yz(t)=P1(t’ Y11)+ Qn(ta er)‘l”Rz(t)a
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where Y,(z)=Y,(z) and Y,(t)=Y,(t) for t>t,—r, ¥, (i=1,2) denotes
the translation over [—2r,0] for t=1,+r, M (s, -) and P(¢t, ) (resp.
N1, -) and Q,(¢, -)) are functionals on the space C([ —2r,0], E') (resp.
C([—2r,0], EFx"Y)) for t=1t,+r, R, and R, are in C([ty+r, +0), E')
and C([to+7, +0), E¥"'). Comparing this equation to the original
Eq. (3.14), we have

LEMMA 7. M (¢, ) (resp. N,(t, -)) are bounded linear functionals on
C([~2r,0], E') (resp. C([—2r,0], EX~ ")) for each t>ty+r, and R, is
in C([to+r, +00), E'). Moreover, |M,(t, -)| and |R,(t)| are in L' and
IN(¢t, )| is in L7

Let us prove this lemma. From the second equation of (3.14) we see that
Golt, Yo )= Gy(1,Q; - ¥a))
=0Q,-G(1, 07 Yo, ) = gult, yui- i)
=e] - L(t,exp{w(t+ -, 1)}
(exp{si(t4 - 1)} - yier — yilt) ).
Now let
he(t, s)=exp(si(t+s,1)—1 for —r<s<o. (3.19)
Then,
Golt, Yy ) =el - L(t,exp(we(t + - 1)) -hilt, ) - Yies - €4)
+eg - L(t, exp(wi(t+ - 1)) - (yi— yil 1) -€4)
=e/ - L(t,exp(we(t+ -, 1)) -he(t, -)- Q7. Y>,)
+eg - L(t, exp(w,(t+ - 1)) Q7 - (Yy — Yo(1))).

Noticing that Y, — Y,(t)={* dY,/ds-ds for t>1t,+r and the second
equation of (3.14), we have

Gyt Yo )=el - L(t,exp(wi(t+ -, 1)) -hy(t, -)- Q1 - Y5,)

r+ -
+ e[' L <t’ exp(wk(t+ ‘s t)) N QZT J‘ GZZ(S7 YZS) ds)
i+ -
sel-L(nexpiwatr+ 0001 [ Gals, V1) as)

t+ -
+EZ-L<[, eXp(Wk(t-I- s t))'Q;J‘ G23(S, Y3s) dS).
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So, comparing the first equation of (3.18) to the second equation of (3.14),
we get

M1, F,) = el Lit, explwg(i-+ - 1) -hu(t, )01 - Y2)
1+ -
ve oL (nexpOntit < 0)-01 " G, Ya)as).

N(t, Yy)=¢] -L (t, exp(we(t+ - 1))- Q7" Gy(s, Yyy) ds)
+ Gyt Yy,

+ -
Ri(ty=ef -L{texp(w(t+ -, 1)) erj Gxls, Yy) ds)
t
+ Gy(t, Ys,).

So the first part of Lemma 7 is clear. Moreover, by (3.11) we get

18,0, 10l <My p0)- (it N+ M- p(s) ds)- I Pl

N Tl <Mypo)- (14005 p) ) 1T, (320

RO <My (143, p(s)ds) 1.

Since {{L{z, -}| is in L?, it follows that &, is in L? from (3.1), and so by
(3.19) and Lemma 3, |A,(¢, )| is in L% Noticing that p <2 < ¢ and that
p € L? implies that [!_, p(s)dsisin L” and [!_ p(s)ds— 0 as t > +o0, we
can conclude that fi,, p(s)ds is in LY and bounded. By these facts and
Holder’s inequality, we get immediately that M (s, -)| is in L' and
[N (¢, -)|| is in L?. Finally, by (3.17) we also get R, is in L' Thus, the
proof of this lemma is completed.

LemMma 8. P(t, -) (resp. Q(t, -)) are bounded linear functionals on
C([—2r,0], E') (resp. C([ —2r, 0], E* 1)) for each t > ty+r, and R, is in
C([to+r, +0), EX~1). Moreover, ||P,(t, -)| is in L?, |R,(t)| is in L', and
the equation

Ya(1)=0.(t, Vy,) (3.21)

is exponentially stable.
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The proof of this lemma is straightforward. From the first equation of
(3.14) we get

P, Y,)=G (1, Y>), Ry(1)=G5(1, Yy,),
0.1, Y, )= A,(1) Y1 (1) + Gy (1, Yi)
and so by (3.11)

[Py, Y)ISMy-p) 17,0, [RADIS My p(0) [ Y5,

and so, ||P(t, -)| is in L? and R, is in L' by (3.17). Since, by the proof of
Lemma 2, the equation ¥,(¢)= A4,(¢) Y,(¢) is exponentially stable (with any
—o, O<o<min, ., {A—4;}, as its asymptotic exponent) and
(G, (¢, -)| 1s in L7, we can conclude that Eq. (3.21) is also exponentially
stable and its asymptotic exponent can be any —a for O <a<min; ., .,
{4, — 4;}. This completes the second part of this lemma. The first part is
obvious and so the lemma is proved.

The conclusion from these two lemmas is that Eq. (3.18) verifies the
conditions of Lemma 4, and, more specifically, its corollary. Therefore the
conclusions of Corollary 1 hold:

lim Y,(t)exists  and lim Y,(r)=0,

r— +oc t— +oC

which implies the first part of Proposition 1, and the surjectivity holds, for
1, large enough, with respect to the data in C([ —2r, 0], E') for Eq. (3.18).
Since the solutions of (3.14) constitute only a subset of this set, we must
then show that there is still surjectivity with respect to the solutions of
Eq. (3.14). The reason for this is to consider special data for Eq. (3.14). We
take Y, =0, Y,, = c, where ¢ is a constant. Now let

(Y, Y5)/[to—r, ta]=(c, 0),
(71’ ?2)/[10, t0+ r] = (YZ, Y] )/[IOa t0+ r]’
where (Y, Y5)=(Y,(29, Yi4» Yaur Y3)s Yalto, Yigs Y2y, Y3)). This gives a

set of data for Eq. (3.18).
On te other hand, from (3.18) and (3.14) we have

lim Ty(0)=Ti(to+r)+] M, ¥p)ds
- +oc

n+r

+f Ny(s, Ta) ds+f R,(s) ds,
fo+r fo+r
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and
_ fo+r
Tito+r)=Yalt)+ [ Guls, ¥,) ds
1
to+r fo+r
+ J Gypls, Yy,) ds +j Gy(s, Yi,) ds
1) f
and so
lim Y,()=c+wlt, ¢, ¥3)
t— +oo
n+r [ee]
+j Gas(s, Y, ds+f R(s)ds,  (322)
1o ntr
where

o+r wn+r
wl(’Oa (& Y3)=J GZI(S’ Yls) dS+J GZ2(Sa YZs) dS
to 1

0

+j°o Mi(s, Poyds+ [ Niis Ta)ds.  (323)

o+r n+r

Now we show that there exists a nonnegative function d, of f,, which is
independent of ¢ and Y5, such that d,(z,) =0(1) as t;— +o0 and

Iwi(to, ¢, Y3) —wi(to, ¢, Y3)l <di(tp) e — ). (3.24)

Let (Y, Y,)=(Y (2,0, ¢, Y3), Y5(#5, 0, ¢, Y3)), (Y,u Yz) (Y,(t,0,c, Y3),

Yy(to, 0, ¢, Y3)), (Y,(2), Y(1))= (Y1), Y1(2)), (Yi(2), ¥3()) = (Y1), Yi(1))
for t =ty — r. Further let, by (3.20), for r= ¢, +r,

IM(1, @) <my(0)-lloll, [Pyt @)l
sp®)-lol,  IN(G Y <n(@) [,

with m, in L' and p, and n, in L”.

And so,

o+ r
the left side of 324) <My [ p(s)- (1 ¥y = Yol + [ Yo, — Y3,]1) ds

L]

+[7 ms) 1T - Tl ds

n+r

+[7 ) 175 Pyl ds (3.25)

+r
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Noticing that (Y,(1) — Y(z), Y,(¢) — Y5(¢)) is a solution of (3.14) for t > 1,
with Y5=0 and (Y,(1)— ¥(t), ¥,(t)— ¥%(¢)) is a solution of (3.18) for
[ 2ty+r with Ry=R,=0, so, by estimates (2.17) and (2.13), (2.14), we
deduce

1Y, = Yill + 1Yo = Yo | <Kz -Je =, to<s<ty+r,
the sum of the last two terms in the right side of (3.25)
<d(t0 +r) . (” Yir0+r_ Y’lt()+r“ + “ 7210+r— Y’Z!o#—r”)’

where K;=sup, ., {K,(10)+ Kx(t5)}, Ki(t,) and K,(1,) are given by
Lemma 5, and d(¢,) is given by (2.14) (of course, m, n, and p in Lemma 4
and Lemma 5 are replaced by m,, n,, and p,, respectively). And so

fo+r
the left side of (3.24) < <M2K3 f ’ p(s)yds+ Kyd(t, + r)) “le—¢'|

0

and so, if we let

o

d,(ty) = K, <M2 jlo+rp(s) ds+d3(t0+r)>, (3.26)

we see that d(15) — 0 as 1, — +0o0 and satisfies (3.24).

Now let § be a given number, 0 < < 1. Then, there exists a constant
f, =0, such that for ¢, > 7, d,(t,) < B. So, for t,>f} and each Y, in S(t,),
the mapping defined by the right side of (3.22) from E! to E' is an
isomorphism. This implies the surjectivity with respect to the solutions of
Eq. (3.14), which completes the proof of Proposition 1.

Remark 3.2. When applying (2.5), (2.6), and (2.17) to the solutions of
Eq. (3.18) and Eq. (3.14), we can get that there exist a constant K, >0,
which is independent of ¢, and Y; in S(¢;), and a function d, defined on
R™*, which is independent of Y, in S(z,) and d,(t;)=0(1) as t,— +c0,
such that for any solution (Y, ¥,) of (3.14) with initial data (Y,,, Y5, ),
the following inequalities hold for i=1, 2:

1Y ill S Ky - (1Y 1ll + 1 Y24 1) + dal20) - W(Y5), oSttt (3.27)
1Y <K, (1Y 0l + 1Y 50 1) + dalto) - W(Y5), 12+,
Remark 3.3. Let

0+r [}
Walto, & Ya)=c+wilto, &, Ya)+ [ Guls, Vi) ds+ [ Ri(s)ds
‘o

to+r

From the proof of Proposition 1 we see that for each t, > f, and each Y,
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in S(¢,), the mapping w,(¢,, -, Y3) from E' to E' is an isomorphism. Let
to=f, and Y,, Y} in S(¢,) be given. Then for each b in E', there exist ¢
and ¢’ in E' such that

w2(t05 ¢ Y3) =b = w2(t0’ C,’ YIS)

Using (3.27) we can obtain that there exists a nonnegative function d;
defined on [f,, + o), which is independent of Y, in S(¢,), such that
ds(tg)=o0(1) as t > +o0 and

le —c'| < ds(10) - W(Y5— Y3), (3.28)
where ¢, > f, and Y5, Y5 in S(¢y).

We turn now to the proof of Proposition 2.
Let (Y,,, Y5,) be in C([—r, 0], E*" ")xC([—r,0], E') and 1,>0.
Now we define an operator T'=T(t,, Y,,, Y,,) on S(z,) as

(0=~ [ " exp ([ 40 &) (G5, 1)+ Gt )

+ G33(S7 Y3s)) dS, t> t(),
(TY)()=(TY;3)(to), to—r<it<ity, (3.29)

where (Yy, Y3)=(Y (¢, Yiys You Y3)s Yalto, Yiy, Yoy, ¥3)) is @ solution
of (3.14). We shall show that T maps S(¢,) into itself and is a contraction.
For this, we make the following estimates.

Let B,0<B<miny ., ;c;c, {4 — 44}, be a constant. Then, from the proof
of Lemma 2 we see that there exist a number ¢; >0, and K, >0, such that
for t=t],

exp (j'A3(g)dg><K2-e-ﬂ<s-'), §>1 (3.30)

Let t,=¢;. So, by (3.11) and (3.27), we have if r =2 t,+r,

[(TY3)(0)] <K2Mz-f° e P p()IF il + I Pyl + 1 Fgl) ds

< 2K2M2J e P p()[Ky - (1Y yoll + 11 Vo)
+d,(t0) - W(Y3)] ds

[es] 1/p
+ <K2M2 (j e PP =0 pr(s) ds> ) TW(YS)

Sdy(1) - (1Y 1/l + 1Y 2) + ds(2) - W(Y5), (3.31)
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where d,(1)=2K, K, M, -[* e P© 9. p(s) ds,

ds(t)=2K2M2M’2-r e P p(s) ds

r

o l/p
+K,M, (j e””“’”-p"(s)ds) ,
t

where M} is constant, such that d,(¢,) < M} for ¢,. By Lemma 1 we can see
that d, and ds are in LY and d,(t)—0, ds(t) > 0 as t > +o0. Moreover,
dy(t+s)< e -d,(1), ds(t+5) < eP -dy(t) for s 0. If t,<t<ty,+r, then

n+r
(TY3)() < K, M, f e T p()U Y il + I Youl + 1Y 3l) ds

+K2Mz-f e PO ()Y il + I Pl + 175,01) s

ot+r

Noting ([ | Y3,)|7 ds)"* < W(Y,), where | Yy, =sup_, .o | Ys5(s+0),
by (3.27) we can deduce

HTY 0O S dg(16)1 Y 1oll + 1Y 5]1) + do{20) - W(Y), (3.32)
where  dg(t,) = - dy(to), di(to) = (M3/K\) - €7 - dy(1o) + K, M,
[(fo+r pP(s) ds)"?+( j‘m“p”(s)ds)‘/”]. It is clear that dy(t,)=o0(1),

d.(ty)=o0(1) as t, > +o0.
And so, for t=t,+ 3r, by (3.31),

ITY)d = sup  {TYs(t+5))I}

—2r<s<0
< dy(t =2r) ([ Yyl + 1 Yool
+ e dy(t=2r)- W(Y,);
for to+r<t<ty+3r, by (3.31), (3.32),

(TY;),| =sup{|(TY3)(t+s)|: —2r<s<0}
<sup{[(TY;)(t+s)|:t+s=t5+r,—2r<s<0}

+sup{|[(TY;)(t+s):t+s<to+r,—2r<s<0}
<sup{[(TY3)(t+s): t+s=t,+r, —2r<s<0}

+sup{[(TY;)(t+5s): to—r<t+s<to+r,—2r<s<0}
< (ds(to+1)-e¥P +di(1,)) - W(Y5)

+ (€ dy(to+1) +ds(10)) - (1Y 1]l + 11 Y1)
=dg(1o)(| Yyl + 1 Y20l1) + dol2) - W(Y3).
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Then, we can deduce

o0 . 1/q o+3r l/qg
mrry=([" wrTpgea) <[ 1)

fo+r

i/q

+(j°° 3 ||(T_Y3>,||"dz> <ot} (1 )l + 1Y 2l

+du(to) - W(Y3), (3.33)

where

dyo(to) = (2r)V4 - dy(1o) + €7 - (ro (dy(t—2r))"- dt>”q,

1o+ 3r

@© l/q
(ds(z—2r))¢ dt) .

/

dyy(te) = (2r)V7 - dy(ty) + €2 ( |

o+ 37

Since dg(2g) = 0, dy(2,) > 0 as ty— +o00 and d,, ds are in L, it follows that
dio(te) = 0, dy(t5) 2 0 as t, - +00. So, TY; is in S(z,) for 7,2 ¢/, and so
T maps S(t,) into itself.

Now let ¢, = ¢, such that for ;> 1}, d,,(¢;) < 1/2. Then, for each ¢, > ¢
and Y;, Y5 in S(¢,), from (3.33), we have

W(TY,—TY3)<dylto) WY — Y3) <(1/2)- W{Y; - 1),

This shows that T is a strict contraction on S(zg).

Consequently, by the Banach fixed point theorem, 7T has a unique fixed
point Y;=Y,(ty, Yy,, ¥5,) in S(t,). This Y; provides a solution of
Eq. (3.16). Moreover, by (3.31), it follows that Y,(¢) >0 as t > + 0. Thus,
the proof of the first part of Proposition 2 is complete.

To show the second part, let z,>max{f;,7;}, where 7, is given in
Proposition 1, and b a given constant. Now let us define the operator
T=T(ty, b) on S(t,) the same as given in (3.29). But in (3.29),(Y,, Y,) =
(Y, (¢, k, b, Y3), Yy(29, k, b, Y3)), which is given in Proposition 1 with
initial data (Y,,, Y,,)=(c, 0), where c satisfies that w,(¢,, ¢, Y3)=5b. By
(3.33), T maps S(¢,) into itself. And for Y, and Y% in S(¢,), by (3.28) and
(3.33), we deduce that

W(TY,—TY3)<dolto) - le—c'| +diy{to) - W(Y3— Y5)
<dys(te) - W(Y;5—Y3), (3.34)

where d;,(to) = d o(to) ds(ty) + di1(2s). Obviously, d,(15) >0 as 1, — + 0.
So, there exists a number 7;>max{f},;}, such that d,,(¢,)<1/2 for
t, = £y, and so for such t,, T is a strict contraction on S(¢,) and, therefore,

409/165/1-7



94 SHANGBING Al

has a unique fixed point Y;= Y;(ty, k, b) in S(#,). This Y, provides a
solution of Eq. (3.16) with (Y, Y,)=(Y (9, k, b, ¥3), Y,(to, k, b, Y3)). By
{3.31) we see that Y;(¢) > 0 as t > + o0, and, thus, we complete the proof
of the second part of Proposition 2.

Combining the above obtained results, we complete the proof of
Theorem 1.

Remark 3.4. Using (2.5)-(2.8), (2.17), (3.22), (3.31)-(3.33), we can get
le] S (1—d5(10)) (b + dy4(t5)),
where c=Y,(to, k, b, Yi(ty, k, b)), di5(t5) and d,,(t,) are two functions

defined for large ¢,, independent of b, and that d5(¢,) = 0(1), d,4(t5) = 0(1)
as ty— +oo.

Remark 3.5. We will not need Theorem 1 in its full generality but this
result is of independent interest.

Remark 3.6. The second part of Theorem 1 can be proved directly by
using a fixed point theorem to a proper operator.

In order to obtain the asymptotic formula for an arbitrary solution
of (1.6), by Theorem 1, let us define an »x»n matrix function X on
t;to_r, t();t_o:maxlskgn {t_k}7 as

X(ta tO) = (X(ZO’ 19 1)’ ares x(to, n, 1))
Clearly, it is well defined and has the property that x(¢) = X(¢, t;) - ¢, ce E”,

is a solution of Eq. (1.6). By the asymptotic formula (3.2) of x(¢,, k, b) with
b=1,1<k <n, as stated in Theorem 1, we have following

THEOREM 2. There exists an nxn matrix function F defined on
(Ztg—r to2ty, F(t,15) >0 as t > +o0, and

sup | F(1, ty)] = 0, as to— +o0, such that
t=tg—r
X(1, t5) = (Id+ F(1, 1y)) -exp{ W(z, 1) + S(t, t,) }, (3.35)
where W, S are defined in (3.1).

Proof. From the proof of Theorem 1, let f,(¢,t5)=col(Y (¢, k, L,
Yi(to, k, 1))2), Yalto, k. 1, Yi(to, k, DN — 1, Yi(to, k, 1)(2)). It follows
that f, defines on t =1, —r, ty = {, and varifies for t > t,—r, t( = £,

x(to, k, 1)(2) = exp{wi(t, to) + 5:(t, to)} - (ex + filt, to)).

Noticing Y,, =0 and in this case that (2.17) still holds with K)(z,)=
K-K((ty)-|°*" p(s)ds, we see that K,(t;)=o0(1) as t,— +0oo. So, by

'IO



ASYMPTOTIC INTEGRATION 95

(2.5)-(2.8), (2.17), (3.31), (3.32) and Remark 3.4, we can show that
sup, >, | fult, t5)l = 0 as to— +oo. Clearly, fi(t, 1) >0 as t > +o by
Theorem 1. Now let

F=(f1, o frr oo f)-

It is easy to check that this F satisfies the requirements of Theorem 2.

Remark 3.6. By Theorem 2, we see that X(7, t,) is nonsingular for ¢,
large enough and ¢ > 7, — r. Without loss of generality, in what follows we
assume that X{(¢, ,) is nonsingular for ty = £y, t = t,—r.

4. ASsYMPTOTIC FORMULA FOR ARBITRARY SOLUTION

The reason for interest in the special solutions will now become clear.
We are going to show that a n-parameter family of special solutions of
(1.6) characterizes the asymptotic behavior of all solutions of (1.6) as
I — +4o0.

Notation. Let x(t,, ¢) denote the solution of (1.6) defined on >ty —r,
satisfying x (5, @)= o.

THEOREM 3. For each solution x(ty, @) of (1.6) with ty=i,+r, @ in
C([—r, 01, E"), there exist a constant c(t,, @) in E" and a vector function
f(2q, @) defined on t =ty —r, f(ty, @)(t)=o0(e ™) as t > +oc for any 0 >0,
such that

x(to, N1 = X(1, t0) - (c(to, @) + flto, @)(1)),  t2=1to—,
where X is given by (3.35).

Proof. Let x(t)=x(ty, @)2), t=to—r, tp =1y, X(1)=X(1, 1;). Define,
fortze,—r,

2()= X ~N1) - x(1). (4.1)
Then,
X(t) = (d/dt)(X(t))-z(t) + X (1) - 2(2).
By the definition of X and (1.6), we deduce
X(t)-2(1)=L(t, X, - (z,— z(1))), 12 1. (4.2)
Let

m(t)= X(t)-z(¢) for t>1,. (4.3)
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Then, by (3.7), (4.2) we have for t 2 ¢, +r
Im(t)| =|L(t, X (z,— z(1)))]
<p(r)- sup |X(t+0)-(z(1+0)—z(1))]

r<f<0
t+0
—p(1)- sup X(z+0)-j i(s) ds
—r<0<0 1
t+0
—p(1)- sup f X(t+0)-X " \(s)-m(s) ds|,
—r<8<0 4

and so by (3.35) we obtain

m()| <M3-p(t) sup [ lexp{W(t+6,5)

—rgf<0 v+
+5(t46,5)} - Im(s)] s,
where

M,= sup  {|{Id+F(t, to)l +|(Id+ F(1, 1,)) "' }.

t=t0—rp>=1lp

(4.4)

Since sup,., (1+s—1)""[3v,(0)d{ -0 as 1> +oo and d, is in L” by
(3.1), 1<i<n, we can easily conclude that there exist two constants

A, A>max, ., |4], and M, >0, such that for 1>+
lexp(— W(t, s)— S(t, s < M, -e* .

So, we find by (4.4)

(O] SM3My-p(t) sup | &0 m(s)] ds

—r<0<0 116

<SMIMy p(t)-[ &= mis)] ds,

t—r
and so, we deduce for 1= 1t,+7r

4 .
g1, |m(1)] < M¥M2M3 -p(2) J s — o), |m(s)| ds,

where M;=e”. Now let

R =e* = |m(t)l,  1>1q.

(4.5)
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It follows that

R(t)<M§M2M3.p(z)-j R(s)ds, t>to+r. (4.6)
t—r

So, by (1) of Lemma 6 we get that for any « >0, [ ¢* - R(1) dt < o0, and
this implies that R is in L'. Noting that

2() =1X (1) - m(2)] < |exp(— W1, o)
= 8(t, 15)) - (Id + F(1, 19)) ']
m()| S M M, - |m(1)] = M, M, - R(1),

we get that i |2(¢)| df < +o0. This assures the existence of lim, _, , . z(1).
Let

clto, @)= lim z(r) and  f(to, 9)(t)=2z(t) = c(to, @)

{— +oo

for 12 t,—r. So,

[ flto 9)OI< [ 125) ds < MM R(s) s

!

and so, by (2) of Lemma 6 it follows that for any «>0, f(¢,, ¢)(¢)=
o(e™*) as t » +oo. Clearly, for t=t,—r,

x(t07 (P)(t) = X(ta tO) Z(t) = X(t7 tO) ) (C(IO: (P) +f(t05 (P)(t))
This completes the proof of Theorem 3.

Theorem 3 gives the asymptotic formula of solutions x(¢,, ¢) of (1.6) for
to =ty +r. The following theorem will give the asymptotic formula for all
solutions x(t4, @) of (1.6) for 1,2 0.

THEOREM 4 (Main Result). There exist an nxn matrix function F
defined on t=2t,—r,1,20,F(t,1,)>0 as t—> +ow for t,20, and
SUp, . ,,—, | F(2, 1) = 0 as ty — +o0, such that for every solution x(t,, ¢) of
(1.6) with t,=0, ¢ in C([—r, 0], E"), there exist a constant c(ty, @) in E”
and a vector function f(ty, @) defined on t=ty—r, f(ty, @)t)=o0(e™*) as
t— +oo for any o> 0, such that

x(to, @)(1) = (Id+ F(1, 15)) -exp{ W(2, 1,) + S(4, 1,) }
-(e(to, @) + ftg, @)(1)), tZtg—r. (4.7)
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Moreover, for each ¢ in E”,
x(t)=(Id+ F(1, t,)) -exp{ W(t, to) + S(1, to) } - <,

t=ty—r, to= Iy, gives a solution of Egq. (1.6).
Proof. Let us define

F(tsto)a t>t0—r,t0>f0+r,
Fi(t, tg) =< F(t, ig+7r), t=ly+r tg<iptr,
F(f0+r’t_0+r)9 to“‘r<l<t_o+r,t0<t_0+r.

X\(t, o) = (d+ F,(1, 1,)) -exp{ W(1, t,) + S(1, 1,) },

C(ZOs (p)9 10>[_0+r>
ci(to, @)= exp{ W(ty, fo+r)+ S(to, fo+r)}-clig+r, x, . [(to, @),
lo<lo+r,

(2o, @)(1), 1Zto—r, ty2ty+r,
exp{ Wlto, fo+ 1)+ S(tg, lo+ 1)} flig+r1, X, (1o, @)
Silto, @)(1) = 12+ r lg<to+r,
X (1 1) x(tg, @)(1) = c4(to, @),
Ly—r<t<ty+r ty<tg+r,

where F, ¢, f are given by Theorem 2 and Theorem 3. By Theorem 2 and
Theorem 3, it is easy to see that Fy, ¢, f, have the properties as stated in
Theorem 4 for F, ¢, f. Let us still use F, ¢, f to denote Fy, ¢,, f;. Then we
show the first part of Theorem 4.

By Theorem 1, the second part is clear. Thus, we complete the proof of
Theorem 4.

Remark 4.1. When applying Theorem 4 to Eq. (1.2), it is easy to see
that the obtained result is slightly stronger than the conjecture we men-
tioned in Section 1, for in (1.3) we get that not only f(¢t)—»0 as t > 4+
but also f(t)=o(e”*) as t > + oo for any a>0.

Remark 4.2. In order to compare the asymptotic formula (4.7) to the
weaker form (1.5), we express it in another form:

x(to, @)(t) = (Id + F(1, 15)) - exp(W(1, 15) + S(1, o)) - c(to, @)
+ H(1o, 9)(1) - col(exp(W(t, 10) + S(1, t0))),

where H(t,, ¢) is a matrix function defined by H(¢,, @)(t) = (Id + F(t, t,)) -

diag{ fi(t5, @)(1), ... fu(to, @)(1)}, here fi(to, @), 1 <i<n, denotes the ith
component function, so H(t,, ¢)(1)=o0(e *) as t - +oo for any a>0;
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col(exp(W(t, t,) + S(1, t5))) denotes the vector with components equal to
exp(w; (1, 1o) + 5:(¢, 1)).

In the general case, we can not easily compute c(z,, ¢). However, we
have the following:

THEOREM 5. Each component c;(iy, -) of c(to, <), to=to+r, is a non-
trivial linear functional on C([ —r, 0], E"). Thus, each c;(t,, ¢)+#0, except
for those ¢ in a subspace of C([ —r, 0], E") of codimension one. Moreover,
c(ty, -) is continuous.

Proof. From the proof of Theorem 4, we need only to show the result
for to=iy+r. Let z, be such a number. For each t> ¢, x(1y, @)(t) con-
sidered as a functional of ¢ is linear on C([ —r, 0], E"), so is z(t), z(1) is
given by (4.1). Now let 1 - + o0 to conclude from the proof of Theorem 3
that each c¢,(¢,, -) is a linear functional on C([—r, 0], E*). From
Theorem 1 it follows that ¢,(¢g, -) is not identically zero.

The bound for ¢(,, -) proceeds as follows. With the aid of the estimate
for each solution x(z,, ¢) of (1.6) (it is not difficult to prove by Bellman’s
inequality),

[x(to, @)D KN X" |, 121,
where N, K are constants independent of ¢, from (4.3) we get

Im(0)] = |L(t, X (z, - z(1))|
<p(t) sup |x(t+5)—=X(t+5) X (1) x(1)|

—r<s<0
SN-p(1) sup (1+[X(s+1) X '(1)])-e*" ||| (48)
—r<s<0

Now, without loss of generality, assume ¢, satisfies that for ¢>1f,,
eMTM, M- ['*" p(s) ds < 1/2, where > 0. So, by (4.6) and Lemma 6 we

get '
[ee] o+ r s+r
f e*R(t) dt <2M>M, M, j R(1)- f e®p(s)dsdr.  (49)

1
o+r 0 s

And so, by (4.8), (4.9), the definitions of X, m, and R, and p in L?, we can
deduce that there exists a constant M, >0, such that

f R(s)ds<Mge ™ -|oll, t=to+r.

t



100 SHANGBING Al

From this, we get

|2(1) — 2(1 + | <jx 25| dngle-r R(s) ds
p+r

+r

SMoM M,-e *"* . |o].
Let t - +oco. Then
le(to, @) —2(to+r)| S Mo M M,-e 7" o], (4.10)
and from this, we get
le(to, @) S (MM My-e "7 + M) - |loll, (4.11)

where My is a positive constant, such that |z(¢,+ r)| < M§ - ||@|l. Then, we
complete the proof of Theorem 5.

Remark 4.3. We point out that M, and M can be chosen independent
of t,, so by (4.11) we get that c¢(¢,, -) is uniformly bounded with respect to
t,. Moreover, since

| f(tor @)0)I =lelt0r @)~ ()| <M, M- | R(s) ds
SMM M,-e o],

we conclude that
sup | f(to, - )(#)l = O(e™ ™) as fy— +o

tz+r

for any « > 0. Obviously, f(z,, -)(¢) is a linear operator on C([ —r, 0], E")
for each 1> 1.

In conclusion, we emphasize a striking difference between the results
obtained here and the results in [4]. In this paper, we obtain a class of
special solutions given in Theorem 1 (just as those obtained in [6, 8, 9]
for Eq. (1.1)), but in {4], such solutions were not obtained (this fact was
pointed out in the last part of [4]). This, on the other hand, indicates that
the method used here is superior to the “inductive procedure” used in [4]
(still, the method used in [4] for quasi-triangular systems is superior).
While comparing the method used in [6, 8, 9], we think that our method
is very natural. The reason we must have the second step (i.e., the proof of
Theorem 3) to get the asymptotic formula for all solutions of Eq. (1.6) is
that, for r > 0, the solutions of Eq. (1.6) form a infinite dimensional space.

Finally, it should be noted that in (H;) we assume 1< p<2. Now, an
open problem is if we can relax it to p>0 to obtain a similar result to
Theorem 4 (this problem is valid for Eq. (1.1), see [8]). If one uses the
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me method as in [8] to prove it, one will find that the proof is very com-

plicated. Therefore, it is necessary to find a new way to prove this problem.
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