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1. INTRODUCTION 

The purpose of this paper is to completely prove a conjecture in J. R. 
Haddock and R. Sacker [l] and further extend a result on asymptotic 
integration obtained previously by 0. Arino and I. Gyori [24]. 

Asymptotic integration deals with non-autonomous evolution equations 
which asymptotically are autonomous, and aims at relating the asymptotic 
behavior of the solutions of these equations to the asymptotic behavior of 
the solutions of the limit equation. Classical results on this problem exist 
for ordinary differential equations (i.e., cf. [5-91). For delay differential 
equations, the earliest results are due to K. L. Cooke [lo], and some later 
results can be found in [l-4, 11&16]. 

In [ 11, in search of an extension of results by Hartman [S], Hartman 
and Wintner [6], Atkinson [7], and Harris and Lutz [S], notably for 
ordinary differential equations of the form 

a(t)=(n+A(t)).x(t), (1.1) 

where /i = diag{ 1,) . . . . & > is a real diagonal matrix, Ai # ,Xj, i # j, and A( .) 
is a continuous matrix function defined on R+, R+ = [0, + cc), and L* 
perturbation, Haddock and Sacker conjectured an asymptotic formula for 
the solutions of the delay equation 

i(t) = (A + A(t)) x(t) + B(t) x(t - r), (1.2) 

where r > 0 is a constant, (1 and A are the same as in (1.1) and B( .) is a 
matrix function and is in L*. They stated that there exists a matrix function 
I;( .), F(t) + 0 as t + +co, such that for each solution x of (I .2), there exist 
a constant vector c and a function f( .), f(t) + 0 as t + co, such that 

x(t)=(Id+F(f)).exp(j:n(~)~~)-(c+f(f)), (1.3) 
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where 
A(t)=A +diag{A(t)} +diag{B(t)} .e rn. 

The conjecture was proved in the scalar case in [l], and further proved 
in the case of “quasi-triangular” systems by Arino and Gyori [24]. In 
these two situations, the obtained results show that the formula (1.3) holds 
with F(t) = 0. For the general situation, a weaker result was also obtained 
in [24]. Indeed, Arino and Gyori in [24] considered a general system 

i(f)=fl’x(t)+L(t,x,), (1.4) 

where A is the same as above, and L: R+ x C( [ -Y, 01, E”) + E” is con- 
tinuous, with L(t, .) linear on C([-r, 01, E”) and lIL(t, .)II, the norm of 
L( t, . ), in L*, and x(t) E E”, x, denotes, as usual, the function defined on 
[ -r, 0] by x,(s) = x(t + s), -r d s 6 0, here r is the maximum delay in 
(1.4). By an inductive method, they obtained the following result: there 
exists a functional G(t) defined on the space C( [ - 2r, t], E”), IIG(t)ll + 0 as 
t -+ +a~, such that for each solution x of (1.4), there exist a constant 
vector c, a function ni with values in E”, v],(t) -+ 0 as t + +co, and a 
function qz, q,(t) E C( [ -2r, t], E”), q,(t) -+ 0 as t + +co such that 

, (1.5) 

where /i(t) = /1+ diag{L(t, exp(n.))}. Ob viously, when applying this result 
to (1.2), the obtained formula for the solutions of (1.2) by (1.5) is generally 
less agreeable than (1.3) for in (1.3) the function F(t) is replaced by a func- 
tional G(t) defined on the space C([ -2r, t], E”). So, the conjecture still 
remains to be proved. 

In this paper, we consider a more general system 

i(t)= (A + V(t)).x(t)+ L(t, x,), (1.6) 

where x(t) E E”, E” is the n-dimensional real Euclidean space, with the 
norm 1x1 = Cy= i Ix, 1 for x = col(x,, . . . . x,) in E”, and E = E ‘. We will state 
now the assumptions on A, V, and L. 

(Z-I,) A=diag{L,, . . . . A,}, with JUi#Aj, i#j; 

(Hz) V(t) = diag(u,(th . . . . v,(t)}, with vi: R+ -+ E continuous and 
supSDf(l+S-~))‘~~~vi(r)dr+Oas t+33,i=l,2,...,n; 

(H3) For each t E R+, L(t, .) is linear continuous from 
C( [ -r, 01, E”) into E”, t + L(t, .) is continuous, and IIL(t, .)I\ is in 
Lp( R + ), 1 < p < 2. Here r > 0 is the maximum delay in (1.6), and 
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C[ -r, 01, E”) is the Banach space of continuous functions mapping the 
interval C-r, 0] into E” with the norm llqll = SUP-,~,~,, j&)(. Clearly, 
the situation under consideration here covers the those in [l-4]. By a dif- 
ferent method from the one used in [2-4], we get an asymptotic formula 
for the solutions of (1.6). When applying our result to (1.2), we obtain a 
slightly stronger result than the above conjecture. Also, our result is 
stronger than the one in [24], at least in the general case (still, Arino and 
Gyori’s result for quasi-triangular systems is stronger). 

The method used in this paper is a similar to the one employed in [ 111. 
That is, we first get a class of “special solutions” of (1.6), and then using 
these solutions we obtain the asymptotic formula for all solutions of (1.6). 

The plan of our paper is as follows. In Section 2, we establish some 
lemmas needed in later discussion. In Section 3, using Lemma 4 established 
in Section 2 and a fixed point theorem we get a class of “special solutions” 
of (1.6). In the last section, using these special solutions we obtain an 
asymptotic formula for all solutions of (1.6). 

2. SOME LEMMAS 

LEMMA 1. Let Ic/ E Lp, 1 < p < 2, be nonnegative and continuous on R +. 
For t 20, E>O, define 

o(t, E) = Ji $(s) e-s(‘-s) ds, [(t, E) = Irn t,b(s) e-E(S-‘) ds. (2.1) 
, 

Then, for any E>O, 

(1) a(t,E)~O,i(t,E)~O,t--toO; 
(2) a(.,E)ELq,i(.,E)ELY,l/p+l/q=l 

ProojI The first part of Lemma 1 concluded from [S, Example 4.1, 
p. 2861. From [S, Example 4.2, p. 2861, we see that a( ., E)E Lp, and 
c( ., E) E Lp. Noticing that p < 2 <q and the result (l), we can get the 
second part of Lemma 1. 

LEMMA 2. Let $ be the same as in Lemma 1. Let v: R f + E be con- 
tinuous, with sup,, I (1 + s - t)-’ .[; v(r) dr + 0 as t + co. For c1> 0, to 2 0, 
define ol( ., a, to), cl( ., a, to) on R+ as 

al(t, a, to) = j’ Ii/(s) -exp 
kl 

( -js*4r)dr)4 

il(t, a, to) = js $6) .exp (-s’ i(r) dr) 4 , f 
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where A(t) = c1+ u(t), for t > 0. Then, for any constant E, such that 0 < E < U, 
there exists a constant t, 2 0, such that for t 2 t,, 

o,(t,cr., t,)<e”-‘,.a(t,E), i,(t, 4 to)GeZ “.i(t, ~1, 

where a( t, E), [(t, E) are defined as in Lemma I. 

Proof Since sups2 I (1 + s - t) ’ j.; u(r) dr -+ 0 as t + co, for any given 
number E, 0 < E < CI, there exists a number to > 0, such that for s 2 t b to, 

(1 +s-t)-’ lJSo(r)dri <U-E, 
I 

i.e., 

So, for t 2 s 3 to, 

exp( -S’l(r)dr)=exp( -a(t-s)-j:v(r)dr) 

<exp(-ol(t--s)+(cc-E).(t-s+l)) 
<,x-c .e-&(r- s), 

and so, for t 3 to, 

This completes the first inequality of Lemma 2. The second one can be 
proved in a similar way. 

LEMMA 3. Let cp E Lp, 1 < p d 2, be continuous with q(t) = q(O) .for 
-r<t<O. For t>O, let 

Then, 

h(t, 0) = exp Jr’,, q(s) ds) - 1, -rdBdO. 

(1) Ilh(t, ~)llp=~(~~-,I~(t)lpds) as t-+a, 

(2) ft’ Ilh(t, .)Il” dt< 00, VP+ l/q= 1, 

where Ilh(t, .)II = ~~~~~~~~~ Mt, WI. 
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Proof: Since cp E Lp, we see that Is:‘” q(s) dsl + 0 as t -+ CC uniformly 
in 8, -Y 6 8 6 0. By the Holder inequality, we deduce 

=O j' l-r lcpb)l d3) 

=0 
(( 

j' Iq(s)lpds as t-+cO, 
,-I. 

and so, 

IIMt, .)ll”=O j’ I&)lpds 
> 

as t-03. 
I -- r 

Thus, we complete the first part of this lemma. 
From (l), it follows that j: Ilh(t, .)I1 p dt < co, and lIh(t, .)/I -0 as 

t -+ co. Noting that q 2 2 > p, we can immediately get the second part of 
this lemma. 

LEMMA 4. Consider the equation 

i.(t) = M(t, xt) + Nt, y,) + R,(t), 

3(t) = P(t, x,1 + Q(t, Y,) + &(t)> 

with XE E”, ye E”, 

M(resp. P): [to, + co) x C([ -r, 01, E”) + E”(resp. E”), 

N(resp. Q): [to, + co) x C( [ -r, 01, E”) + E”(resp. E”), 

R,(resp. R,): [to, + 00) -+ E”(resp. E”), 

(2.2) 

where M, N, P, Q are continuous linear jiinctionals with respect to the second 
variable. Assume that 

(H4) the equation 

i(t) = M(t, x,) 

is stable; 

(H,) the equation 

(2.3) 

)‘([I = Q(c Y,) (2.4) 
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is exponentially stable; 

(H6) IIN(t, .)I1 and IIP(t, .)I1 are in Lp, with 16~62; 

(H,) RI(.) and R,(.) are in L’. 

Let (x, y) be a solution of (2.2). Then x is bounded and lim,, +~ y(t) =O. 
Moreover, iffor all the solutions u(t) of (2.3), lim,, += u(t) exists, the same 
holds with the solutions of (2.2). 

The proof of Lemma 4 can be finished in a very similar way to the one 
of Proposition 2 in [4], so we omit it. In fact, if R,(t)= R,(t) =O, this 
lemma becomes Proposition 2 of [4]. From the proof, we can also get the 
following important estimates, which are very useful in proving our 
Theorem 1, for the solutions of (2.2) for t 3 to (where to is large enough, 
such that c(t,) < 1, c( to) is given below): 

IIX,(kl> XI”, YJI G (1 -&X’ .b(t,> Il~r~ll, Il~,,ll), (2.5) 

IIyr(fo, xlo, y,)ll <Kep”“-‘o’ II yloll + K/’ ecn(‘-s) IR2(s)l ds 
10 

+ K ’ e~‘(‘~“p(s) [x,1 ds, 
s hl 

(2.6) 

where K, o! are positive numbers, only dependent on Eqs. (2.3) and (2.4), 
n( .) and p( .) are in Lp, such that 

INt, cp)l <n(t). ll~ll~ Ip(t, $11 G p(t) lI11/ll, 

(i 

5 
b(t,, uo, vo) = Ku, + K2 n(s) e -a{‘~ Q) ds Io 

> 

.v,+K i a IRl(s)l ds 
10 

+ K2 jtr n(s) (IS e -a(s-r) lR2(r)l dr 
> 

ds, (2.7) 
10 

c(to)=K2Jmn(s) 
10 

!“Sep’CS’).p(r)dr 
10 

(2.8) 

It is not difficult to see that b and c are uniformly bounded with respect to 
to and moreover c(to) ? 0 as to -+ +co. 

Corresponding to Corollary 1 in [4], we have the following corollary. 

COROLLARY 1. Asssume (H5), (He), (H,), and that IIM(t, .)\I is in L’. 
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Let (x, y) be a solution of (2.2). Then lim,, +oc y(t)=O, lim,, +oa x(t) 
exists, and have 

lim x(t) = x(to) + w(to, x,,, Y,~> R,, R2) +j-I R,(s) ds, (2.9) 1--t +oc, to 

where w is a mapping from Rt x C( [ -r, 01, E”) x C( [ -r, 01, E”) x 
L’(R+, E”)x L’(R+, E”) -+ E” and have the property that for each 
to, R,, R,, w(to;, ., R,, R2) satisfies the Lipschitz condition with respect 
to the second and third variables. That is, there exists a function 
d(~):R++R+,d(to)+Ousto + + co, and independent of RI and R, , such 
that 

Idto, (~1, $1, RI, Rz)-w(to> (~2, $2, R,, R2)l 

~~~~o~-~ll~~-~~/l+II~~-~~ll~. (2.10) 

Moreover, there exists a constant T 2 0, which only depends on M, N, P, and 
Q, such that if to > T, then for each c in E”, there exists a solution of (2.2) 
defined on [to - r, + 00 ) such that lim, _ +m x(t) = c. 

Proof: From Proposition 1 in [4], we deduce that Eq. (2.3) is stable 
and its solutions converge. So, all the conditions of Lemma 4 are satisfied, 
which yields that lim,, +co y(t) =O, lim,, +~ x(t) exists for each solution 
(x, y) of (2.2). w e now show (2.9). Let (x, y) be a solution of (2.2). By the 
bound of x and IIM(t, .)I1 is in L’, it follows that M(t, x,) is in L’. By the 
estimate (2.6) and Lemma 1, we see that y, is in Lq, and so N(t, y,) is in 
L’. So, since R,( .) is in L’, by the first equation of (2.2) we get 

,“ym x(to> xt,,, Y,J = x(to) + j- MS, x,) ds 
(0 

+fm MS, y,)ds+ jm R,(s)& 
IO f0 

and comparing this expression to (2.9) we have that 

w(to, XQ Y,, R,, R,)=Ia M(s,x,)ds+/m N(s, yS)ds. (2.11) 
to 10 

Now, for (pl, (p2 in C([--r,Ol,E”) and +r, e2 in C([-r,O],E”), 
let (xi, Yi) = (x(to, (pi, $i), y(to, (pi, $i)), i= 1, 2. Let m E L’ such that 
IIM(t, -)I/ <m(t). Then, by (2.11) 

409G65!1-6 
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6 j= 4s) lx,.\ - -A ds + jm’ 4s) IIYC ~2sll ds. (2.12) 
10 ‘0 

Noticing that (x,-x*, y,-y,) is a solution of (2.2) in the case R,(t)= 
R2(f) = 0, so by (2.5) and (2.6) we have 

the left of (2.12) 

G(l-c(tO))-‘.Nto> lI~1-cp2llt lllcII-$211) 

Now let 

) dr ds 
) 

.(j” m(s)ds+Kj= .(s)(j- epz(Spr’p(r 
10 10 10 

+Kj,;n(s)e-“‘” “‘)ds 111++-$~/1. 

. 

(2.13) 

+Kjm n(~)e~“‘“+““ds. 
10 

(2.14) 

By (2.7), (2.13), (2.14), we can easily deduce (2.10). Clearly, from (2.14) we 
see that d(t,) depends only on M, N, P, Q, no relation with R, and R2, 
and that by Lemma 1, d(t,) = o( 1) as t, -+ +cc. Thus, the first part of 
Corollary 1 is proved. 

In order to show the second part, let us restrict our attention to constant 
date x,,= x0 and y,,=O. From (2.9) we get 

lim x(to, x0, O)(t) =x0 + w,(f,, x0, RI, R2) I+ tee 

+ s OD R,(s) ds, 
$0 

(2.15) 

where wi: R+ x E” x L’(R+, E”) x L’(R+, E”) -+ E” is defined by 
w,(f,, x0, R,, R2)= w(t,, x,,, 0, R,, R2). Now let Ota< 1 be an arbitrary 
constant. For such a fixed constant a, since d( to) = o( 1) as t, + + cc we see 
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that there exists a number T> 0, which is independent of R, and R,, such 
that for any t, 3 T, d(t,) d a, and so by (2.10) we have 

Iw,(to, xo, R,, Rd- w,(to, X,, R,, R,) 

<a lxo--x,l, for x0, 3, in E”. (2.16) 

So, by a well-known result we see that the mapping defined by the right 
side of (2.15) from E” into E” is surjective (in fact is an isomorphism). This 
gives the desired result of the second part. 

Remark 2.1. By the second part of Corollary 1, we see that for all 
(R,, R2) EL’(R+, E”) x L’(R+, E”) there exists a common T> 0, which 
depends only on M, N, P, Q, and have the property as stated as the second 
part of Corollary 1. 

LEMMA 5. Assume (H5), (H6), (H,) and that IIM(t, .)/I is in Lp, with 
16 p < 2. Then, there exist a constant T, 2 0 and two bounded functions 
K,( .) and K2(. ) defined on [T,, + co), which are all determined by M, N, 
P, and Q, such that for each solution (x, y) = (x(to, xfO, y,,), y(t,, x,,, y,)) 
of (2.2) with t, 3 T,, the following estimates holdfor to 6 t < to + r: 

lbll G K,(to) . (IlxJ + IIY,,II 1 

+ Cl- c,(foW’ .b,(to, R,, R,), (2.17) 

llv,ll G K,(to). (IIx,,II + II yt,ll) + Uto, R,, Rd, 

where c, , b 1, and 6, are given by 

~,(t~)=~‘~+~m(s)ds+ KSmirn(s).(j~e~“‘“‘p(r)dr) ds, 
f0 10 ol 

bl(to, RI, R2)= [“+’ [RI(s)/ ds+Kjm+rn(s) 
10 

lW1)l 4 
1 

4 

b,(to, R,, R,)=K(l --c,(fo))- -‘.b,(t,, R,, R,).j’“+rp(s)ds 
10 

+KJ I&(s)l 4 (2.18) 
10 

in which K and tl are the same constants as in Lemma 4, and m( . ) is in LP 
such that lM(t, rp)l <m(t). IlcpIl for cp E C( [ -r, 01, E”). 
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Proof Let (x, y) be a solution of (2.2). From the first equation of (2.2) 
we can easily get 

llxrll G lIxt,ll + 1’ 4s) llx,/l ds 
kl 

Noticing that in this Lemma, (2.6) still holds so replacing IIy,I) in (2.19) by 
the right side of (2.6) we can deduce (2.17), in which c1 and b, are given 
in (2.18), T, >O is such a number that for to> T,, c,(t,)< 1 (such a 
number exists since c,( to) = o( 1) as t, --) +CCI), and K,( to) can be chosen 
as K,(t,)=(l-c,(t,))-‘.(l+KS:~+‘n(s)e~”(” ‘O)ds). Now, using the 
obtained estimate for llx,ll to the right side of (2.6), we can get the second 
one of (2.17), where b,(t,, R,, R,) is given in (2.18), and K2(f0) is chosen 
as 

K,(t,)=K(l +K,(t,))-j’O+‘p(r)ds). 
10 

By the choice of T, and expressions of K,( .) and K,( .), it is clear that they 
are all determined completely by M, N, P, and Q, and are no relation with 
R,( .) and R2( .). This completes the proof of Lemma 5. 

LEMMA 6. Let p be measurable, locally bounded, and nonnegative on 
[to - r, + co), where r > 0 and t, > 0 are constants, and m be nonnegative on 
[to, + co) and in Lp. Suppose that 

P(t) d m(t) . {’ P(S) 4 for t3 t,. 
,-I. 

(2.20) 

Then, 

(1) for any a<O,J;e”p(t)dt< +oo; 

(2) for any a>O,j," p(s)ds=o(e-*‘) as t+ +oo. 

Remark 2.2. This lemma is a special case of Corollary 1 in [17]. For 
the sake of clarity v&e give a direct proof. 

Proof. Since m is in Lp, we see that s:” m(s) ds= o(1) as t -+ +KI. So, 
there exists a i,> t,+ r, such that for t 3 i,, ear J:” m(s) dsd l/2. Now, 
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multiplying both sides of (2.20) by e” and integrating from t, to T (T > i,) 
we obtain 

Qcf ji~p(.).f~+rE”m(t)dtds, (2.21) 

where c=JgPrp(~).J;+’ ea’m( t) dt ds. Changing the variable of integration 
in the right-hand side of (2.21) to t and moving it to the left-hand side of 
(2.21) we get 

-p(t)dt~f~(l-c’rlr+r~(~)dr).e”‘.~(t)dt 
6 I 

t+r 

e%(s) ds . p(t) dt < c, 

and so 

s 

T 

esr p(t) dt < 2~. (2.22) 
f0 

This implies (1). From (1) we easily conclude (2). Thus, this lemma is 
proved. 

3. SPECIAL SOLUTIONS 

In this section, we shall get a class of solutions of (1.6) with special 
asymptotic behavior more or less like exp(A,t) v, i = 1, 2, . . . . n, which will be 
called the special solutions of (1.6). 

We first define for each integer k, 1 d k < n, 

l+(t) = I, + uk( t), for t > 0, and &(t)=&(O),for -r<tdO, 

w,(t, kJ = c ’ Ml & W(L td=diag(w,(t, to), . . . . w,(t, to)>, 10 
6,(t) = e,T .-UC expCw,(t + .T f)l ed, s,(t, to) = s ’ 6,(s) 4 

cl 
S(t, to) = diag{s,(t, b), . . . . s,,(t, to)>, t 2 -r, to 2 0, (3.1) 

where eE= (0, .,., 0, 1, 0, . . . . 0), and then introduce an operator Pk mapping 
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from C([-r,O],E”) to C([-r,O]P), such that P,cp=col(cp,,...,cp,)for 
cp = col(cp, , . . . . cp,) in C( [ -r, 01, E”). Now we shall state our first theorem 
under the assumption that the &‘s are ordered: for i < j, Ai < A,, since this 
assumption does not restrict the generality. 

THEOREM 1. For each integer k, 1 < k <n, there exists a number t, > 0, 
such that for any t, 3 t, and each ‘pk in C( [ -r, 01, Ek), there exists at least 
one solution x( t,, cp”) of (1.6), which is defined on [t, - r, + co ) and satisfies 
Pkx@(tO, rpk) = cpk, such that as t--f +cc 

x(to3 vk)(t)=exP(wk(tT hd+Sk(t, to)> ~(bek+o(l)), (3.2) 

where wk and sk are defined by (3.1), and b is a constant dependent on 
x(t,, cpk), and ek is a kth unit vector in E”. Moreover, there exists a number 
ik 2 0, such that for any t, > ik and any given constant b, there exists a solu- 
tion x(t,, k, b) of (1.6) which is defined on [to - r, + co), such that 
x(t,, k, b)(t) is equal to the right-hand side of (3.2) as t + +co. Such solu- 
tions x(t,, cpk) and x(t,, k, b), 1 d k d n, are called special solutions of (1.6). 

Remark 3.1. When applying this theorem to Eq. (1.1) we can obtain a 
stronger result than the one obtained in [6, p. 71, Result (i)]. For in [6], 
the result is only the second part of our theorem. 

The proof given below is based on a change of variable and then on 
employing the alternative method to the transformed equation. In the 
process of the proof, we shall use Corollary 1 and Lemma 5 and the 
estimates (2.5) (2.6) and (2.17). 

Proof The first step of the proof is to make the change of variable 

x(t) = exp(wk(ty to) + sk(t, to)> ’ y(t), t, 3 0, t 2 t, - r, (3.3) 

Then, for t 3 t, Eq. (1.6) reduces to 

j(t)=(n+v(t)-&(t).Zd).y(t)+L(t,eXp{wk(t+ .,t) 

+sk(t+ ‘) t)}.y,)-e:. L(tv exp{wk(t + 3 t)> ‘ek) ’ ytt) 

= (A + v(t) - Ak(t) .Zdd). y(t) + G(t, y,), (3.4) 

where Id represents the n x n unit matrix, and G( t, y,) = col(g,(t, y,), . . . . 
g,(t, Y,)) with 

gi(t, y,)=eT.L(t,exp{wk(t+ ., t)+sk(t+ ., t)) .Y,) 

-ee:‘L(t,exp(wk(t+ .) t)].ek).yi(t)y i # k, (3.5) 

gk(h Yt)=ec.L(ty exp(wk(t+ ‘) t)> 

.texdsktt+ ‘? t)> ‘Yt-yk(t)ek)). (3.6) 
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Since IIL(t, .)I] is in Lp, we see that there exists a nonnegative function p 
in Lp, such that 

MC cp)l G P(l). IIVII for t>O,cpinC([-r,O],E”). (3.7) 

And so, from (3.5)-(3.7) we deduce 

ISiCz9 cP)l G2MI ‘PCt) llPll2 t>O,cpEC([--,Ol,E”), (3.8) 

where 

Ml = sup (exp(w,(t + ., t)) + exp(s,(t + ., t)) 
1>0 

+ exp( wk( t + ., t) + sk( 2 + ., t))). (3.9) 

By (3.1) and the assumptions (H,), (Hz), and (H3), it follows that M, is 
finite. So, from (3.8), IIgi(t, .)[I, 1 <idn, is in Lp, and so I]G(t, .)I1 is in Lp. 
Obviously, G(t, .) is linear with the second variable for each t B 0. 

Now, the second step of the proof is to decompose the variable 
y=col(y,, . . . . y,)=col( Y,, Y,, Y,), with Y, =col(y,, . . . . yk- ,) in Ek-‘, 
Yz=yk in E’, and Y3=col(yk+r, yKf2, . . . . y,) in Enek. Then, Eq. (3.4) 
becomes 

6(t) = /it(t) Y,(t) + G,l(t, YI,) + G,,(t, Y,,) + Gdt, YJ, 
60) = Gx(t, YI,) + G&t, Y,,) + G&t, Yj,), (3.10) 

h(t) = A)(t) Ydt) + Gs,(f, Y,,) + Gdf, Y,,) + Gdt, Y3,), 

where 

/i,(t) = diag(l,(t) - Aktf)? . . . . Ak- I(t) - nk(t)}? 

/i3(t)=diag(l3k+,(t)--k(t), **-, &ft)- l,(t)), 

G,(t, Yjt)=Gi(t, QTYjt)(tj=l,& 3) with Q,=(zd,k-,,,,k-,,,O,O), a 
(k- 1) x n matrix, QT representing the transpose of QI, Qz = el, Q3 = 
(O,O,Zd+k~,~,-k~, a (n-k)xn matrix, and G,(t, .)=Qi.G(t, .) 
(i= 1, 2, 3). Obviously, G,(t, .) (& j= 1, 2, 3) is linear with respect to its 
second variable. Moreover, from (3.8) it readily follows 

lIG,(t, .)I1 GM, .p(t) (M, = 2nM,), t 2 0. (3.11) 

This implies IJG,(t, .)[I (i, j= 1, 2, 3) is in Lp. 
Consequently,- by the above two steps we see that if the following 

theorem is proved, our theorem will be completed. 
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THEOREM 1’. For each integer k, 1 6 k d n, there exists a number t, >/ 0, 
such that for any t,2 t, and each ( Yl,O, Yr,,) in C([ -r, 01, Eke ‘)x 
C([ -r, 01, E’), there exists at least one solution ( Yl(t,, YI1,), Y,,,), 
Y*(fo, YlQ> Y2J’ Y3(to, YlQ> YzrO))= (Y,, Y,, Y,) of Eq. (3.10), which is 
defined on IIt0 - r, + 30) and satisfies ( Yl,,(to, Y,,“, Y210). Y2t0(for YI1o, Y2,,)) 
= ( YlrO, Yzro) such that 

lim (Y,(t), YAt), Y,(t)) = (0, b, 01, (3.12) 
I- fr: 

where b is a constant dependent on (Y,, Y,, Y,). Moreover, there exists a 
number ik B 0, such that for any t, > ik and any given constant b, there exists 
a solution (Y,(t,,k,b), Y,(t,,k, b), Y,(t,,k, b))=(P,, 9,, Y3) of (3.10), 
which is defined on [to - r, + 00) such that 

lim (P,(t), F,(t), F3(t))= (0, b, 0). 
t+ +a, 

(3.13) 

We shall employ the alternative method to prove Theorem 1’. Indeed, we 
consider system (3.10) as two systems: 

&(t) = n,(t) Y,(t) + G,,(t> Y,,) 

+ G,,(t, Y,,) + G,dt> Y,,), (3.14) 

%‘z(t) = Gz,(t, Y,,) + Gn(t, Yz,) + Gn(t, Y3r)r 

and 

h(t) = /13(t) Y,(t) + G,,(t, Y,,) 
+ G&t, Y,,) + G&t, Y,,). (3.15) 

Now, let (Y,(t,, Yl,O, Yzto, Y)), Y2(t,,, YlrO, YZro, Y3)) denote the solution 
of (3.14) for a given function Y, in C([t,-r, + co), E”-k) and initial 
data (Y,,, Y,,,) in C([-r,O], EkP1)xC([-r,O], El). Then, Eq. (3.15) 
becomes the equation of Y,: 

&W = AAf) Y,(t) + Gu(t, Ydto, Yu,, Yzro, Y3)) 

+ Gx(f, YAto> YI,,, Y,,, Y,)) + Gdt, YJ,). (3.16) 

It is clear that if Y, is a solution of (3.16), then (Y,(t,, Y,,,,, Yzlo, Y3), 
Y2(b Y1,,, YzrO, Yd, Y3) is a solution of (3.10), satisfying that 
Ydb, YI,,,, Yzto, Yd= Y,,,,, Y2ro(t0, Y1,,, Yzto, Y,)= Y,,. We shall see by 
the following two propositions that in such solutions there exist those as 
stated in Theorem 1’. Now, we state these propositions: 
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PROPOSITION 1. Assume that Y3 is in C( [to- r, + CD), EnMk) and 
satisfies 

W(Y,)= SE IIY,,119dt l”< +co, 
to + r > 

(3.17) 

where II y3,11 =suP-2rCsG0 I Y3(t+s)l. 
Let (Y,, Y,) be a solution of (3.14) with respect to this Y,. Then, 

lim IA +a Y,(t)=O, and lim,, +ac Y,(t) exists. Moreover, there exists a 
number $ > 0, which is independent of Y,, such that for any t, 2 i;, and any 
constant b, there exists a solution ( Yl(to, k, b, Y,), Yz(t,, k, b, Y,)) of 
(3.14), which is defined on [to - r, + co), such that 

lim ( Yl(to, k b, Y,)(t), Y2(f0, k b, Y,)(f)) = (0, b). t--r +m 

Before stating Proposition 2, we introduce the space S( to) for to 3 0 as 

S(t,)= (Y,: Y,in C([t,-r, +co), E”-k)andsatisfying (3.17)) . 

with the norm W(Y,) defined by (3.17). 

PROPOSITION 2. There exists a number t; > 0, such that for any to > t; 
and each (Y,,, Y,,) in C([-t-,0], E”-‘)xC([-r,O], E’) there exists at 
least one function Y, in S(t,), such that it satisfies Eq. (3.16) and 
lim t--r +a2 Y,(t) =O. Such functions we denote by Y3(t0, YlrO, YzlJ. 
Moreover, there exists a number i;: 3 &, such that for any t, > i;: and any 
constant b, there exists at least one function Y3(t0, k, b) in S(t,), such that it 
satisfies Eq. (3.16) as in which (Y,, Y,) = ( Y,(to, k, 6, Y,), Y2(t0, k, b, Y,)), 
where (Y,(t,, k, b), Y2(t,, k, 6)) is given in Proposition 1, and lim,, += 
Y3(to, k, b)(t) = 0. 

If these two propositions are proved, the proof of Theorem 1’ is 
immediately completed. For in it, let t, = t; and ik = ii. We see that for 
any to 2 t, (resp. to > ik), the vector functions ( Yl(t,, Y,,, Y,,,, Y, 
(to, y,,,, Y*,Jh Y2(fO? Yho, y*t,, Y3(fOl Yh Y2,,)), Ydto, Yl,~ Y2,)) 
(resp. (Yl(to, k b, Y3(f0, k b)), Y2(t0, k, b, Y,(to, k, b)), Y3(to, k, b))) given 
by Propositions 1 and 2 are just the solutions required in Theorem 1’. That 
is to say they are solutions of (3.10) and satisfy (3.12) (resp. (3.13)). Thus, 
the rest of the proof is to prove Propositions 1 and 2. 

We first show Proposition 1. The proof is based on the application of 
Corollary 1 and Lemma 5. For this, we rewrite Eq. (3.14) for t 2 to + r as 

R(t) = M,(t, a,,) + N,(t, F2,,) + R,(t), 

f’2H = p,(t, ylt) + Q,(t, F,,)+&(f), 

(3.18) 
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where I’,(t)= Yz(t) and Y,(t)= Y,(t) for tat,--v, Y,, (i= 1, 2) denotes 
the translation over [ - 2r, 0] for t >, t, + r, M, (t, .) and P,( t, . ) (resp. 
N,( t, . ) and Q r( t, . )) are functionals on the space C( [ - 2r, 01, E ’ ) (resp. 
C([-2r,O], EkP’)) for t>t,+r, R, and R, are in C([t,+r, +co), E’) 
and C( [to + r, + co), Ek ’ ). Comparing this equation to the original 
Eq. (3.14), we have 

LEMMA 7. M,(t, .) (resp. N,(t, .)) are bounded linear functionals on 
C([-2r,O], E’) (resp. C([-2r,O], Ek-‘)) for each t>t,,+r, and R, is 
in C([t,+r, +oo), El). Moreover, lIM,(t, .)I1 and IR,(t)l are in L’ and 
llN,(t, .)I1 is in Lp. 

Let us prove this lemma. From the second equation of (3.14) we see that 

GA& Y,,) = GAt, QT. Yzr) 

Now let 

=Q,.G(h Q? y,t)= gk(l, yk,.ek) 

=e k’ ‘L(& exp{ wk(l+ ‘) l)> 

’ (exp{sk(t + ‘? l)) ’ yktek - yktf) ek)). 

hk( t, s) = exp(sk( t + s, t)) - 1 for -rds<O. (3.19) 

Then, 

G2A& Y2,)=e:‘L(t, exptwk(t+ ‘, f))‘hk(& .) ‘ykt.ek) 

+ ekT’ L(t, exp(wk(t+ ‘? I)) ’ bkr - Yktt)) .ek) 

=e kT.L(k exp(wk(l+ ., t)).hk(f, .).Q,‘. y2,) 

+ e,‘.L(f, exp(wk(t + ., t)). Q;. (Y,, - Y,(t))). 

Noticing that Y,, - Y,(t) = s:’ dY,/ds.ds for t 3 t, + r and the second 
equation of (3.14), we have 

Gdf, y,,) = e:. L(t, exp(wk(t + ‘9 f)) .hk(rr . ) . QT. y,,) 

+e:.L t, exp(w,(t+ ‘, 
( 

WQ:jtr+ GAS, Y,,) ds 
> 

+el-L t, exp(w,(t+ ‘) 
( 

WQ:jtl+~ G,,(s, Y,J ds 
> 

+ e:‘L t, exp(w,(f + ‘) r,)-Q;J‘:+. G& Y,,) ds 
> 

. 
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So, comparing the first equation of (3.18) to the second equation of (3.14) 
we get 

+e,T.L t,exp(wk(t+ ..r)).Ql.J^:+‘GAs, Y2i)ds), 
( 

~,(t, Y,,)=e,T.L t,exp(w,(t+ ., t)).QT+’ G,,(.c YI,)~s 
( 

f Gzl(c Y,J> 

R,(t)=e,T.L t,exp(w,(t+ ., 
( 

WQ:jf’+’ G,,(s, Y,,) ds 
> 

+ GAG Y,,). 

So the first part of Lemma 7 is clear. Moreover, by (3.11) we get 

Since j(L(t, .)[I is in Lp, it follows that hk is in Lp from (3.1), and so by 
(3.19) and Lemma 3, Ilhk(t, .)[I is in L4. Noticing that p < 2 Q q and that 
p E Lp implies that siPl p(s) ds is in Lp and Jier p(s) ds -+ 0 as t -P +co, we 
can conclude that lip, p(s) ds is in Lq and bounded. By these facts and 
Holder’s inequality, we get immediately that IIM,(t, .)I1 is in L’ and 
IINr(t, .)]I is in Lp. Finally, by (3.17) we also get R, is in L’. Thus, the 
proof of this lemma is completed. 

LEMMA 8. Pl(t, -) (resp. Ql(t, .)) are bounded linear functionals on 
C( [ -2r, O], E’) (resp. C( [ -2r, 01, EkP ‘)) for each t > t, + r, and R, is in 
C([t,+r, +oo),Ekml). Moreover, IIP,(t, .)I1 is in Lp, IR2(t)l is in L’, and 
the equation 

%(t) = Q,(t, h,,, (3.21) 

is exponentially stable. 
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The proof of this lemma is straightforward. From the first equation of 
(3.14) we get 

f’,(t> FI,) = Gn(t> Y,,), Mf) = G,,(c Yxt), 

QI(C p,,) = n,(t) Y,(t) + Gl,(h Y,,)> 

and so by (3.11) 

and so, IlP,(t, .)I1 is in Lp and R, is in L’ by (3.17). Since, by the proof of 
Lemma 2, the equation Y*(t) = A 1(t) y,(t) is exponentially stable (with any 
-c1, O<cc<min ,<,< k-, {A,-Ai}, as its asymptotic exponent) and 
IIG2,( t, .)I1 is in L< we can conclude that Eq. (3.21) is also exponentially 
stable and its asymptotic exponent can be any -u for 0 < tx < min, e ,< k , 
{ & - &}. This completes the second part of this lemma. The first part is 
obvious and so the lemma is proved. 

The conclusion from these two lemmas is that Eq. (3.18) verifies the 
conditions of Lemma 4, and, more specifically, its corollary. Therefore the 
conclusions of Corollary 1 hold: 

lim 9, (t) exists and lim F2( t) = 0, 
r--r +a* ,- +x 

which implies the first part of Proposition 1, and the surjectivity holds, for 
t, large enough, with respect to the data in C( [ -2r, 01, E’) for Eq. (3.18). 
Since the solutions of (3.14) constitute only a subset of this set, we must 
then show that there is still surjectivity with respect to the solutions of 
Eq. (3.14). The reason for this is to consider special data for Eq. (3.14). We 
take Y,,, = 0, Y,,, = c, where c is a constant. Now let 

(FIT ~d/Cto - r, &I = Cc, 01, 
( FI f ~JlC~0~ t0 + rl = (Y2, Y1 YCto, to + rl, 

where (Y,, Yd= (Y,(to, Yl,o, YZro, Y3), Yz(to, Ylro, YZro, Y,)). This gives a 
set of data for Eq. (3.18). 

On te other hand, from (3.18) and (3.14) we have 

,l+iy, P,(t)= F,(t,+r)+ jm M,(s, P,,)ds 
10 + r 

+ jm N,(s, 92,) ds + j- R,(s) ds, 
to + r IO + r 



and 

and so 

where 
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&(t,+r)= Y&)+~'"+rG21(~, Y,,)ds 
10 

+I 
‘“+rGz2(s, Y2.Jds+j’o+rG23(~, Y,,)ds 
IO ol 

lim Y2(t)=~+~I(t0,~, Y,) 
1+ +cc 

+ i““” G&S, Y,,) ds + irn R,(s) ds, (3.22) 
kl *o + I 

w,(t,, c, Y,) = j-‘“+r G,,(s, Y,,) ds + jro+r G,,(s, Y,,) ds 
kl fll 

+ j- M,(s, P,,) ds + jm N,(s, Fzs) ds. (3.23) 
10 + r ro + r 

Now we show that there exists a nonnegative function d, of t,, which is 
independent of c and Y,, such that d,(t,) = o( 1) as t, + + CC and 

Iw,(t,, G Y,) - w,(t,, c’, Ydl 6 d,(t,) Ic- ~‘1. (3.24) 

Let (Y,, Yd= (Y,(t,, 0, c, Y3), YAb, 0, c, Y,)), (Y;, Y;)= (Y,(t,, 0, c’, Yd, 
Y2(b? 0, c’, Y,))> om m) = ( YAt), Y,(t)), (W), P;(t)) = (G(t), y;(t)) 
for t 2 t, - r. Further let, by (3.20), for t > to + r, 

IM,(t, cp)l G ml(t). ll(PllY IP,(t, cp)l 

d p,(t). lIdI, IN,(t, $)I <n,(t) ll$ll> 
with m, in L’ and p1 and n, in Lp. 

And so, 

the left side of (3.24) d M, . s’“” P(J) . (II Y,, - WI + II Y,, - Gil 1 ds 
63 

+f- nl(s) /I Y,, - %,I1 ds. (3.25) 
10 + r 
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Noticing that ( Y,(t) - Y’,(t), Y,(t) - Y;(t)) is a solution of (3.14) for t 2 t, 
with Y,=O and (F,(t)- y’,(t), j?*(t)- P;(t)) is a solution of (3.18) for 
t>t,+r with R, = R,=O, so, by estimates (2.17) and (2.13), (2.14) we 
deduce 

II Y,.s - Y;,ll + II Y,, - r;,ll <K, . Ic - 4, t, < s 6 t, + r, 

the sum of the last two terms in the right side of (3.25) 

~4~o++(IlK,+r- y;t,+rlI + IILo+,- Gm+rll), 

where K, = supto a ,, {K,(hJ + Mb))> K,(&J and K2(t0) are given by 
Lemma 5, and d( to) is given by (2.14) (of course, m, n, and p in Lemma 4 
and Lemma 5 are replaced by m, , n, , and p, , respectively). And so 

the left side of (3.24) < 

and so, if we let 

d,(t,)=K, M,1”+‘p(~)d~+d,(t,+r) , 
m > 

(3.26) 

we see that d,(t,) + 0 as t, + +cc and satisfies (3.24). 
Now let /I be a given number, 0 -C/II < 1. Then, there exists a constant 

i;, Z 0, such that for t,, b f’, d,( to) < /?. So, for t, b $ and each Y, in S(t,), 
the mapping defined by the right side of (3.22) from E’ to E’ is an 
isomorphism. This implies the surjectivity with respect to the solutions of 
Eq. (3.14), which completes the proof of Proposition 1. 

Remark 3.2. When applying (2.5), (2.6), and (2.17) to the solutions of 
Eq. (3.18) and Eq. (3.14), we can get that there exist a constant K, 2 0, 
which is independent of t, and Y, in S(t,), and a function d2 defined on 
R +, which is independent of Y, in S( to) and d2( to) = o( 1) as t, -+ + cc, 
such that for any solution (Y,, Y,) of (3.14) with initial data ( YllO, YZro), 
the following inequalities hold for i = 1,2: 

II Y;,ll d K, . (II Ylt,ll + II Yzt,ll) + ddfo) . V Y,), to < t < to + r, 

II Fit II d K, . (II Y,,Jl + II Yzt,ll) + ddfo) . W Y,h 
(3.27) 

t 2 t, + r. 

Remark 3.3. Let 

wl(tO,c, Y,)=c+w,(r,,c, Y,)+/‘“+rG&, Y,,)ds+[l R,(s)ds. 
10 f0 + r 

From the proof of Proposition 1 we see that for each to 2 i;, and each Y, 



ASYMPTOTIC INTEGRATION 91 

in s(t,), the mapping w,(t,, . , Y,) from E’ to E1 is an isomorphism. Let 
t, 3 $ and Y,, Y; in S(t,) be given. Then for each b in E’, there exist c 
and c’ in E’ such that 

w2( t,, c, Y3) = b = w2( t,, c’, Y;). 

Using (3.27) we can obtain that there exists a nonnegative function d, 
defined on [ <, + co), which is independent of Y, in s(t,), such that 
d,(t,)=o(l) as t+ +CC and 

Ic--‘I <d,(t,). W(Y,- Y;), (3.28) 

where t, > i;- and Y,, Y; in S( to). 

We turn now to the proof of Proposition 2. 
Let (Ylto, YsIo) be in C([-r,O],EkP1)xC([-r,O],E’) and &LO. 

Now we define an operator T= T(t,, Ylto, Y,,,) on s(t,) as 

(TYdt)= -j,mexp(jAI 3 ) A (~3 di . (G3,b Y,,) + G,,(s> Y,,) 

+ G33b Y3,)) & t3 t,, 

(TYJt) = (77’3)(kA to-r<t<tt,, (3.29) 

where (Y,, Y2) = (Yl(to, Y,,,, Yzro, Y3), Yz(to, Y,,, Y,,,, Y3)) is a solution 
of (3.14). We shall show that T maps S(t,) into itself and is a contraction. 
For this, we make the following estimates. 

Let~,O<P<m&+,,i<n {Ai - & >, be a constant. Then, from the proof 
of Lemma 2 we see that;here exist a number t; > 0, and K, > 0, such that 
for t > tg, 

exp(~~rn,(S)di)BK,.e”‘“-“, sat. (3.30) 

Let to 2 t[. So, by (3.11) and (3.27), we have if t 2 t, + r, 

I(TY,)(t)l <K2M2jm e-p(S-f) . P(s)(II P,,II + II P,,II + II P,,ll) ds 
, 

6 2K,M, s O” e-P(s-” As)CK, . (II Yl,,ll + II Y2t,ll 1 I 

+ d,(t,). WY311 ds 

OcI ePBp+‘).pp(s) ds . w Y3) 

6 4(t) . (II Y,,,ll + II Yz,,ll) + d,(t) . W Y,), (3.31) 
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where d4(t)=2K,K2M2.SIO(:e~B(~ m’).p(s)ds, 

d,(t)=2K,M,M;.j= c’+‘~~p(,)ds 
, 

where M; is constant, such that d2(t,,) < M; for 1,. By Lemma 1 we can see 
that d4 and d, are in Lq, and d4(f) + 0, d,(t) --f 0 as t + +co. Moreover, 
d4(t+S)~ePS.d4(f),d5(t+S)~e B’ . d,( t) for s 2 0. If t, < t < t, + r, then 

I(TY,)(t)l <KzMZ~~‘ot’epal”p’) . ~(s)(ll Y,sll + II Y2sll + II Y3sll) ds 
f 

+K,M,. Oc s e~B(s-r)AMII 8.J + II y2sll + II &,ll) ds. 
63 + r 

Noting (j:;+’ IlY3,114d~)“y~ WY,), where /IY3sll =suP-,~~~~ /Y,(s+0)l, 
by (3.27) we can deduce 

I(~Y,)(t)l 6 ds(fo)(ll Y,,,lI + II Y2t,ll) + d,(fo). W Y3), (3.32) 

where 4(b) = eDr . d4(t0), d,(t,,) = (M;/K,) . eBr . d4(r,,) + K,M, 
[(SE” P”(S) ds)‘lp+ Cl:+, p”(s) ds)““]. It is clear that d6(t0) = o(l), 
d,(fO)=O(l) as t,-+ +co. 

And so, for t > t, + 3r, by (3.31), 

II(TY,),ll = p2;!y<o WW+d)l~ 

< ‘“‘:d,(t-2r)(llY,,ll + II~2,,ll) -.e 

+ez8’.d,(t-2r).W(Y3); 

for t, + r d t d t, + 3r, by (3.31), (3.32), 

II(~,),/I=sup{I(TY,)(t+s)l: -2r6sGO) 

dSUp{I(TY,)(t+s)l:t+s3t,+r,-2r<s,<O} 

+Sup{I(TY,)(t+s)l:t+sdt,+r,-2r<s<O} 

6Sup{I(TY,)(t+s)l:t+s3t,+r,-2r~s~O} 

+Sup{I(TY,)(t+s)l:t,-r<t+s<t,+r,-2r<s<O} 

d (d5(to + r) .e28r + d7(t0)). W( Y3) 

+ (e2”. 4(f0 + r) + d6(f0)). (II Y,,,ll + II Yzroll 1 

= ddto)(ll Y,,,lI + II Y2r,ll) + d,(b) . fJ’( Y,). 
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Then, we can deduce 

93 

W(TY,)= jm II(TY,),l/qdr ( 
vu 

1 (1 
to+3r 114 

< IlmM” dt 
tg + r to + r ) 

(1 
O2 

> 

114 
+ Il(~~,M” CA 6~,,(4I)~(II Y,t,Il + II Yzra10 

ro+3r 

+ d,,(b) w Y,), (3.33) 

where 

Oc\ dlO(fO) = (2r)““. d,(t,) + e2B’. 
U 

(d‘j(t - 2r))4 .df 
ro+3r > 

l/Y 
, 

d,,(t,)=(2r)“Y~d9(t0)+e2B’ m (d,(t-2r))Ydt 
0 ) 

114 
. 

t(l+3r 

Since d,( to) + 0, &( to) + 0 as t, -+ +cc and d4, d, are in Lq, it follows that 
d,,(t,) + 0, dl,(t,) + 0 as t, + +co. So, TY3 is in s(t,) for to> ti, and so 
T maps s(t,) into itself. 

Now let th 3 ti, such that for to 2 t;, d, ,(to) < l/2. Then, for each t, > th 
and Y,, Y; in s(t,), from (3.33), we have 

W( TY, - TY;) < d,,(t,) W( Y, - Y;) < (l/2). W( Y, - Y;). 

This shows that T is a strict contraction on s(t,). 
Consequently, by the Banach fixed point theorem, T has a unique fixed 

point Y3 = Y3(f0, Y,,, Yzl,) in s(t,). This Y, provides a solution of 
Eq. (3.16). Moreover, by (3.31), it follows that Y3(f) + 0 as t + +co. Thus, 
the proof of the first part of Proposition 2 is complete. 

To show the second part, let t, 2 max{ $, ti >, where i;, is given in 
Proposition 1, and b a given constant. Now let us define the operator 
T= T(t,, b) on S(t,) the same as given in (3.29). But in (3.29), (Y,, Y,) = 
(Yr(t,, k, b, Y,), Y2(t0, k, 6, Y3)), which is given in Proposition 1 with 
initial data ( Y1,,, Y,,,) = (c, 0), where c satisfies that w*(t,,, c, Y,) = 6. By 
(3.33), T maps ,S(t,) into itself. And for Y, and Y3 in S( to), by (3.28) and 
(3.33), we deduce that 

W(TY,-TY;)<d,,(t,).Ic-c’l+d,,(t,).W(Y,- Y;) 

< d,Jto). W Y3 - Y;), (3.34) 

where d12( to) = d,,,( to) d,( to) + dl,( to). Obviously, d,,( lo) + 0 as r0 + + co. 
So, there exists a number ii B max{&, t:}, such that d12(r,,) < l/2 for 
t, > ii, and so for such t,, T is a strict contraction on s(t,) and, therefore, 

409/l65/1-7 
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has a unique fixed point Y, = Yj(t,, k, b) in S(t,). This Y, provides a 
solution of Eq. (3.16) with (Y,, Y,) = (Y,(r,, k, b, Y,), Y2(t0, k, b, Y,)). By 
(3.31) we see that Y,(t) + 0 as t + +a, and, thus, we complete the proof 
of the second part of Proposition 2. 

Combining the above obtained results, we complete the proof of 
Theorem 1. 

Remark 3.4. Using (2.5)-(2.8) (2.17), (3.22), (3.31))(3.33), we can get 

ICI 6 (1 - ddfd-‘(b+ 44(G), 

where c= Y2(t0, k, b, YX(t,, k, b)), d,3(tO) and dr4(f,,) are two functions 
defined for large t,, independent of b, and that d,,( to) = o( 1 ), di4(t,,) = o( 1) 
as t,+ +co. 

Remark 3.5. We will not need Theorem 1 in its full generality but this 
result is of independent interest. 

Remark 3.6. The second part of Theorem 1 can be proved directly by 
using a fixed point theorem to a proper operator. 

In order to obtain the asymptotic formula for an arbitrary solution 
of (1.6), by Theorem 1, let us define an n x n matrix function X on 
tat,-r, tOb&=max,,,,, {tk}, as . . 

at, 4J = (x(hl, 1, 11, ..., X(b, n, 1)). 

Clearly, it is well defined and has the property that x(t) = X(t, to). c, c E E”, 
is a solution of Eq. (1.6). By the asymptotic formula (3.2) of x(t,, k, b) with 
b = 1, 1 <k <n, as stated in Theorem 1, we have following 

THEOREM 2. There exists an n x n matrix function F defined on 
tat,---, t,>i,,, F(t, to)+0 as t+ +a, and 

SUP IF(t, Ml -0, as t, -+ SKI, such that 
,>to-r 

x(t, toI = (Id+ F(& kJ) .exp{ WC& to) + s(t, kJ>, 

where W, S are defined in (3.1). 

(3.35) 

Proof: From the proof of Theorem 1, let fk(t, t,)=col( Y,(t,, k, 1, 
YAk,, k, l))(f), Ydk,, k, 1, YJto, k l))(t)- 1, YA&,, k l)(f)). It follows 
that fk defines on t >, to - r, t, 3 t, and varilies for t 3 t, - r, t, B i,, 

x(to, k l)(t) = exp(wk(h to) + sdt, LA} . (ek +h(f, kd). 

Noticing Y,, =0 and in this case that (2.17) still holds with K2(f0) = 
K. K,(t,) . jz+ p(s) ds, we see that K,(t,)= o(l) as t, + +co. So, by 
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(2.5)-(2.8), (2.17), (3.31) (3.32) and Remark 3.4, we can show that 
su~~~,~-~ I.!& to)1 -0 as to -+ +co. Clearly, fk(t, to) + 0 as t + +a3 by 
Theorem 1. Now let 

F= (f, > . . . . fk, . . . . fir). 

It is easy to check that this F satisfies the requirements of Theorem 2. 

Remark 3.6. By Theorem 2, we see that X(t, to) is nonsingular for to 
large enough and t 3 to - r. Without loss of generality, in what follows we 
assume that X(t, to) is nonsingular for to 3 io, t 3 t, - r. 

4. ASYMPTOTIC FORMULA FOR ARBITRARY SOLUTION 

The reason for interest in the special solutions will now become clear. 
We are going to show that a n-parameter family of special solutions of 
(1.6) characterizes the asymptotic behavior of all solutions of (1.6) as 
t-r +m. 

Notation. Let x(t,, p) denote the solution of (1.6) defined on t 2 to - r, 
satisfying x,&t,, cp) = cp. 

THEOREM 3. For each solution x(f,, cp) of (1.6) with to 2 i. + r, cp in 
C( [ -r, 01, E”), there exist a constant c(t,, cp) in E” and a vector function 
f(t,, cp) defined on tat,--r, f(t,, p)(t)=o(e--“‘) as f-, +cc for any a>O, 
such that 

x(to, cp)(t) =‘vf, to) (dto, 40) +f(to, cp)(t)), t 3 to - r, 

where X is given by (3.35). 

Proof: Let x(t) = x(to, cp)(f), t k to-r, to 2 io, X(f) = X(f, to). Define, 
for f 2 f0 - r, 

2(2)=X-‘(f).X(f). (4.1) 

Then. 

By the definition of X and (1.6) we deduce 

x(f)~i(f)=L(f,X,~(z,-Z(f))), fBf0. 

Let 

m(t) = X(t). i(t) for t3fo. 

(4.2) 

(4.3) 
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Then, by (3.7), (4.2) we have for t > t, + r 

Im(t)l = IL(h Xr(Z, - z(t)))1 

<p(t). sup lX(t+8).(z(t+~)-z(t))1 
r<B<O 

and so by (3.35) we obtain 

+ S(t + 8, s)}l . lwz(s)l ds, (4.4) 

where 

M,= s~~o,;o (IZd+W, ~,)l + IW+f’(t, kJ-‘i). 

Since sup,,,(l+s-t)-‘.Ssvi(i)di~O as t-t +oo and d, is in Lp by 
(3.1), 1 < i < n, we can easily conclude that there exist two constants 
2, J.>max,.,.. IU and M, > 0, such that for t 3 s 

lexp(-W(t,s)-S(t,s))ldM2.e~‘(‘.“’. (4.5 1 

So, we find by (4.4) 

Idf)l G WM* .P(f) sup s - r<ti<O 

,:, d-+- ‘J. Im(s)l ds 

and so, we deduce for t B to + r 

em ~ f0) Im(t)l < M;M,M, .p(t) .I,‘-, ei+‘o’. Im(s)l ds, 

where M3 = e”‘. Now let 

R(t) = ei’cr-ra). Im(t)l, t>t,. 
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It follows that 

R(t)e@4,M,.p(t).I’ R(s)ds, t B t, + r. (4.6 
I--r 

So, by (1) of Lemma6 we get that for any ~(>O,~~e”‘.R(t)dt<oo, an 
this implies that R is in L’. Noting that 

Ii(t)1 = IX-‘(t) .m(t)l < lexp( - W(t, to) 

- S(f, to)). Vd+ F(f, kJ-‘I 
[m(t)1 <LI~,M~.~~“-‘~). Im(t)l =M,M,.R(t), 

we get that lc Ii(t)1 dt< +cc. This assures the existence of lim,, += z(t). 
Let 

c(t,, cp)= lim z(t) and f(b d(f) = z(t) - c(t,, d r--r +m 

for t > to - r. So, 

If(h,, cp)(t)l Gj= l3s)l WWfrjm R(s)& , , 

and so, by (2) of Lemma 6 it follows that for any c1> 0, f(t,, q)(t) = 
o(e-“) as t -+ +co. Clearly, for t > t, - Y, 

This completes the proof of Theorem 3. 

Theorem 3 gives the asymptotic formula of solutions x(t,, q) of (1.6) for 
t, Z i, + r. The following theorem will give the asymptotic formula for all 
solutions x(t,, rp) of (1.6) for t,>,O. 

THEOREM 4 (Main Result). There exist an n x n matrix function F 
defined on tat,,-rr,tO>O,F(t,t,)+O as t--++c~ for ~~210, and 
sup rata--r lF(f, hd --+O as t, + +co, such that for eoery solution x(tO, q) of 
(1.6) with t, 2 0, cp in C( [ -r, 01, E”), there exist a constant c(tO, p) in E” 
and a vector function f(t,, cp) defined on t>t,--r, f(t,, cp)(t)=o(e-“) as 
t -+ +w, for any tl > 0, such that 

x(b, rp)(t) = (Id+ F(t, to)) .exp( WC, to) + s(f, td} 

. (4~0~ cp) +f(ku cpNf))Y t > 1, - r. (4.7) 
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Moreover, for each c in E”, 

x(f) = (Id+ F(t, b)) .exp{ W4 4,)+ W4 kd} ‘c, 

t b t, - r, to 2 iO, gives a solution of Eq. (1.6). 

Proof: Let us define 

{ 

FCf, to), t 2 to - r, t, b t, + r, 

f’,(t, &I = F(t, i. + r), t > i, + r, t, < t;, + r, 

F(i,+r, i,,+r), t, - r < t < t, + r, t, < t, + r. 

x1(6 to) = (Id+ F,(h 4,)) .exp{ Wt, h) + S(f, hJ>, 

c(kb CPL to 2 1, + r, 

c~(b, cp)= 

{ 

exp{Wb, G+r)+S(b, tb+r)} .c(t,+r,xjo+,(b, cp)), 
t,<&+r, 

f(b cp)(t), 

fi(b V)(C) = 

I 

t b t, - r, t, 3 i, + r, 

exp{ Wb, i. + r) + s(b, t, + r)} .f(G + r, xlo+AtO, cp)), 
t > t, + r, t, < to + r, 

KY6 GJ~X(h, cp)(t)-Cl(kb cp), 
t, - r d t < i, + r, t, < t, + r, 

where F, c, f are given by Theorem 2 and Theorem 3. By Theorem 2 and 
Theorem 3, it is easy to see that F, , c,, f, have the properties as stated in 
Theorem 4 for F, c, f: Let us still use F, c, f to denote F,, c,, f,. Then we 
show the first part of Theorem 4. 

By Theorem 1, the second part is clear. Thus, we complete the proof of 
Theorem 4. 

Remark 4.1. When applying Theorem 4 to Eq. (1.2), it is easy to see 
that the obtained result is slightly stronger than the conjecture we men- 
tioned in Section 1, for in (1.3) we get that not only f(t) + 0 as t + +GO 
but also f(t)=o(epa’) as t+ +ar, for any a>O. 

Remark 4.2. In order to compare the asymptotic formula (4.7) to the 
weaker form (1.5), we express it in another form: 

x(k,, v)(t) = W+Ft& ~4) .exp( Wt, to) + s(f, to)) .c(b, rp) 

+ Wb, rp)(t).col(exp(W4 to)+ St4 kd)), 

where H(t,, cp) is a matrix function defined by H(t,, q)(t) = (Id+ F(t, to)). 
diag{fl(h, cp)(t), . . . . f,(to, q)(t)}. here fj(to, CJJ), 1 d i<n, denotes the ith 
component function, so H(t,, ~)(t)=o(e~“‘) as t -+ +cc for any cc>O; 



ASYMPTOTIC INTEGRATION 99 

col(exp( w(t, to) + S(t, to))) denotes the vector with components equal to 
exp(w,(t, to) +s;(t, to)). 

In the general case, we can not easily compute c(t,, cp). However, we 
have the following: 

THEOREM 5. Each component ci(t,, .) of c(t,, .), toa i,+ r, is a non- 
trivial linear functional on C( [ -r, 01, E”). Thus, each ci(t,, cp) # 0, except 
for those cp in a subspace of C( [ -r, 01, E”) of codimension one. Moreover, 
c(t,, .) is continuous. 

Proof. From the proof of Theorem 4, we need only to show the result 
for to > i, + r. Let to be such a number. For each t 2 to, x(t,, q)(t) con- 
sidered as a functional of cp is linear on C( [ - r, 01, E”), so is z(t), z(t) is 
given by (4.1). Now let t -+ +oo to conclude from the proof of Theorem 3 
that each c,(tO, .) is a linear functional on C([ -r, 01, E”). From 
Theorem 1 it follows that ci(tO, .) is not identically zero. 

The bound for c(t,, .) proceeds as follows. With the aid of the estimate 
for each solution x(t,, cp) of (1.6) (it is not difficult to prove by Bellman’s 
inequality), 

where N, K are constants independent of to, from (4.3) we get 

b(t)1 = b34 X,(z, -4t))l 

<p(t) sup Ix(t+S)-x(t+S)X-l(t)X(t)l 

-r<s<O 

<N.p(t) sup (1 + jX(s+ t)Xpl(t)l).eK(‘~-‘o) /IqII. (4.8) 
--r<3<0 

Now, without loss of generality, assume to satisfies that for t > i,, 
e”‘M~M,M, .J:+’ p(s) ds < l/2, where OL > 0. So, by (4.6) and Lemma 6 we 
get 

s * e”R(t) dt < 2M~M,M,. [ “+’ R(t) .j”+’ e”“p(s) ds dt. (4.9) 10 + r 10 s 

And so, by (4.8), (4.9), the definitions of X, m, and R, and p in Lp, we can 
deduce that there exists a constant MO > 0, such that 

J-, 
00 

R(s)ds<Moe~“‘~llqll, t 3 to + r. 
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From this, we get 

/z(t)-z(t,+rl <J,,F Ii(s)1 ds<M,M2.Ji R(s)ds 
f0 + r 

<MoM,M*~e-~“o+‘)~ llc$ll. 

Let t+ +cc. Then 

Ic(t,, q)-z(t,+r)l ~MoM1M2.e-“‘o+r’.II~II, 

and from this, we get 

(4.10) 

Ic(t,, q)l ~(MoM,M,~e-““o+“+Mb)~IIcpIl, (4.11) 

where Mb is a positive constant, such that lz( t, + r)l < Mb. Ilrpll. Then, we 
complete the proof of Theorem 5. 

Remark 4.3. We point out that M, and Mb can be chosen independent 
oft,, so by (4.11) we get that c(t,, .) is uniformly bounded with respect to 
t,. Moreover, since 

I Ato, cp)(t)l = Idto, cp) - z(t)1 d MI Mz j” R(s) A I 

we conclude that 

sup If(b, ~)(t)l = Ne+? as to--+ +co 
r>to+r 

for any CI > 0. Obviously, f( t,, )(t) is a linear operator on C( [ -r, 01, E”) 
for each t 2 t,. 

In conclusion, we emphasize a striking difference between the results 
obtained here and the results in [4]. In this paper, we obtain a class of 
special solutions given in Theorem 1 (just as those obtained in [6, 8, 93 
for Eq. (l.l)), but in [4], such solutions were not obtained (this fact was 
pointed out in the last part of [4]). This, on the other hand, indicates that 
the method used here is superior to the “inductive procedure” used in [4] 
(still, the method used in [4] for quasi-triangular systems is superior). 
While comparing the method used in [6, 8, 91, we think that our method 
is very natural. The reason we must have the second step (i.e., the proof of 
Theorem 3) to get the asymptotic formula for all solutions of Eq. (1.6) is 
that, for r > 0, the solutions of Eq. (1.6) form a infinite dimensional space. 

Finally, it should be noted that in (H,) we assume 1 d p < 2. Now, an 
open problem is if we can relax it to p > 0 to obtain a similar result to 
Theorem 4 (this problem is valid for Eq. (1.1 ), see [8]). If one uses the 
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same method as in [S] to prove it, one will find that the proof is very com- 
plicated. Therefore, it is necessary to find a new way to prove this problem. 
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