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In this paper we study a boundary value problem of a system of two second
order ordinary differential equations arising from the field equations of the
3-component U(1) gauged sigma model. We get a sufficient condition for
the existence and a sufficient condition for the nonexistence of solutions of the
boundary value problem. � 1999 Academic Press
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1. INTRODUCTION

In this paper we study the following boundary value problem

u"+
1
r

u$&\m2 (1&v)2

r2 + p+ sin u cos u=0 for r>0, (1.1)

v"&
1
r

v$+2(1&v) sin2u=0 for r>0, (1.2)

u(0)=0, v(0)=0, (1.3)

u(�)=?, v$(�)=0. (1.4)

Here m is a positive integer and p is a positive constant. Problem
(1.1)�(1.4) was derived in [1, 2] in the study of field equations of the
3-component U(1) gauged model (``the A3M model'') with spontaneously
broken Z(2) symmetry. Note here we use the notation (u, v) instead of
(%, :) used in [1], where u=?&% and v=:. The solutions of the above
BVP, referred to as topological solitons with the ``topological charge'' m of
the 2-dimensional A3M model, describe stable bound states of the unit
3-component ``easy-axis'' Heisenberg field and the Maxwell field. We refer
the readers to [1, 2] and the references therein for more details and the
physical background to the problem.
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Numerical investigation by Bogolubsky and Bogolubskaya [1] shows
that, for small positive p, (1.1)�(1.4) has a unique solution with the
property

u$>0, v$>0, v<1 for all r>0. (1.5)

The purpose of this paper is to give a rigorous discussion of the existence
of such solutions. In fact, we prove the following

Theorem 1.1. (1) For every m>0, if p�4m, there is no solution to
Problem (1.1)�(1.5).

(2) For every m>0, there exists p*= p*(m)>0 such that for every
p # (0, p*), there exists at least a solution to Problem (1.1)�(1.5). In addition,
when m>1,

p*(m)�4m
|

?�2

0
cos2 u

2
sin u \tan

u
2+

2�m

du

|
?

0
sin u \tan

u
2+

2�m

du
. (1.6)

Remark 1.2. 1. We believe that for every positive m, (1.1)�(1.5) has
no solution when p # ( p*(m), �).

2. We do not have uniqueness result, though numerical evidence in
[1] shows this.

The existence part of the theorem is proved by a 2-dimensional topological
shooting argument, where the shooting parameters c and d are given in the
following lemma.

Lemma 1.3. Let m>0 and p # R be given. If (u, v) is a solution of (1.1)�
(1.3) near r=0+, then there exists a pair (c, d) such that (u, v) satisfies

u(r)=crm+O(rm+2), v(r)=dr2+O(r2m+2) as rz0. (1.7)

On the other hand, for every (c, d, m, p) # R_R_(0, �)_R, Problem
(1.1)�(1.3) has a unique solution satisfying (1.7). In addition, the solution
can be extended to r # (0, �) and it depends continuously in (c, d, m, p) #
R_R_(0, �)_R.

The idea of the proof of the existence part of Theorem 1.1 is to find
appropriate values of c and d such that the corresponding solution given
in Lemma 1.3 satisfies (1.4) and (1.5).

The proof of the nonexistence part of Theorem 1.1 is based on the
following asymptotic behavior, as r � �, of the solution of (1.1)�(1.5):
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Lemma 1.4. Assume that m>0, p>0, and that (u, v) is a solution of
Problem (1.1)�(1.3) satisfying

u$>0, v$>0, u<?, v<1 for r # (0, �). (1.8)

Then for some C>0 and v� # (0, 1), (u, v) has the following expansion, as
r � �,

u(r)=?&Ce&- pr[r&1�2+O(r&3�2)], (1.9)

u$(r)=Ce&- pr[&- pr&1�2+O(r&3�2)], (1.10)

v(r)=v�&
(1&v�)C2

2p
e&2- pr[r&1+O(r&2)], (1.11)

v$(r)=
(1&v�)C2

- p
e&2- pr[r&1+O(r&2)]. (1.12)

Lemmas 1.3 and 1.4 were first derived in [1], where p in the deno-
minator on the right-hand side of (1.11) was missing. Here for complete-
ness and reader's convenience, we shall provide their proofs in Section 5.

We shall prove the nonexistence part of Theorem 1.1 in the next section
and the existence part in Sections 3 and 4. The proofs of some technical
lemmas used in the paper are left to Section 5.

Throughout the paper, we shall always assume that m>0 is fixed.

2. NONEXISTENCE OF SOLUTIONS WHEN p�4m

The numerical experiment in [1] only deals with the existence of
solutions to the BVP (1.1)�(1.5) for small p>0. Here in this section we
consider the opposite case; namely prove the nonexistence of solutions of
(1.1)�(1.5) when p�4m.

Theorem 2.1. If p�4m, then Problem (1.1)�(1.5) has no solution.

Proof. Suppose that (1.1)�(1.5) has a solution (u, v). We shall show
that p<4m.

Multiplying (1.1) by 2r2u$ and then integrating from 0 to r yields

r2 (u$)2=[ pr2+m2 (v&1)2] sin2 u+H(r), (2.1)

where

H(r)=|
r

0
2t sin2u } h(t) dt, h(r)=m2 (1&v) v$�r& p.
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Since v$>0 and (v$�r)$=&2(1&v) sin2u �r<0, it follows that h is strictly
decreasing in (0, �). Also it follows from (2.1) and the asymptotic
behavior of (u, v) in (1.9)�(1.12) that limr � �H(r)=0. Therefore h(0)>0
since otherwise h(r)<0 in (0, �), which implies that H is decreasing in
(0, �) and therefore H(r)<H(1)<0 for all r>1, which contradicts to
H(�)=0. From h(0)>0 we immediately obtain

p<m2a, where a := lim
r � 0+

v$
r

. (2.2)

Also, h decreasing and limr � � h(r)=&p implies that h has a unique zero,
say at r* # (0, �). Hence H(r) is increasing in [0, r*] and is decreasing in
[r*, �). As H(0)=H(�)=0, we conclude that H(r)>0 in (0, �). There-
fore from (2.1) we obtain

ru$�- pr2+m2 (1&v)2 sin u�m(1&v) sin u. (2.3)

Now multiplying (1.2) by 1�r and integrating over [0, �) yields

a=2 |
�

0

(1-v) sin2 u
r

dr=2 |
�

0

(1-v) sin2 u
ru$

u$ dr

<|
�

0

2(1-v) sin2 u
m(1-v) sin u

u$ dr=
2
m |

?

0
sin u du=

4
m

. (2.4)

Finally combining (2.2) with (2.4) we obtain that

p<m2a<m2 4
m

=4m.

This completes the proof. K

3. EXISTENCE OF SOLUTIONS WHEN m>0

To show the existence of a solution to our BVP, we shall use a 2-dimen-
sional topological shooting argument. Instead of using this argument
directly to the solutions of (1.1), (1.2), and (1.7), we would rather use it to
the solutions of the problem after the following scaling:

r==t, where c=m=2. (3.1)
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Then equations (1.1)�(1.5), and (1.7) become

u� +
1
t

u* &\m2 (1&v)2

t2 + p=2+ sin u cos u=0 for t>0, (3.2)

v� &
1
t

v* +2=2 (1&v) sin2u=0 for t>0, (3.3)

u(t)=2tm+o(tm) as t � 0, (3.4)

v(t)=
1
2

*t2+o(t2) as t � 0 (*=2d=2), (3.5)

u* >0, u(�)=?, v* >0, v(�)�1, (3.6)

where }=d�dt. Note that the proof of the existence of a solution to (1.1)�
(1.5) is equivalent to find (*, =) such that the unique solution of (3.2)�(3.5)
(whose existence is given by Lemma 1.3) satisfies (3.6). In what follows, we
always refer (u, v) to the solution of (3.2)�(3.5), where the dependence of
(u, v) on p, =, and * is suppressed.

Now we outline the shooting argument. First for any given p�0 and
=>0, we show in Lemma 3.2 that for sufficiently large positive *, v reaches
1 before v* reaches 0, and in Lemma 3.3 that for sufficiently small *,
v* reaches 0 before v reaches 1. As v can not reach 1 at the same time as
v* reaches 0, the sets of * with the above properties are open and disjoint.
Hence their compliment C( p, =) is a nonempty closed set of (0, �) and has
the property that for * # C( p, =) the solution to (3.2)�(3.5) satisfies v* >0
and 0<v<1 for all t�0. Then we restrict * to the set C( p, =) in Lemmas 3.5
and 3.6 and show that for any fixed p>0 when = is sufficiently large,
u* reaches 0 before u reaches ?, and when =>0 is fixed and p�0 is suffi-
ciently small, u reaches ? before u* reaches 0. Finally, by a topological argu-
ment, for any sufficiently small positive p there exists at least one (=, *) with
* # C( p, =) such that the solution to (3.2)�(3.5) satisfies u* >0 and u # (0, ?)
for all t>0, which, together with the property for v (since * # C( p, =)),
yields (3.6), thereby establishing the existence of a solution to (3.2)�(3.6).

We begin our existence proof with some properties of u and v.

Lemma 3.1. Let p�0, =>0, and *>0 be arbitrarily given, and let (u, v)
be the solution of (3.2)�(3.5).

(1) There is a t1>0 such that u* >0 in (0, t1] and u(t1)=?�2.

(2) Let [0, T]�[0, t1] be the maximal interval where v* �0 and
v # (0, 1]. Then in (0, T],
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m(1&v) sin u<tu* <(m+- p=t) sin u, (3.7)

tme&(m*�4) t2
<tan

u
2

<tme= - pt, (3.8)

*&
4=2

m
sin2 u

2
<

v*
t
<*&

4=2 (1& 1
2*t2)

m+= - pt
sin2 u

2
. (3.9)

Proof. (1) Write (3.2) as

(tu* ) }=t _m2 (v&1)2

t2 + p=2& sin u cos u . (3.10)

We see that in the interval where u # (0, ?�2), tu* is increasing and so u* >0.
Now if t1 does not exist, then u # (0, ?�2) in (0, �), and tu* >u* (1) for
all t>1, which, after integration, yields u(t)�u(1)+u* (1)ln t for all t�1,
contradicting u # (0, ?�2). Therefore t1 exists.

(2) Multiplying (3.10) by tu* and integrating over [0, t] we get

(tu* )2

2
=|

t

0
u* sin u cos u[m2 (1&v)2+ p=2s2] ds. (3.11)

Then (3.7) follows at once from the fact that �t
0 u* sin u cos u ds= 1

2 sin2 u,
and

m2 (1&v(t))2<m2 (1&v(s))2+ p=2s2<(m+= - pt)2

for all s # (0, t), t # (0, T].
To show (3.8), we need a preliminary estimate on v. Multiplying (3.3) by

1�t and then integrating on [0, t] we get

v*
t
=*&2=2 |

t

0

(1&v) sin2 u
s

ds. (3.12)

Consequently,

v* (t)<*t, v(t)< 1
2*t2 \t # (0, T]. (3.13)

Now we prove (3.8). Dividing (3.7) by t sin u, integrating the resulting
inequalities over [t0 , t], 0<t0<<1, and then using the fact that
�u

u(t0) 1�sin x dx = ln(tan(u�2)�tan(u(t0)�2)) and v < *t2�2, we get,
\t # [t0 , T],

tan
u(t0)

2 _\ t
t0+

m

e&(m*�4)(t2&t2
0)&<tan

u
2

<tan
u(t0)

2 _\ t
t0+

m

e= - p(t&t0)& .
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Sending t0z0 , we obtain (3.8) with the strict inequality replaced by ``�''.
Then substituting the obtained estimate for tan u(t0)�2 into the above strict
inequality, we get (3.8) with strict inequality.

Finally, we prove (3.9). Substituting (1&v) sin u in (3.12) by its
dominator su* �m we obtain, \t # (0, T],

v*
t
>*&2=2 |

t

0

u* sin u
m

ds=*&
4=2

m
sin2 u

2
.

Similarly, replacing (1&v) and sin u in (3.12) by 1& 1
2 *s2 and

su* (s)�(m+= - ps) respectively, we obtain, \t # (0, T],

v*
t
<*&2=2 |

t

0

(1& 1
2 *s2)u* sin u

m+= - ps
ds�*&

4=2 (1& 1
2*t2)

m+= - pt
sin2 u

2

since (1& 1
2*t2)�(m+= - pt) is decreasing. This completes the proof of the

lemma. K

We now consider the case when * is large.

Lemma 3.2. For any given p�0 and =>0, if

*�*1 ( p, =) :=max {\2p+
2
m+ =2,

2=2

m
+2e2�m= , (3.14)

then there exists T1 # (0, t1) such that v(T1)=1 and v* >0 in (0, T1].

Proof. Let (0, T1) be the maximal interval in (0, t1] such that v* >0 and
v<1. Then since u�?�2 in [0, t1], from the first inequality in (3.9), we
have, for all t # (0, T1],

v* (t)>\*&
2=2

m + t, v(t)>\*&
2=2

m + t2

2
.

Since *>2=2�m, we see that v* >0 in (0, T1]. Hence, to finish the proof, we
need only show that T1<t1 . It suffices to show that (*&2=2�m)(t2

1 �2)�1,
i.e., t1�- 2�(*&2=2�m)=: t� . In fact, if T1=t1<t� , then by the second
inequality of (3.8) we have,

1=tan
u(t1)

2
�tm

1 e= - pt1<t� me= - pt� �1 (by (3.14)),

which is impossible. This proves the lemma. K
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Next, we study the case when *>0 is small.

Lemma 3.3. For any given p�0 and =>0, if

0<*�*2 ( p, =) :=min {2
e

,
2=2

m+= - ep+e=2= , (3.15)

then there exists T2 # (0, t1) such that v* (T2)=0 and v # (0, 1) in (0, T2].

Proof. Let (0, T2) be the maximal interval in (0, t1] where v* >0 and
v<1.

Since *�2�e, the definition of T2 and the first inequality of (3.8) implies

1�tan
u(T2)

2
�tme&(m*�4) t2

>tme&(m�2e) t2
\t # (0, T2],

so that T2�- e, and from (3.13), v(T2)<*T 2
2 �2<1. Hence, to finish the

proof, it suffices to show that T2<t1 .
In fact, if T2=t1 , then, from the second inequality in (3.9),

v* (T2)
T2

<*&
1& 1

2*T 2
2

m+= - pT2

2=2

�*&
1& 1

2 *e

m+= - ep
2=2 \since

1& 1
2*t2

m+= - pt
is decreasing+

=* \1+
e=2

(m+= - pe)+&
2=2

m+= - pe
�0 (by (3.15)),

which contradicts the definition of T2 . Thus T2<t1 and the assertion of the
lemma follows. K

Now, for every =>0 and p�0, we define

41 ( p, =)=[*>0 : _T1>0 % v(T1)=1 6 v* >0 in (0, T1)],

42 ( p, =)=[*>0 : _T2>0 % v* (T2)=0 6 v<1 in (0, T2)],

C( p, =)=(0, �)"( 41 ( p, =) _ 42 ( p, =)).

Lemma 3.4. Let p�0 and =>0 be given and let 41 ( p, =), 42 ( p, =), and
C( p, =) be defined as above. Then the following holds:

(a) 41 ( p, =) # [*1 ( p, =), �), 42 ( p, =) # (0, *2 ( p, =)], and C( p, =) /
(*2 ( p, =), *1 ( p, =)).
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(b) Both the set �p�0, =>0 [( p, =)]_41 ( p, =) and the set �p�0, =>0

[( p, =)]_42 ( p, =) are open and disjoint in ( p, =, *) # [0, �)_(0, �)_
(0, �). Consequently, for every p1>0 and =1>0, the set C( p1 , =1) is non-empty
and the set �p # [0, p1] [ p]_C( p, =1) is a compact set in [0, �)_(0, �).

(c) For every p�0, =>0 and * # C( p, =), the solution (u, v) to
(3.2)�(3.5) satisfies

v* >0, 0<v<1 for all t>0.

Proof. (a) The first assertion follows immediately from Lemmas 3.2
and 3.3 and the definition of 41 , 42 ad C.

(b) Since v(t0)=1 and v* (t0)=0 for some t0>0 implies v#1, it then
follows that 41 and 42 are disjoint.

As * # 41 ( p, =) implies that v* (T1){0, the assertion that
�p�0, =>0 [( p, =)]_41 ( p, =) is open then follows from the continuous
dependence of solutions of (3.2)�(3.5) with respect to the parameter
( p, =, *).

Similarly, to show that �p�0, =>0 [( p, =)]_42 ( p, =) is open, it suffices to
show that either v� (T2){0 or v� (T2)=v...(T2)=0 and v....(T2){0 when
* # 42 ( p, =). In fact, if v� (T2)=0, then the differential equation for v implies
that u(T2)=k? for some integer k and that u* (T2){0 (else u#k?), so that
differentiating the equation for v, we obtain v...(T2)=0 and v....(T2){0. Thus,
�p�0, =>0 [( p, =)]_42 ( p, =) is open.

The assertion for the set C is a consequence of (a) and the fact that
(0, �) can not be written as the union of two non-empty disjoint open sets.

(c) Since initially v* >0 and v # (0, 1), and a violation of one of these two
properties will imply that * is in 41 ( p, =) _ 42 ( p, =), the assertion (c) thus
follows. K

Now we shall restrict our attention to the case when * # C( p, =). We shall
show that for any fixed p>0, u* reaches zero before u reaches ? for large
=, whereas for any fixed = with p sufficiently small, u reaches ? before u*
reaches zero.

Lemma 3.5. For every p>0, there exists an =� :==� ( p)>0 such that if
=�=� , then for any * # C( p, =), the solution of (3.2)�(3.5) satisfies, for some
T3>0,

u* >0 and u<? in (0, T3), and u* (T3)=0. (3.16)

Proof. Let p>0 be fixed. We first show that there exists an =� :==� ( p)>0
such that if =>=� and * # C( p, =) then

u* 2 (t1)<p=2, (3.17)

where t1>0 is as in Lemma 3.1.
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Taking t=t1 in (3.11) we have

1
2

(t1u* (t1))2=|
t1

0
u* sin u cos u [m2 (v&1)2+p=2t2] dt

�|
t1

0
u* sin u cos u [m2+p=2t2] dt

=
m2

2
+

p=2t2
1

2
&p=2 |

t1

0
t sin2 u dt. (3.18)

Therefore to show (3.17), it suffices to show that the last term is bigger
than m2�2 when =>>1. Let t2 # (0, t1) be the time such that u(t2)=?�4.
Then (3.8) implies tm

2 e= - pt2�tan ?�8, so that

t2�
1

= - p
ln |ln(= - p)| provided that =>>1.

It then follows from the second inequality of (3.7) that

p=2 |
t1

0
t sin2 u dt�p=2 |

t1

t2

t2u* sin u

m+- p=t
dt

�
p=2t2

2

m+- p=t2
|

?�2

?�4
sin u du, \since

t2

m+- p=t
is increasing+

=
p=2 t2

2

- 2(m+- p=t2)
�

1
2

} ln |ln(=- p)|,

provided that =>>1. Substituting this estimate into (3.18) we then conclude
that there exists =� :==� ( p) such that (3.17) holds for all =>=� and * # C( p, =).

To finish the proof, it suffices to show that (3.17) implies (3.16). For this
purpose, we define an ``energy'' function

V(t)=
1
2

u* 2+
1
2

cos2 u _m2 (v&1)2

t2 + p=2& .

Then

V4 (t)=&m2 cos2 u
(1&v) v* t+(1&v)2

t3 �0,

so that V is decreasing for all t>0. Hence V(t)<V(t1)=u* 2 (t1)�2<p=2�2
for all t>t1 by (3.17). It then yields that u(t)<? for all t>t1 since u(t)=?
at some t>t1 would implies that V(t)>p=2�2 by the definition of V. Now
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if T3 does not exist, then u* (t)>0 for all t>0, which implies that
u* (�)=u� (�)=0 and u(�)=?. But this would imply that V(�)= p=2�2,
contradicting the fact that V(�)�V(t1)<p=2�2. This completes the proof
of the lemma. K

In order to complete our shooting argument for the existence, we would
like to show that for any sufficiently small =>0 and * # C( p, =), the solu-
tion of (3.2)�(3.5) satisfies that u reaches ? before u* reaches 0. However,
from our nonexistence theorem this cannot be true for p�4m since
otherwise our shooting argument (to be presented at the end of this
section) would yield a solution. Hence, we have to restrict our attention to
small p>0.

Lemma 3.6. For every given =1>0, there exists a p� = p� (=1)>0 such that
for every p # [0, p� (=1)] and * # C( p, =1), the solution to (3.2)�(3.5) satisfies,
for some T4>0,

u(T4)=? and u* >0 on (0, T4). (3.19)

Proof. The idea of the proof is to show that (3.19) is true for p=0, and
then use a continuation argument for small p. For the convenience of our
presentation, we use a contradiction argument.

Suppose that the lemma is not true. Then there exists a sequence
[( pn , *n)]�

n=1 such that pn > 0 and *n # C( pn , =1) for all n, that
limn � � pn=0, and that the solution (un , vn) of (3.2)�(3.5) with ( p, =, *)=
( pn , =1 , *n) satisfies

either u* n (tn)=0 and un<? in (0, tn) for some tn>0, (3.20)

or u* n>0, un<? in (0, �). (3.21)

We now show that none of them are possible if n is large enough.
Observe that Lemma 3.4 (b) implies [( pn , *n)]�

n=1 has a subsequence
which converges to some (0, *0) with *0 # C(0, =1). Now let (u, v) be the
solution of (3.2)�(3.5) with ( p, =, *)=(0, =1 , *0). Since *0 # C(0, =1),
v # (0, 1) and v* >0 for all t>0. It then follows by integration by parts for
the right-hand side of (3.11) that

1
2

(tu* )2=
m2

2
(v&1)2 sin2 u+m2 |

t

0
(1&v)v* sin2 u ds

>m2 |
t1

0
(1&v)v* sin2 u ds=:

b2

2
for all t>t1 ,
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which implies that u* (t)>|b|�t for all t>t1 and therefore u(t)>?�2+|b| ln t
for all t>t1 . Hence

u(t1+e3� |b|)�?+1 and u* >0 in (0, t1+e3� |b|], (3.22)

which implies, by the continuity of solutions in ( p, *) again, that (3.22)
holds for un with n sufficiently large, contradicting both (3.20) and (3.21).
The assertion of the lemma thus follows. K

Now we are ready to prove the following existence theorem.

Theorem 3.7. For every given m>0, there exists p*= p*(m)�
sup=1>0 p� (=1), where p� (=1) is as in Lemma 3.6, such that for any p # (0, p*),
the solution of (3.2)�(3.5), for some =>0 and * # C( p, =), satisfies (3.6).
Consequently, Problem (1.1)�(1.5) admits at least a solution.

Proof. We shall show that for any given =1>0, Problem (3.2)�(3.6) has
a solution if p # (0, p� (=1)). Taking the best =1 then yields that there exists
p*�sup=1>0p� (=1) such that Problem (3.2)�(3.6) has a solution if
p # (0, p*).

Now let =1>0 be any fixed number and p # (0, p� (=1)). We want to show
that (3.2)�(3.6) has a solution. To do this, we set

=2 :=max[=� ( p), 2=1], *� 1 := max
= # [=1, =2]

*1 ( p, =)<�,

*� 2 := min
= # [=1, =2]

*2 ( p, =)>0,

where =� ( p) is defined in Lemma 3.5 and *1 and *2 are defined in Lemmas
3.2 and 3.3.

We define

S1=[(=,*) # [=1 ,=2]_[*� 2 ,*� 1] : * # 41 (p,=)],

S2=[(=,*) # [=1 ,=2]_[*� 2 ,*� 1] : * # 42 (p,=) ].

Then Lemma 3.4 implies that S1 #[=1 , =2]_[*� 1] and S2 #[=1 , =2]_[*� 2].
Also, both sets are disjoint and open (with respect to [=1 , =2]_[*� 2 , *� 1]).
Therefore by a topological lemma (see [3], for example) there
exists a closed and connected set C/[=1 , =2]_[*� 2 , *� 1]"(S1 _ S2)=
�= # [=1, =2][=]_C( p, =), connecting the lines ===1 and ===2 . Observe that,
for any (=, *) # C, v* >0 and v # (0, 1) in (0, �).

Next we define another two sets on C:

A=[(=, *) # C : _T4>0 % u(T4)=?, u* >0 on (0, T4)],

B=[(=,*) # C : _T3>0 % u* (T3)=0, u<? in (0,T3)].
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Then Lemma 3.5 yields B#([=2]_[*� 2 , *� 1)]) & C, and Lemma 3.6 yields
A#([=1]_[*� 2 , *� 1]) & C. As u* =0 and u=? at a same point t0>0
implies that u#? for all t�0, A and B are disjoint. Also, since u* (T4){0
if (=, *) # A and u� (T3){0 if (=, *) # B, the implicit function theorem implies
that A and B are relatively open in C. Hence, since C is closed and con-
nected, there is a (=*, **) # C"(A _ B). Now by the definition of A and B,
the solution of (3.2)�(3.5) with (=, *)=(=*, **) satisfies u* >0 and u # (0, ?)
in (0, �), which implies u(�)=? by equation (3.2). Therefore the solution
satisfies (3.6). This completes the proof of the theorem. K

Remark 3.8. Since =1 in the proof can be arbitrarily large, we can take
=* such that limpz0 =*=�.

4. A LOWER BOUND FOR p*(m) WHEN m>1

Theorem 3 did not provide any explicit estimate for the lower bound of
p*(m) though it states that p*(m) is bounded from below by sup=1>0 p� (=1).
The purpose of this section is to give an explicit lower bound for p*(m)
when m>1, by estimating lim sup=z0 p� (=). In the sequel, m>1 is fixed and
all m dependence are suppressed.

We need the following lemma.

Lemma 4.1. Let p�0 be given. Then

lim sup
=z0

sup
* # C( p, =)

*
=2 (ln =)2�1. (4.1)

Also, if 0<=<<1 and * # C( p, =), then for all t # (0, t1], where t1 is as in
Lemma 3.1,

tu* =m[1+O(=)] sin u, tan
u
2

=tm [1+O(=)], t1=1+O(=), (4.2)

v(t)=O(=),
v*
t
=*&

4=2

m
sin2 u

2
+O(=3). (4.3)

Furthermore,

lim inf
=z0

inf
* # C( p, =)

* m
4=2 �1. (4.4)

We again leave its proof to Section 5.

73SOLITONS OF GAUGED SIGMA MODEL



Now we estimate p� (=) in Lemma 3.6 for = sufficiently small. We assume
that =>0 is sufficiently small, and * # C( p, =).

As v* >0 and v # (0, 1) in (0, �), for all t>t1 , � t
t1

(1&v)2 u* sin u cos u ds
� 1

2(1&v(t1))2 [sin2 u(t)&1]. Using the identity � t1
0 (1&v)2 u* sin u cos u ds

= 1
2 (1&v(t1))2+�t1

0 (1&v) v* sin2 u ds, we then obtain

|
t

0
(1&v)2 u* sin u cos u ds� 1

2 (1&v(t1))2 sin2 u(t)+|
t1

0
(1&v) v* sin2 u ds

for all t>t1 . Consequently, from (3.11),

1
2 t2u* 2> 1

2 m2 (1&v(t1))2 sin2 u+:&;(t), (4.5)

where

:=m2 |
t1

0
(1&v) v* sin2 u ds+ p=2 |

t1

0
s2u* sin u cos u ds

;(t)=&p=2 |
t

t1

s2u* sin u cos u ds.

We define

T4=sup[t>t1 : ;<(1&=):, u* >0, u<? in (t1 , t)].

Since :>0, ;(t1)=0 and u* (t1)>0, T4 # (t1 , �] is well-defined. In [t1 , T4),
we have, from (4.5),

tu* �- m̂2 sin2 u+2=:>max[m̂ sin u, - 2=:], (4.6)

where m̂=m(1&v(t1)). This implies that T4<�. In addition, at T4 , either
;(T4)=(1&=): or u(T4)=?. Now we show that if p is suitably small, the
first alternative will not happen. To do this we estimate : and ;.

First we estimate ;(t). Integrating (4.6) over [t1 , t] with integrating
factor 1�(t sin u) we obtain, for t # [t1 , T4], tm̂�tm̂

1 tan u�2. Therefore, from
the definition of ;(t), for all t # [t1 , T4],

;(t)�p=2 |
t

t1

u* sin u |cos u| t2
1 _tan

u
2&

2�m̂

ds

�p=2[1+O(=)] |
?

?�2
sin u |cos u| _tan

u
2&

2�m

du,

since by Lemma 4.1, t1=1+O(=) and m̂=m(1&v(t1))=m[1+O(=)].
Here we need the condition m>1 to insure the convergence of the integral.
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Next we estimate :. Using Lemma 4.1 we can calculate

|
t1

0
sin2 u(1-v)v* dt

=|
t1

0

t2u* sin2 u(1-v)
tu*

v*
t

dt

=|
t1

0

(tan(u�2)[1+O(=)])2�m u* sin2 u
m sin u[1+O(=)] _*&

4=2

m
sin2 u

2
+O(=3)& dt

=
1

m2 |
?�2

0 _*m&4=2 sin2 u
2& sin u \tan

u
2+

2�m

du+O(=3)

and

|
t1

0
t2u* sin u cos u dt=|

?�2

0
sin u cos u \tan

u
2+

2�m

du+O(=).

It then follows from the definition of : that

:=|
?�2

0 _*m&4=2 sin2 u
2& sin u \tan

u
2+

2�m

du

+=2p |
?�2

0
sin u cos u \tan

u
2+

2�m

du+O(=3).

Hence, ;(t)�(1&2=): holds in [t1 , T4] provided that

p |
?

?�2
sin u |cos u| \tan

u
2+

2�m

du<|
?�2

0
sin u _*m

=2 &4 sin2 u
2&\tan

u
2+

2�m

du

+p |
?�2

0
sin u cos u \tan

u
2+

2�m

du&O(=).

Since from Lemma 4.1, *m�=2�4&o(1), where lim= � 0 o(1)=0, we see that
the last inequality is true provide that

p�
4 |

?�2

0
sin u cos2 u

2 \tan
u
2+

2�m

du

&|
?

0
sin u cos u \tan

u
2+

2�m

du
&o(1)

=4m
|

?�2

0
sin u cos2 u

2 \tan
u
2+

2�m

du

|
?

0
sin u \tan

u
2+

2�m

du
&o(1). (4.7)
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Hence, if p satisfies the above inequality, then u(T4)=? and u* >0 in
(0, T4]. We then have the following lemma:

Lemma 4.2. Let m>1 be given. Then the function p� (=1) in Lemma 3.6
can be taken as the right-hand side of (4.7), so that

lim
=1z0

p� (=1)=4m
|

?�2

0
sin u cos2 u

2 \tan
u
2+

2�m

du

|
?

0
sin u \tan

u
2+

2�m

du
.

One observes that Theorem 1.1 follows from Theorem 2.1, Theorem 3.7,
and the previous lemma.

5. APPENDIX

Finally, in this section we provide the proofs of Lemmas 1.3, 1.4, and 4.1.

Proof of Lemma 1.3. Let (u, v) be a nontrivial solution of (1.1)�(1.3) in
(0, $] for some 0<$<<1. We want to show that (u, v) satisfies (1.7) for
some constants c and d. Integrating (1.2) twice with integrating factors 1�r
and r respectively and using the fact that v(0)=0, we obtain

v=br2+
1
2

r2 |
r

$

1
\

f2 d\&
1
2 |

r

0
\f2 d\, f2# &2(1&v) sin2 u. (5.1)

Similarly, integrating (1.1) twice with the integrating factors r1&m and
r2m&1 respectively and using the fact that u(0)=0, we get

u=arm+
1

2m
rm |

r

$

f1

\m+1 d\&
1

2m
r&m |

r

0
\m&1f1 d\, (5.2)

where

f1=m2[(1&v)2 sin u cos u&u]& pr2 sin u cos u.

We observe that

f1�K( |u|+|v| ) |u| for r # [0, $], (5.3)

where K is independent of $ # (0, 1].
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We now show that u=O(rm) as rz0. Define w(r~ )=sup0�r�r~ |u(r)|.
Taking the supremum of both sides of (5.2) from 0 to r~ and using (5.3)
yields

w(r~ )�|a| r~ m+
1

2m
sup

0�r�r~ {rm \|
r~

r
+|

$

r~ +
| f1 |

\m+1 d\=+
1

2m2 sup
0�r�r~

| f1 |

�|a| r~ m+
1

2m2 sup
0�r�r~

| f1 |+
1

2m |
$

r~

| f1 |
\m+1 d\+

1
2m2 sup

0�r�r~
| f1 |

�|a| r~ m+
K
m2 [w(r~ )+ max

0�r�r~
|v(r)|] w(r~ )+

K
2m

r~ m |
$

r~

[w+|v|]w
\m+1 d\.

Since K is independent of $, w(0)=0, and v(0)=0, we can set $ small
enough such that (K�m2)[w(r~ )+max0�r�r~ |v(r)|]< 1

2 for all r~ # (0, $]. It
then follows that

w(r~ )�2 |a| r~ m+
K
m

r~ m |
$

r~

[w+|v|]w
\m+1 d\.

Dividing both sides by r~ m, then taking the supremum of both sides from r
to $ and defining W(r)=supr�r~ �$ w(r~ )�r~ m, we then obtain

W(r)�2 |a|+
K
m2 _$mW(r)+ sup

r�r~ �$
|

$

r~

|v|
\

d\& W(r) for r # (0, $].

(5.4)

Since (u(0), v(0))=(0, 0), | f2 |�1 for small $, so that, from (5.1),
|v&br2|�r2 ln 1�r for r # [0, $] if $<<1. Therefore

|
$

r~

|v|
\

d\�|
$

r~ _ |b| \+\ ln
1
\& d\

�
1
2

|b| $2+$2 ln
1
$

�
1
2

|v($)|+
3
2

$2 ln
1
$

<
m2

2K
if $<<1.

Hence from (5.4), we obtain

W(r)�4 |a|+
2K
m2 $mW 2 (r) for r # (0, $]. (5.5)

Note that W($)=w($)�$m=o(1)�$m<1�$m if $<<1. Therefore, we can
define r� =inf[r̂ # (0, $] : W(r)<1�$m in (r̂, $]]. We show that r� =0.
Suppose r� >0. Then W(r� )=1�$m. Evaluating (5.5) at r� and then multiplying
both sides by $m yields 1�2 |a| $m+(2K�m2)$m, which is impossible
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if $ is sufficiently small since from (5.2), a$m=u($)+(1�2m) r&m

�$
0 \m&1 f1 d\=o(1) as $ � 0. Therefore W(r)<1�$m in (0, $] and hence

u(r)=O(rm) as rz0.
Now substituting u=O(rm) and v=O(r2 |ln r| ) into (5.1) yields

v=O(r2) as r � 0. Therefore rm&1f1 and rf2 are integrable in (0, $), so that
(5.1) and (5.2) can be written as

u=crm+
1

2m
rm |

r

0

f1

\m+1 d\&
1

2m
r&m |

r

0
\m&1f1 d\, (5.6)

v=dr2+
1
2

r2 |
r

0

1
\

f2 d\&
1
2 |

r

0
\f2 d\, (5.7)

where c=b+ 1
2 �$

0 f2 �\ and d=a+ 1
2m �$

0 f1 �\m+1. It is also easy to show
from u=O(rm) and v=O(r2) that the terms involving integral in (5.6) and
(5.7) are O(rm+2) and O(r2m+2) respectively and hence (1.7) follows.

To show the existence part of Lemma 1.3, it suffices to show that for any
given c and d, (5.6)�(5.7) has a unique solution in (0, $] for some $>0.
Let X be the set of the continuous functions (u, v) : [0, $] � R2 equipped
with the norm &(u, v)&=sup0<r�$ |u(r)|�rm+sup0<r�$ |v(r)|�r2. Then X is
a Banach space. For any (u, v) in X, define (u~ , v~ )=T(u, v) by the right-
hand side of (5.6) and (5.7) respectively. Then it is an easy exercise to
check that if $ is sufficiently positive small, then T maps the ball
B($) :=[(u, v) # X : &(u, v)&�|c|+|d |+1] into itself and is a contraction.
Therefore T has a unique fixed point in B($), which is a solution to (5.6)�
(5.7). In addition, since the non-linear term in the v equation grows linearly
in v, v will not blow-up in finite r. Also, the nonlinear term in the u equa-
tion implies that u will not below-up if v does not blow up. Hence, the solu-
tion will not below-up in finite r and can be extended to the interval
(0, �). The continuous dependence of (u, v) in (c, d, m, p) follows easily
from (5.6), (5.7), and the smoothness of f1 and f2 in (u, v, m, p). This com-
pletes the proof of the lemma. K

Remark 5.1. Replacing f1 and f2 in (5.6) and (5.7) by their Taylor
series about (u, v)=(0, 0) and substituting u=crm+O(rm+2) and
v=dr2+O(r2m+2), we get the next higher order expansion of (u, v) near
(0, 0). Substituting this expansion into (5.6) and (5.7) again, we can get
next higher order expansion of u and v. Continuing this process we can get
arbitrarily higher order expansions of (u, v) near (0, 0).

Proof of Lemma 1.4. Since u$>0 and u<?, u(�) exists and either
u(�)=?, or u(�)=?�2. The latter is impossible since otherwise, the
equation for u implies (ru$)$>0 in (0, �), which further implies that
u>u(1)+u$(1) ln r � � as r � �. Therefore u(�)=?.
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Now we prove (1.9) and (1.10). Defining z=- r(?&u) and using
sin u cos u=&(1�- r) z[1+O(z2�r)], we can write (1.1) as

z"&{p+O(
z2

r
)+O \ 1

r2+=z=0 for r>>1. (5.8)

Since z(r)=o(- r) and z>0, a standard Liouville-Green approximation
(cf. Chapter 6 of [4]) then gives that, as r � �, z(r)=Ce&- pr[1+O(1�r)]
and z$(r)=&C - pe&- pr[1+O(1�r)] for some positive constant C>0.
The asymptotics (1.9) and (1.10) then follow by the relation between u and z.

Next we show (1.11) and (1.12). Since v$>0 and v<1 in (0, �),
integrating the equation (v$�r)$=(&2(1&v) sin2 u)�r from r to � twice
yields

v$(r)
r

=2 |
�

r

(1&v(s)) sin2 u(s)
s

ds, (5.9)

v(r)=v� &|
�

r
(s2&r2)

(1&v(s)) sin2 u(s)
s

ds. (5.10)

Since v # (0, 1) and sin u(s)=Ce&- ps[1�- s+O(1�s3�2)], we see from (5.10)
that v=v�&O(e&2 - pr). Replacing v in the integrals in (5.9) and (5.10) by
this approximation we then obtain (1.11) and (1.12).

Finally we show v�<1. In fact, if v�=1, then (5.10) and the mono-
tonicity of v implies that

1&v(r)=|
�

r
(s2&r2)

(1&v(s)) sin2 u(s)
s

ds

�(1&v(r)) |
�

r
(s2&r2)

sin2 u(s)
s

ds

�
1
2

(1&v(r)) if r is large enough.

However, this would imply v#1 for all r large enough, which is impossible.
Thus v�<1, thereby completing the proof of Lemma 1.4. K

Proof of Lemma 4.1. We first prove that if * # C( p, =), then *�=2 (ln =)2

for =<<1. We claim that

v(t)�{\*&
2=2

m + t2

2

\*&
2=2

m + t2

2
&=2t2 ln

t
t1

for t # [0, t1]

for t>t1 .
(5.11)
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In fact, from (3.9) of Lemma 3.1 we have v* (t)�t�*&(4=2�m) sin2 u�2�
*&2=2�m for t # [0, t1]. On the other hand when t>t1 ,

v*
t
=

v* (t1)
t1

&2=2 |
t

t1

(1&v) sin2 u
s

ds

�*&
2=2

m
&2=2 |

t

t1

1
s

ds=*&
2=2

m
&2=2 ln

t
t1

.

The estimate (5.11) then follows by integration.
Now evaluating (5.11) at t=2�- * yields

v(2�- *)�{2 _1&
2=2

m*&
2 _1&

2=2

m*
+

=2

*
ln

*t2
1

4 &

if
2

- *
�t1 ,

if
2

- *
>t1 .

(5.12)

Since tm
1 e=- pt1�1, we have t1�1�(1+= - p�m). Thus when =<<1 we must

have *<=2 (ln =)2 since otherwise v(2�- *)>1 by (5.12), which contradicts
the definition of C( p, =). This proves the first inequality of (4.1).

Once we know *�=2ln2=, the estimates (4.2) and (4.3) then follows
directly from (3.7)�(3.9).

Finally, we prove (4.4). Since (d�dt)(v* �t)=&2=2 (1&v) sin2 u<0, we
know that v* �*t and v�*t2�2 for all t>0. As *�=2 ln2 =, we then know
that, as = � 0, v � 0 uniformly in any compact set of [0, �). Consequently,
u � 2 arctan tm uniformly in any compact set of [0, �). It then follows that
for any finite t>0,

lim
=z0 {

v*
=2t

&
*
=2==&lim

=z0 |
t

0
2(1&v) sin2 u

ds
s

=&|
t

0
2 sin2 (arctan sm)

ds
s

=&
4t2m

m(1+t2m)
.

Since v* >0 for all t>0, we then obtain

lim inf
=z0

inf
* # C( p, =)

*m
4=2�

t2m

1+t2m

for any t>0. Sending t � � then yields (4.4). This completes the proof of
Lemma 4.1. K
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