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Abstract. We obtain necessary and sufficient conditions on the existence of a unique posi-
tive equilibrium point and a set of sufficient conditions on the existence of periodic solutions
for a 3-dimensional system which arises from a model of competition between plasmid-
bearing and plasmid-free organisms in a chemostat with an inhibitor. Our results improve
the corresponding results obtained by Hsu, Luo, and Waltman [1].

1. Introduction

In this paper, we consider the existence of positive equilibriums and positive pe-
riodic solutions for a 3-dimensional dynamical system established by Hsu, Luo
and Waltman [1] in studying amodel of competition between plasmid-bearing and
plasmid-free organisms in a chemostat with an inhibitor. The physical setting is
well described in that paper, where the chemostat is studied

“as amodel for the manufacture of products by genetically altered organ-
isms. The new product is coded by the insertion of a plasmid, a piece of
genetic material, into the cell. This genetic materia is reproduced when
the cell divides. The organism carrying the plasmid, the plasmid-bearing
organism, islikely to be alesser competitor than one without, the plasmid-
free organism, because of the added load on its metabolic machinery. The
survival of the organism without the plasmid, reduces the efficiency of the
production process, and, if it is a sufficiently better competitor, eliminates
the altered organisms from the chemostat, halting the production. Unfortu-
nately, asmall fraction of the plasmids are lost during reproduction, intro-
ducing the plasmid-free organisms into the chemostat. To compensate for
this, an additional piece of genetic material isadded to the plasmid, onethat
codesfor resistance to an inhibitor (an antibiotic) and the inhibitor is added
to the feed bottle of the chemostat”.
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Based on the above principle and the earlier work of Stephanopoulis and Lap-
idus [7] and Lenski and Hattingh [8], Hsu, Luo, and Waltman constructed the
following mathematical model:

S =9 -sD- fl(S)% — f(p) fz<S>§

xp = x1[(1 = ¢) f1(S) — D] (1.1
xp = x2[ f(p) f2(S) — D] + qf1(S)x1

p'=® —p)D - fa(p)x1
SO0)>0,p0 >0,x0) >0, i=12,

with £;(S) = 25,1 = 1,2, fa(p) = ,f—fp,andf(p) = ¢~ HereSisthelimiting
nutrient concentration, x; is the plasmid-bearing organism, x» is the plasmid-free
organism, p istheinhibitor. y iscalled ayield constant and ¢ isaparameter which
reflectsthelossof theplasmid, S istheinput concentration of thenutrient, D isthe
washout rate of the chemostat, and p(© istheinput concentration of theinhibitor, all
of which are assumed to be constant and are under the control of the experimenter.
m;, a;, i =1, 2, are the maximal growth rates of the competitors (without an
inhibitor) and are Michaels-Menten constants, respectively; § and K play similar
roles for the inhibitor, § being uptaken by x1, and K being a Michaels-Menten
parameter; all those parameters are measurable in the laboratory. The formulations
of f;,i =1, 2, 3, based on experimental evidences, going back to Monod [14], are
most often used asthe uptake functions. Thefunction f (p) representsthe degree of
inhibition of p on the growth rate (or uptake rate) of x2. However, in this paper, we
do not restrict f, and f;, i = 1, 2, 3, to those special forms.

When p = 0in (1.1), the above model reduces to the one studied by Steph-
anopoulis and Lapidus [7], which concerns the competition of plasmid-bearing
and plasmid-free organisms; while when ¢ = 0in (1.1), the model reduces to the
one proposed by Lenski and Hattingh [8], which concerns the competition of two
organisms in the presence of an inhibitor affecting one of the organisms. If both
sets of conditions hold, then (1.1) was studied by Smith and Waltman [6]. Plasmid
models are also discussed in [7], [8], [10], [11] and [12].

To reduce the number of parameters in System (1.1), the following scales are
usedin[1]:

5= p=—b . = =D
=500 P=o00 YT g0 TP

. . _ 55O _ K
mz—ﬁs i:i» 527/ , K=—.
D SO D p©

Then (1.1) becomes, after dropping the bars, the following non-dimensional differ-
ential equations:

S =1-5— fi(S)x1 — f(p) f2(S)xa.

xp = xa[(1— ) fa(8) — 1],

xp = x2(f (P) f2(8) — 1) + g fa(S)x1, (12)
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p =1-p— fas(p)x1,
SO >0, x;(00>0, pO>0, i=12

Let X(r) = 1 — x1(t) — x2(¢) — S(¢). From (1.2) it follows that ¥’ = —% and
hence £ (1) = X (0)e! goesto zero exponentially ast — oo. Notice also that the
equation for p impliesthat p eventualy satisfy 0 < p < 1. Therefore, the omega
limit set of (1.2) must liein the set

A={(S,x1,x2,p): S+x1+x=15>0,x1>0,x2>00< p <1},

and tragjectories (x1, x2, p) on the omega limit set must satisfy

xp=x[(1—q) fill—x1—x2) — 1]
xy = x2[f(p) ol — x1 — x2) — 1] + g x1 f1(1 — x1 — x2) (1.3)
p=1-p-fap)x
with (x1(2), x2(¢), p(t)) € B foral t € [0, c0), wherethe set B is defined by
B :={(x1,x2,p):0<x1+x2<1x1>0,x>00<p<1)

which is positively invariant set of (1.3) (see Proposition 2.1 in Section 2). There-
fore, asin [1], werestrict ourself to study (1.3) in B in the rest of the paper.

Wheng = 0, (1.3) isacompetitive system, and so by applying a Poincare-Ben-
dixson-like Theorem [4] for 3-dimensional competitive systems, Hsu and Waltman
[3] proved the existence of periodic solutions for (1.3). But when g # 0, (1.3) is
no longer competitive, and so no such ageneral theorem can be applied. However,
by using a perturbation result of Smith [5], Hsu, Luo and Waltman also obtained
the existence of periodic solutions of (1.3) for sufficiently small ¢. Unfortunately
the perturbation theorem [5] could not tell that how small g hasto be to ensure the
existence of such periodic solutions.

In this paper, we will present a set of verifiable conditions on ¢ to ensure the
existence of periodic solutionsin B for (1.3) with f and f;,i = 1, 2, 3 satisfying
certain conditions (see below) which are satisfied by the above specific forms of
them. If (1.3) has periodic solutions when ¢ = O, then our conditions on ¢ are
automatically satisfied for sufficiently small ¢ > 0, which implies by our main
result that (1.3) has periodic solutions for sufficiently small ¢ > 0. Those periodic
solutions can be regarded as bifurcating from the periodic solutions of (1.3) with
g = 0. Thisis exactly the existence result of [1]. However, if (1.3) has no periodic
solution when ¢ = 0, our conditions on g can be still satisfied for some¢ > 0 and
the resulting periodic solutions from our result are not found in [1].

We will also give necessary and sufficient conditions on the existence of a
unigue positive equilibrium point in B for (1.3), which hasto be in the interior set

E of B. Such equilibrium points of (1.3) with ¢ > 0 sufficiently small bifurcate
from the positive equilibrium point of (1.3) with ¢ = 0 if it has, or else they bi-
furcate from the one of equilibrium points of (1.3) with g = 0 on the boundary of
B. Thelatter case is not found in [1] either. The existence of positive equilibrium
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points is necessary to our proof of the existence result on periodic solutions for
1.3).

The plan of this paper is as follows. In Section 2 we will state and prove the
results on the existence of a unique positive equilibrium point in B for (1.3). We
will present them for ¢ = 0 and g # 0 separately, sincethelimit, asg — 0, of the
necessary and sufficient conditions for the existence of positive equilibrium points
of (1.3) with ¢ > 0 yields only sufficient conditions for that of (1.3) withg = 0.
Wewill also state such existence results obtained in [1] as corollaries of our results.
The main result on the existence of periodic solutions of (1.3) is stated and proved
in Section 3. Since we do not restrict f and f;, i = 1, 2, 3, to the specific forms
as stated above, we will also apply in this section, as an example, our main result
tothecaseof f and f;,i = 1, 2, 3, with those special forms. A brief discussion of
our resultsis given in the last section.

Throughout the paper, we assume that f, f;, i = 1,2, 3, and g satisfy the
following assumptions:

(A) f ispositiveand f’ isnegativein [0, 1];

(B) fi and f/,i = 1,2, 3, arepositive, f; isnegativein [0, 1], and f;(0) = 0
fori =1,2,3;

(C)g=0.

We will also use the following definition:

Definition. (i) A7(¢) forg € [0, 1 — ) isdefined by

1

f1@)
(@) = —— (L4)

11 (@) = 14 .

whenever f1(1) > 1,

(ii) g(x1) istheinversefunction of 4(p) := (1 — p)/f3(p) for p € (O, 1].

(iii) A positive equilibrium point of (1.3) means that al its components are
positiveandit liesin B.

Remark 1.1. (i) Since f1(x) isdtrictly increasing in [0, oo), it follows that A7 ()
is well-defined and increasing for ¢ € [0,1 — 1/f1(1)), 25(0) = f; (1), and
limy—1-1/71) M5 (q) = 1. Hence £ (1) < A5(g) < 1for g € [0,1— 1/f1(D)).

(if) Since h(p) is positive and decreasing in (0, 1], lim,,_,o- h(p) = oo and
h(1) = 0, it follows that g(x1) is positive and decreasing for all x; € [0, c0),
g(0)=1,and g(co0) = 0.

(iif) Snce we are only interested in (1.3) in B, it is natural to consider its
equilibrium pointsonly in B.

2. Existence of positive equilibrium

In this section, we give necessary and sufficient conditions on the existence of a
unique positive equilibrium of (1.3). Those conditions will be assumed in our the-
orem on the existence of periodic solutions of (1.3) in the next section. The main



Periodic solutions 75

result of this section also improves Theorems 4.2 and 4.3 of [1], where two sets of
sufficient conditions were given on the existence of positive equilibrium of (1.3).

Proposition 2.1. (i) Every positive equilibrium of (1.3) liesin § theinterior set of
B,i.e

g:{(xl,xg,p):x1>0,x2>0,0<x1+xz<1, O<p<l1}.

(if) The plane x1 = 0 and p-axis are both positively invariant for (1.3).
(iii) B and B are both positively invariant for (1.3).

Proof. (i) Assume that (x1.(q), x2.(q), pc(q)) is positive equilibrium of (1.3). It
sufficesto show that p.(¢) < 1and x1.(¢) + x2.(q) < 1. Theformer inequality is
derived at once from the third equation of (1.3). Assumethat x1.(q) + x2.(¢) = 1.
Then it follows that f1(1 — x1.(q) — x2:(¢)) = 0 and then the first equation of
(1.3) yidds x3. = 0, contradicting x1.(g) > 0. Therefore x1.(g) + x2.(q) < 1.

(i) Suppose that x1(0) = 0. Then from the first equation of (1.3), it follows
that

t
x(t) = x(O)exp(/o [(1—q) fi(l—x1 — x2) — 1] dt) —Oforals >0,

and so the plane x1 = 0 is positively invariant.

Suppose that x1(0) = x2(0) = 0. Then from above x1(¢) = 0, and then substi-
tuting it into the second equation of (1.3) yields x2(z) = 0 in the same way as that
of showing x1 = 0. Therefore, p-axisis also positively invariant.

(iii) Suppose that (x1(0), x2(0), p(0)) € B. Then x1(0) + x2(0) < 1 yields
x1(t) + x2(t) < 1forall r > O, for elselet 1o be the first time such that x1(fg) +
x2(tp) = 1. Then adding the first two equations of (1.3) together yields

(x1(t0) + x2(10)) = —(x1(t0) + x2(10)) = =1 < 0

which contradicts (x1(fg) + xz(to))/ > 0. The positive invariance of the plane
x1 = O from (ii) impliesthat if x1(0) > 0O, then x1(z) > Oforal r > 0.

Assume that thereisat; > 0 such that xp(11) = 0 and x2(¢) > 0in [0, t1).
Then from the second equation of (1.3) we get x’z(tl) =gx1(t1) f1(l—x(t1)) >0
which contradicts x5(#1) < 0. Hence x2(¢) > Ofor al r > 0.

Assume that thereisar, > 0 such that p(r2) = 0and p(¢) > Ofort € [0, 12).
Then the third equation of (1.3) yields p’(z;) = 1 > 0, which contradicts the
definition of 7. Hence p(¢) > Oforal ¢ > 0.

Finally, assume that thereisar3 > 0 such that p(r3) = 1 and p(¢r) < 1 for
t € [0, t3). Then the third equation of (1.3) yields p'(r2) = —x1(r3) f3(1) < 0,
which contradicts the definition of 3. Hence p(t) < 1foral ¢ > 0.

Therefore, Bis positively invariant.
By the continuity of solutions with respect to initial data and the invariance of

;}, it followsthat B is positively invariant for (1.3). O
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Theorem 2.1. (1.3) with ¢ = 0 has a positive equilibrium point (x1.(0), x2.(0),
pc(0)) if and only if

0<1 (e fi(1) > 1), (2.2)

B 1
£’
and
1/f(g(1—21(0) < f2(21(0)) < 1/£(1) (2.2

hold. Moreover, this equilibrium point is unique and given by

x10(0) = g71(pe(0), x20(0) = 1—25(0) — x1.(0), pc(0) = £~ 1/ f2(15(0))).
(2.3)

Proof. Suppose that (1.3) with ¢ = 0 has a positive equilibrium point (x1.(0),
x2¢(0), pc(0)). Then from thefirst equation of (1.3) and the definition of A7 (0), we
get 1—x1.(0) — x2.(0) = f{ 2(1) = 25(0), whichyields0 < A3(0) < 1and hence
(2.1) holds. From the third equation of (1.3), we get p.(0) = g(x1.(0)). Notice
that 1 —A3(0) > x1.(0) > 0, and g isdecreasing and positivein (0, oo). It follows
that p.(0) = g(x1.(0)) > g(1 - A37(0)) > 0. Also note that the third and second
equations of (1.3) with g = 0yield p.(0) < Land 1/f(p.) = f2(27(0)) . Then
(2.2) follows.

Conversdly, suppose that (2.1) and (2.2) hold. Then (2.1) and (2.2) yield 0 <
21(0) < land f(1) < 1/f2(A1(0)) < f(g(1— A7(0))). We therefore can solve
pc(0) uniquely from the second equation of (1.3) and the decrease of f and get
pc(0) = f‘l(l/fz()ﬁ{(O))) € (g(1 - A3(0)), 1). Thus from the third equation of
(1.3) and the fact that g~ is decreasing

0 < x1c(0) := g 1(pc(0) < g (g1 = 25(0))) = 1 — 23(0).

Finally, from the first equation of (1.3) we get x2.(0) = 1 —17(0) — x1.(0). There-
fore, (1.3) hasaunique positive equilibrium point (x1.(0), x2.(0), p.(0)) satisfying
(2.3).

If (1.3) has a positive equilibrium, then the first part of the proof yields (2.1)
and (2.2), and the second part of the proof impliesthat this equilibrium must satisfy
(2.3). Therefore, (1.3) has a unique positive equilibrium provided that (2.1) and
(2.2) hold. |

Theorem 2.2. (i) (1.3) with ¢ > 0 has a positive equilibrium point if and only if

1 H *
and
f2001(q) < 1/f (D) (25

hold. This equilibrium point is the unique positive equilibrium of (1.3), is denoted
by (x1c(¢), x2c(¢), pc(q)), and satisfies

x2:(q) =1 —21(q) — x1c(q),  pe(q) = g(x1:(g)), (2:6)



Periodic solutions 77

where x1. isthe unique root of the equation

Fr) 2= [£(80) £205(@) = 1 [1=21(@) =] + = =0 (7
in (0, 1—23(q)).
Furthermore, if

1/f(g(1—21(9)) < f201(q)), (2.8)

then,

x1:(q) < ¥1(g) < 1-23(9), 0<v(g) <x2(q9) <1-27(q) (29

where

v(g) =1—2xj(q) — %1(q), F1(9) = g 1 (p(@), plq) = f 1/ f20:5(@))).
(2.10)
(i) The following holds:

lim (x1c(q), x2:(q), pc(q))
q—0

_ {(xk(oxxzc(ox pe(0) 11// (81 = 21O0)) < LOFO). 5 19y
A-210.0.¢A- 10 if1/f(z1- 0N = Hojo). @

Proof. (i) Suppose that (x1.(¢), x2:(q), pc(g)) is a positive equilibrium point of
(1.3) for given ¢ € (0, 1). Then the definition of A7(¢) and the first equation
of (1 3) implies that the first equality in (2.6) holds, and hence 0 < Aj(g) =
f1 (1/(1 q)) < 1,i.e, (2.4) holds. From the third equations of (1.3), we get the
second equality in (2.6). Then substituting the equalities in (2.6) into the second
equation of (1.3) it followsthat x1.(g) isapositive root of (2.7) in (0, 1 — 1] (g)).
It is easy to see that the equation (2.7) is equivalent to the equation

Fi(x1) = F2(x1) (2.12)
in (0,1 —A3(q)), where

qx1
S (A-A-2(g) —x1)’

and hence x1.(¢) istheroot of (2.12) in (0, 1— A3 (¢)). Noticethat F1(x1) iscontin-
uous and is strictly increasing on [0, co) (Since g(xl) is decreasing and positive in
[0, 00)), F1(0) = f (D) f2(A1(g)) — Landlimy, . F1(x1) = f(0) f2(A7(q)) — 1,
Clearly, F>(x1) is continuous and is strictly decreasing on [0, 1 — A7(g)) for x €
[0,1—13(¢)), F2(0) =0andlim, _,q_ Ai(q) Fz(x1) = —00. See Figure 1. There-
forexlc(q) isthe unique root of (2.12) in (0 1-13(g)), and F1(0) < F1(x1.) =
F>(x2:) < 0, which yields (2.5).

Assume that (2.4) and (2.5) hold. Then 0 < A%(¢) < 1and F1(0) = f(1)
fz()» (9)) — 1 < O. Therefore, F1(0) — F2(0) < 0 and Fi(x1) — Fa(x1) —

Fi(x1) = f(g(x1) 2(1(g)—1, and Fa(x1) =



78 S. Ai

P .
i L 3 X4 X1e X1
<N 4
1 1 Fq
F
Fy
(A) (B)

Fig. 1. In (A), 1/f(g(1 — A1(9)) < f(A1(g)) < 1/f(1), whilein (B), f2(A1(q)) <
1/ (g1 = A1())).

oo asx1 — 1— Aj(g). Hence by mean value theorem and the monotonicity of
F1(x1)— Fo(x1)on [0 1-17(q)), thereexistsauniquexi.(g) € (0, 1-17(g)) such
that F1(x1.(q)) — F2(x1.(¢)) = 0, and hence F (x1.(q)) = 0. DeflnexZC(q) and
pe(q) by (2.6). Thenitfollowsthat (x1.(q), x2:(q), pc(q)) isapositiveequilibrium
of (1.3).

If (2.8) also holds, then F1(1 — A](¢)) > 0 and then F1(x1) = 0 hasaunique
rootx1(q) € (0, 1—17(q)) satisfying (2.10). Noticethat F1(x1.(¢)) < O.Itfollows
that x10(q) < X1(q) < 1 — A3(g), and hence from (2.6) the second inequality in
(2.9) adso follows.

(ii) Since A1 () iscontinuousfor g € [0, 1 —1/f1(1)), it follows that the func-
tions F1 and F> are continuous with respect to ¢. Hence, if 1/f(g(1 — A7(0))) <
f2(A1(0)) holds, then (2.4), (2.5) and (2.8) hold for ¢ > 0 sufficiently small and
hence (x1.(q), x2:(q), pc(q)) existsfor g >0 sufficiently small andlim,_.o(x1.(q),
x2¢(q), pe(q)) = (x1:(0), x2:(0), pc(0)). However, if 1/f(g(1 — A1(0))) >
f2(A1(0)), then f2(27(0)) < 1/f(1) holds and hence (2.4), (2.5) holdforq >0
suff|C|entIy small. Therefore (x1c(q), x20(q), pc(q)) exists for ¢ > 0 sufficient-
ly small. Notice that F1(1 — Aj(¢)) — F1(1—2j(0) < Oasg — Oand
limy_o F2(x1) = Oforany x1 € [0 1-13(9) andllmq_>0k (q9) = 27(0). Itfol-
lowsthat lim, .0 x1.(q) = 1—27(0), andthen (2.6) yieldslim, g x2.(¢) = Oand
limg—.0 pc(g) = pe(0). IF1/F (g1 2 5(0)) = f2(25(0)), then either 1/f (g(1—
25@) < f205(@) or 1/f(g(1— A3 <q))> > fo(A (g)) for sufficiently small ¢ >
0. Either casey|eldstheeX|stence of (xlc(q) x2:(q), pc(q)) for g > O small. The
combination of the above arguments aso yields lim,_, o(x1.(¢), x2:(¢), pc(q)) =
(1 - 23(¢9), 0, g(1 — 15(g))). This completes the proof of (ii) and therefore the
proof of Theorem 2.2, |

Remark 2.1. 1. If ¢ = 0,then F», = Oand F(x1) = Fi(x1)(1 — )\’{(0) — X1).
Hencethat F1(x1) = Ohasarootin (0, 1 —17(0)) ifand only if F1(x1) = Ohasa
rootin (0, 1—3(0)), whichisequivalent to F1(0) < O0and F1(1-27(0)) > O,i.e
(2.2). This gives an alternative way to see why (2.2) is necessary for the existence
of (x10(0), x2¢(0), pc(0)).
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2. From (2.11) it followsthat if f2(17(0)) > 1/f(g(1— 27(0))), then (x1c(q),

x2:(q), pc(q)) bifurcates from (x1.(0), x2:(0), pc(0)), and else (x1.(q), x2:(¢),
pc(q)) bifurcates from (1 — 27(0), 0, g(1 — 27(0))) whichis also an equilibrium
of (1.3) with g = 0. Thisis exactly implied in the following two corollaries.

Corollary 2.1. (1.3) has a unique positive equilibrium point for sufficiently small
g > Oifand only if (2.1) and (2.2) hold. Moreover, lim,_.o(x1.(¢), x2:(q), pc(q))
= (x1£(0), x2(0), pc(o))

Coroallary 2.2. Assumethat (2.1) and f2(27(0)) < 1/f(g(1— 27(0))). Then (1.3)
has a unique positive equilibrium for sufficiently small ¢ > 0, but has no pos-
itive equilibrium for ¢ = 0. Moreover, lim,_o(x1c(¢), x2c(q), pc(¢)) = (1 —

The following two corollaries are generalizations of Theorems 4.2 and 4.3 of
[1] respectively.

Corollary 2.3. Assumethat ¢ > 0 and that (2.4) holds. Also assume that f>(1) <
1/f(1). Then (1.3) has a unique positive equilibrium.

Coroallary 2.4. Assume that ¢ € (0, 1) and (2.4) hold. Also assume that A1 (q) <
A5 < 1, where f2(A3) = 1/f(1). Then (1.3) has a unique positive equilibrium.

In the rest of paper, we will drop g in x1.(¢), x2:(q), pc(q) and A7 (¢g) when-
ever no confusion can be made. Also, we use I' (7) = (x1(2), x2(¢), p(t)) and
E. = (x1¢, x2¢, pc) to denote the solutions and the positive equilibrium of (1.3)
respectively for any given ¢ aslong as they exist. Asin [1], the Jacobian of (1.3)

a E. isgiven by
mi1 myp O
J=|ma1 myp max|,
m31 0  ma3
where

mi1 = mi2 = —(1 — g)x1c f1(A),

m21 = —x2c f (pe) fo(A1) + g f1(A]) — gx1c f1(AY),
map = —;C—;“ Af105) = x2c f(pe) f3(5) — gxie fL(),
ma3 = x2¢ f'(pe) f2(A}),

m31 = = — f3(pc),
m33 = —1— f?/,(pc)xlc~

We note that xo. in the denominator of the first term of m was missing in [1].
By the properties of f1 and f2, it followsthat m11 = m12 < 0, moo < 0, mo3 <
0, m31 < 0, and mz3 < 0. The characteristic equation of J is given

)\3+31A2+Bz)»+ B3 =0,
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where
B1 = —m11 — ma2 — mas,
By = m11(m22 — m21) + m3a(ma1 + m22), (213)
B3 = —m11m33(mo2 — m21) — mipmo3ms3y.

Clearly, By > 0.Sincemz, —mz1 = —q(1+ 1) f1(2}) < Oandm1 = m1a, we
can easily derive B, > 0 and B3 > 0. Then by a simple argument or by directly
applying Routh Hurwitz criterion we obtain

Proposition 2.2. If B1B> > B3, then E, is asymptotically stable. If BiB» < B3,
E_ isunstablewith a one dimensional stable manifold, and J has a negative eigen-
value p.

3. Existence of periodic solutions
Wefirst state our main result:
Theorem 3.1. Assume that ¢ > 0 and that (2.4), (2.5), and
B1B> < Ba, (3.1)
hold. Assume also that

f(pe(@)) f5(L — x20(q))
11— x2:(q))

holds, where B;,i = 1, 2, 3aregivenin (2.13). Then there exists a nontrivial peri-
odic solution of (1.3) lying in the interior of the box B. Moreover, all solutions of

(1.3) starting in 103, except those in the stable manifold of E .., oscillates eventually
in § with non-decaying amplitudes.

x2:(q) =: v1(q) (3.2

Remark 3.1. Assumptions(2.4), (2.5) and (3.1) are just used to guarantee the ex-
istence and instability of positive equilibrium. Since system (1.3) with g > Oisnot
competitive, the existence and instability of positive equilibrium is not, generally
speaking, sufficient to ensure the existence of periodic solutionsfor (1.3) and some
extra conditions are needed. Assumption (3.2) isjust such a condition. Numerical
results shows that it is not the best possible conditions.

Corallary 3.1. Assumethatg > Oandthat (2.4), (2.5), (2.8) and (3.1) hold. Assume

also that
f@f3(1—v(g))
q =< v
fld—-v(g)

where v(q) is defined in Theorem 2.2. Then the conclusions of the Theorem 3.1
hold.

(q) = v2(q), (3.3)

Proof. By Theorem 3.1 it suffices to show that v2(g) < v1(g). Thisfollows from
thefactsthat f1 isincreasing and positive on (0, 00), f; isdecreasing and positive
on (0, 00), 0 < v(g) < x2.(g) from Theorem 2.2, and 0 < p.(q) < 1. O
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Corollary 3.2. Assume that ¢ > 0 and (2.1), (2.2) and (3.1) hold. Then for suffi-
ciently small ¢ > 0, the conclusions of Theorem 3.1 hold.

Proof. Sincev(0) = x2.(0) from Theorems2.1and 2.2, it followsthat 0 < v(0) <
1. Hence from the definition of v2(0) in (3.3) we have v2(0) > 0, and hence from
the continuity of va(g) with respect to ¢, (3.3) holds for sufficiently small ¢ > 0.
Since (2.1), (2.2) and (3.1) implies that (2.4), (2.5), (2.8) and (3.1) aso hold for
sufficiently small ¢ > 0, Corollary 3.2 follows immediately from Corollary 3.1. O

Corallary 3.3. In addition to the assumptions of Theorem 3.1, we assume that
f2(A1(0)) < 1/f(g(1— 27(0))). Then the distance between any periodic solution
obtained in Theorem 3.1 and the point (1 — 17(0), 0, g(1 — 17(0))) goesto 0 as
q — 0.

Remark 3.2. Corollary 3.2 implies the existence part of Theorem 5.1 [1]. In this
case, theperiodic solutionsof (1.3) withg > 0 sufficiently small arebifurcated from
the periodic solutionsof (1.3) withg = 0. Corollaries3.3and 2.2 imply that the pe-
riodic solutions and the positive equilibriums of (1.3) with ¢ > 0 sufficiently small
are bifurcated simultaneously fromthe equilibrium (1 — 17 (0), 0, g(1 — 15(0))) of
(1.3) withg = 0.

Before proving Theorem 3.1, we address how to check the conditions of Theo-
rem 3.1. For given f;,i = 1, 2, 3, f and g, most of the conditionsin Theorem 3.1
areintermof A7 (¢) and (x1.(q), x2c(q), pc(q)), and therefore we have to compute
them in order to check those conditions. To compute (x1.(q), x2:(q), pc(q)), we
need to compute A7 (¢) first. Since, for most functions, the inverses of them (if they
have) cannot be calculated analytically, % (q) = f7 1 (1/(1—q)), g(1—25(q) =
h=1(1 - 23(¢)) and g(x1.(q)) = h~(x1.(¢)) would most likely have to be done
numerically. Once A7 (g) is known, it follows from Theorem 2.2 that we have to
solve the equation (2.7) for x1. This would also most likely have to be done nu-
merically. Next, by means of Mathematica we apply Theorem 3.1 to a concrete
case.

Example. Assumethat f(p) = e P, fi(s) = m;s/(a; +s) fori =1, 2, and
f3(s) = 8s/(K + s) withay, = 3.5, a2 = 0.5, m; = 6.0,mp = 5.0, K = 0.1,
8§ =50.0,and © = 5.0 asin [3]. In this case, g(x1) can be calculated explicitly,
given by

1
g(x1) = EW (K — 14 6x1)2 + 4K — (K — 1+ 6x1)]. (34)

In order for ¢ to satisfy the condition (2.4), it hasto be 0 < ¢ < 0.25. Set
g = 0.08. Using Mathematica, we get A7 = 0.774336, f2(1]) = 3.03819, and
1/f (1) = e* = 148.413. So the condition (2.5) holds. Again by Mathematica we
can calculate x1, = 0.0224377 from (2.7), xo. = 0.203226 and p. = 0.224182
from (2.6), and then B1 B> — Bz = —0.291389 < 0 and v1 = 0.0885201 by their
definitions. Therefore, conditions (3.1) and (3.2) are also satisfied, and hence The-
orem 3.1 yields that there is a periodic solution for (1.3) with ¢ = 0.08. By using
anumerical integration, we indeed can see the periodic solutions (see Figure 2).
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It is not surprising that Figure 2 is very similar to Figure 6.6 [3] since we take
the same set of parameters as those in [3] except now that ¢ is hot equal to O but
small. We have checked several other values of ¢ smaller than 0.08, and al the
conditions of Theorem 3.1 are satisfied. However, we can not tell if that is true for
al g € [0,0.08]. Condition (3.2) falsat ¢ = 0.1, though numerically periodic
solutions are found there. So apparently the condition (3.2) is not the best possible
condition.

Now we outline the proof of Theorem 3.1. From Theorem 2.2, the assumptions
(2.4) and (2.5) in Theorem 3.1 imply the existence of the unique positive equilib-
rium E., and from Proposition 2.2 the assumption (3.2) yields that E. is unstable
with al-dimensional stable manifold. Let w bethe eigenvector of J associated with
its negative eigenvalue p. Then it is easy to show that w hasthe form

_ma1 | _mip

p—m33z  p—mil
We claim that % > 0 and p’f% - -2 > 0. It suffices to show that p —
mi11 < 0and p — m33 < 0. Let p2 and p3 be the other two eigenvalues of J.
Then p2 + p3 = 0. Since p + p2 + p3 = m11 + mor + maz, it follows that
p —mi1 = mp2+m33— (p2+ p3) < m+maz < 0and, similarly, p —m3z3 < 0.
Thisconfirmsour claim. Therefore, it followsfrom thisclaim that w pointsinto the
positive octant if ¢ > 0 and the negative octant if ¢ < 0, where the octant isin the

nmia
—m
w = ( P 111 ¢, ce€ (—00,00). (3.5

x1,x2,p

0.5 T T T T T T T
0.45
0.4
0.35
0.3

0.25 |r

0.2

0.15

0.1

0.05

60 80 100 120 140 160 180 200

Fig. 2. Thegraphsof solution (x1, x2, p).
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coordinates with the origin translated to E.. Using the planes x1 = x1., x2 = x2¢
and p = p. wedivide B into eight subsets B;«, i, j, k = 0, 1 (see Figure 3), given
by

Bioo ={(x1,x2,p) € B: x1, < x1 < 1,0< x2 < x2,,0< p < pc},

Buo={(x1,x2,p) € B: x1c < x1 < Lxo <x2<1,0< p < pc},
Bo1o = {(x1, x2, p) € x2=<10< p =< pl,
Bo11 = {(x1,x2, p) € p <1}

B
B
B: 0= x1 < x16, X2¢
B <
Boor = {(x1,x2,p) € B: 0< x1 < x1,,0 < x2 < x20, pc < p < 1},
B <
B
B

=<
0= x1 = x16,%2e < x2=5 1, pe
Bior ={(x1,x2,p) € B x1c < x1 < 1L, 0< x2 < x2¢, pc < p < 1},
Booo = {(x1,x2,p) € B: 0< x1 < x16,0< x2 < x2,,0< p < p.},

By ={(x1,x2,p) € B: x1e < x1 < Lxp < x2=< 1 p. < p=<1}L

To define the Poincare map, we first define the surface H by
H = B110 N Boio-

Then, using the assumptions of Theorem 3.1 we can show by a series of lemmas
that any solution T" () of (1.3) with " (0) € H \ {0} will eventually come back to

Bo1o

Fig. 3. Thesets H and B;j, (i, j, k =0, 1).
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f], theinterior set of H, in the following way

o
] o

B o (e} (e} o
H\{0} > { 79 — Bo11 < Boor — Bioi — Bio < Biwo— H. (3.6)
Boi1

Therefore, we can define the Poincare map P on H \ {0} by the first return point

of T'(¢) in IfI We aso define P(E.) = E.. The continuity of P on 151 follows
from the continuous dependence of solutions with respect to theinitial data, while
the continuous of P at E. can be shown from the facts that in a neighborhood of
E., system (1.3) istopologically eguivalent to its linearized system since E, is a
saddle point, and outside this neighborhood, solutions of (1.3) is continuous with
respect to theinitial data. Therefore by Brouwer fixed point theorem P has at least
one fixed point on H. However, notice that E. is afixed point for P. Hence we
don’t know if there is another fixed point for P on H, and if it has, the solution of
(2.3) through this point is a nontrivial periodic solution since there is no any other
equilibrium point on H for (1.3). To show that P indeed has another fixed point,
we will use a similar idea to that used by Hastings and Murray [2], i.e. we will
find asimply connected closed subset G of H \ {E.} such that P maps G toitself,
and hence P has a fixed point on G by applying the Brouwer fixed point to P|g
on G. The construction of G is similar to that employed in [2], and for reader’s
convenience, we will giveits detail in the proof of Theorem 3.1.

The proof of (3.6) isaccomplished by Lemmas 3.1-3.7. Lemma 3.1 shows that

the solution I'(¢) starting from the edge {p = p.} N (H \ {E.}) goes to 5011
immediately and I'(¢) goesto 13010 immediately if it starts from anywhere elsein
H \ {E.}. Lemma 3.2 shows that the solution starting from 5010 leaves 5010 at
some time ¢ through the face Eom N §011 and then goes into 10?011 immediately.
Lemma 3.3 shows that if the solution escapes from 12’011, it has to leave from the
face 1%011 N 5001. Then Lemma 3.4 shows that if the solution |eaves from 5001,
it will leave either through the face 13011 N 13001 and then go to 13011 immediately
or through the face 13001 N ;3101 and then go to 5101 immediately. Therefore, it
may happen that the solution will move from 5011 through the face 13011 N 13001

to éom forward and backward forever without leaving them, which is not desired.
We excludethis possibility in Lemma 3.5 and therefore the solution will eventually

goto 13101 in away of (3.6). The rest of (3.6) can be similarly proved and so we
just state the corresponding results in Lemmas 3.6 and 3.7 without their proofs.
We remark that the condition (3.2) is only used in the proof of Lemma 3.2 and

Lemma 3.7 to prevent orbitsfrom §01o going to Bogp and from 13101 goingto B111
respectively (note that the stable manifold of E. of (1.3) liesin Bggo and B111).

Lemma3l. Let I'(0) € H \ {E.}. Then for + > sufficiently small ¢ > O,
if p(0) = pe, then T (1) € Boy1, and élse, T (1) € Bogo.
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Proof. According to the possible position of I"'(0) on H \ { E..}, we haveto consider
the following 8 cases.

Case 1. Assume that

I' (0) € {x = x1¢, x2 = x2¢, p = O}.

Then
x1(0) = x1[(1 — ¢) f1(1 — x1c — x2) — 1] =0,
x5(0) = x2.[ £(0) f2(A7) — 1] + g f1(A])x1e
> ch[f(Pc)fZ()kD - 1] + qxlcfl()‘i)
=0,
PO =1,
and

¥ (0) = —(1 = 9)x1. f{(3)x(0) < 0.
SOT (1) € Bogo for all ¢ > 0 but small.
Case 2. Assume that
I'(0) € {x1 = x1c, x2 = x20,0 < p < pc}.
Then, by a similar way to that in Case 1 we can show that

x1(0) =0, x5(0) > 0, x{ <O.

ThereforeI'(¢) € 13010 for all + > 0 small.
Case 3. Assume that
T'(0) € {x1 = X1¢, X2c < x2 < 1 —x10, p = 0}.
Then
x1(0) = x2[(1 = @) f1(1 = x1e — x2(0) — 1]
< x1[(1 = @) fa(1 — x1c — x2¢) — 1]
=0,
p'(0)=1>0.
Hence, I'(¢) € 13010 for + > O small.
Case 4. Assume that
I'0) € {x1 = x1c, X2c <x2 <1—x1,0 < p < pc}.
Then the same way as that in the proof of Case 3 yields x;(0) < 0, and hence
I'(t) € Boio for small ¢+ > 0.
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Case 5. Assume that
') € {x1 = x1c, X2c < x2 < 1—Xx10, p = pc}.

Then the same way as that in the proof of Case 3 yields x7(0) < 0. Fromthe third
equation of (1.3) one gets p'(0) = 0 and p”(0) = — f3(p.)x1(0) > 0. Hence

e e §011 for > O small.
Case 6. Assume that

I'0) € {x1 = x1c, x2 =1 — x10, p = O}.
Then from (1.3) and the fact that f1(0) = f2(0) = 0, we get

x1(0) = x1.[(1 = ¢) f1(0) — 1] = —x1, <O,
xi(O) + Xé(O) = —x1c — x2c < 0,
p'0)=1>0,

and then, noting that x2(0) = 1 —x1c > 1—A] — x1c = x2., WwehaveT'(¢) € 13010
for t > 0 small.

Case 7. Assume that
I'0) € {x1 =x16, X2 =1—x1.,0 < p < pc}.
Then the same way as that in the proof of Case 6, we get
x71(0) <0, x7(0) +x5(0) < 0, x2(0) > x2.
HenceTI'(t) € 13010 for t > O small.
Case 8.
I'0) € {x1 = x1c, x2 =1 — x10, p = pc}.

Then from the proof of Case 6, x;(0) < 0, and x;(0) + x5(0) < 0. Fromthe third
equation of (1.3), it follows that p'(0) = 0 and p”(0) = — f3(p.)x1(0) > O.

ThereforeI'(¢) e 13011 for t > O small.

Checking the above cases, we see that p(0) = p. occurs only in Cases 5 and

8, both of whichyield T () 13011, while all other casesyieldI" (¢) € §010 for all
small ¢ > 0. This completes the proof of Lemma 3.1. |

Lemma3.2. Let I'(0) € loiom. Then there is rg > 0 such that I'(¢) € 102010 for
t € [0, 10), I'(t0) € dBo1o With 0 < x1(f0) < x1c, x2(t0) > x2 and p(to) = pe,

p'(to) > 0,and I'(¢r) € 13011 for t € (1, to + €) and sufficiently small ¢ > 0.
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Proof. First, we show that I'(¢) cannot stay in 13010 for al ¢+ > 0. Suppose that the
clamisnottrue. Thenforal s > 0

p'=1-p— fa(p)x1>1—p— fa(p)x1c > L — p. — f3(pe)x1c =0,

and hence p(t) — P € (0, pc]. We show that p = p.. Since0 < [y~ p/(r)dt =
p—p0) <ocand p” = —p' — fa(p)p'x1 — f3(p)xy isbounded on [0, c0), it
follows by asimple argument that p’(r) — Oast — oo, and hence from the third
equation of (1.3) we get x1(t) — % =: X ast — oo. Then, using the function
% is decreasing in (0, 1] and 0 < p < p. < 1, we have ¥ > x1.. However,
x1(t) < x1. foral ¢ > Oyieldsx < x1.. Therefore, it must be x = x1., which, in
turn, yields from the definition of x that p = p.. Then from the first equation of
(1.3), weget x2(t) — xp. 8t — 00.S0I'(r) —> E;.ast — oo andso I'(¢) lies
on the stable manifold of E., which contradicts that the stable manifold of E. does
not liein Bpig. Therefore there exists afirst timerg > 0 such that I'(1g) € 9 Bo1o.

Next, we show that 0 < x1(fg) < X1c, X2c < x2(f9) and so, from Proposi-
tion 2.1, it must be p(10) = p.. Suppose that x1(f0) = x1.. Then x;(r0) > O.
However, if x2(fg) > x2¢,

x1(t0) = x1[(1 — q) f1(1 — x1c — x2(t0)) — 1]
< ch[(l - Q)fl(l — X1c — X2¢) — 1] =0,

which yields a contradiction; if x2(tp) = x2, then p(tg) < p., and from (1.3)

x1(fo) = 0,
x5(t0) = x2.[ f(p(t0)) fo(A]) — 1] + x1.qf1(A])
> x2c[f(pc) fZ()"T) - 1] +xlcCIfl()¥T_) =0,

whichagaincontradictsx;(ro) < 0.Sincex2(ro) > x2.,itfollowsthat 0 < x1(r0) <

X1c-
To show x2(fg) # x2., We again use contradiction. Suppose that x2(79) = x2..
Then

x5(10) = x2c[ f(pe) f2(1 — x1(to) — x2¢) — 1] + gx1(t0) f1(1 — x1(t0) — x2¢)
‘= F3(x1(%0)).
We show that F5(x1) < Ofor xy € [0, 1 — x2.) by (3.2). Infact, since f5(x) > 0
and f (x1) < Oforall x; > O, itfollowsthat f5(1—x1 —x2.) > f5(1— x2.) and

f1(1—x1—x2:) < f1(1—xp) for x1 € [0, 1 — x2.). Therefore, by (3.2) we have
for x1 € [0, 1 — x20),

F3(x1) = —x2c f (pe) fo(1— x1 — x20)+qf1(l — x1 — XZC)_qxlf]/_(l — X1 — X2¢)
=< _XZCf(Pc)le(l —x20) +qfi(l—x2) < 0.

Therefore F3(x1(t0)) > F3(x1.) = 0andsox,(to) > 0, which contradictsx; (o) <
0. Thus, x2(fg) > x2c.
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Finally, from the third equation of (1.3) we get
p'(t0) = 1— pc — fa(pe)x1(to) > 1— pe — f3(pe)x1e =0,

which together with the position of I'(zp) yieldsT'(¢) € 13011 fort € (19,10 + €)
and small € > 0. This completes the proof of Lemma 3.2. O

Lemma3.3. LetI'(0) € §011.Assumethattherei5to > OsuchthatI'(#g) € 0 Bo11
and I'(¢) € Bow1 for ¢ € [0, 7). Then

0 < x1(fo) < x1¢, x2(f0) = x2, pe < p(to) < 1,

and, either I"'(¢) € 5001 orI"(t) e l%on for ¢ € (1o, to + €) and sufficiently small
e > 0.

Proof. First, suppose p(tg) = pc. Thenif x1(z0) < x1c,

p'(to) = 1— pe — fa(pe)xito) > 1 — pe — fa(pe)xic = 0.
which contradicts p’(19) < 0; elseif x1(1g) = x1., then x2(tg) > x2. and then

x1(t0) = x1[(1 — q) f1(1 — x1c — x2(10)) — 1]
< x1[(1—=¢q) fi(l — x10 — x20) = 1] =0, (37
which contradicts x/ (fo) > 0. So p(t0) > pe.

Next, assume that x1(fp) = x1.. Then if x2(fr9) > x2., then (3.7) holds, which
contradicts x7(r0) > 0. Therefore if x1(10) = x1., it must be x2(10) = x2.. Then
from (1.3) we get x1(10) = 0, x5(t9) < O (since p(to) > pc), and x(10) =
—(1 — @)x1c f{(1 = A7) x5(t0) > O, which implies that x1(t) > x1. for ¢t < 1o,

contradicting I'(¢) € 13011 for ¢ < rg. Therefore, x1(fg) < x1c.

Hence, it followsfromI'(19) € d Boyy that x2(10) = x2.. Sincethesign of x5 (to)
cannot be determined from (1.3) and the solution cannot stay in the face x, = x2,
the lemma 3.3 follows. O

Lemma34. Let T'(0) € §001. Assume that there isa rg > 0 such that I'(zg) €
d Boo1. Then p(tg) > p., and, for ¢ € (1g, to + €) withe > 0 small,

gither T'(r) € Booz, Or T'(¢) € Bouz, Or TI'(¢) € Bio1.

Moreover, if the last case occurs, then x1(fg) = x1c, x2(fg) < x2. and x’l(to) > 0,

and I' (+) passes through the face 5001 N 5101 transversally from gOOl into 5101.

Proof. Suppose p(t9) = p.. Then, if x1(tp) < x1c,

p'(to) =1— pc — fa(pe)xi(to) > 1— p. — fa(pe)x1e =0,
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which contradicts p’(r9) < 0. Assumethat x1(z9) = x1.. Thenfrom (1.3), p’(tp) =
0, and

x1(10) = x1[(1 — @) f1(1 — x1c — x2(10)) — 1]
> xlc[(l - Q)fl(l — X1c — X2¢) — 1]
=0 (sincenow xx(fg) < x20),

and so p”(tg) = — fa(p)x'(tg) < 0, which combining with p’(9) = 0 implies
p(to) = pc isaloca maximum of p(z), contradicting p(z) > p. fort < 1.
Therefore p(tp) > pc.

Suppose x1(tg) = x1¢. If x2(t0) = x2., then

x5(10) = x2.[ f(p(10)) f2(A]) — 1] + gx1c f1(A})
< XZC[f(pc)fZ()‘T_) - 1] + qxlcfl()\z) =0, (38)

contradicting x5(f0) > 0. Hence x2(f0) < x2., and then

x1(t0) = x1[(1 — ¢) f1(1 — x1c — x2(t0)) — 1]
> ch[(l - Q)fl(l — X1c — X2¢) — 1] =0,

which together with p(tp) < pe, as we just proved, implies I'(z) € 5101 for
t € (to, 1o +¢) andsmall e > 0.

Suppose now that x2(fg) = x2.. From (3.8) it follows that x1(fg) < x1.. Since
aso p(to) > p.,thesignof x5(tp) cannot be determined from (1.3): either x5 (t0) <

0 or x5(t0) > 0. Thereforewe have I' (1) € (13011 U 13001) fort € (t9, 10 +¢) and
small € > 0.
Combining above results and Proposition 2.1, Lemma 3.4 follows. ]

Lemma35. Let T(0) € B = Boi U Boow U (10 < x1 < X1, X2 = X2, pe <
p<linB),andtg = sup{t > 0: T'(s) € Bfors € ([0,¢)}. Thentg < oo,
I'(tg) € 103001 N 5101, xj(to) > 0,and I'(¢) € 1%101 for ¢t € (1o, to + €) and small
e > 0.

Proof. Write B = D1 U Dy, where D1 = {x1 +x2 > 1—2}}N B and Do =
{x1+x2 < 1— 2%} N B (see Figure 4).

Thenin Dy, x] < xa[(1 — ¢) f1(x}) — 1] = 0 and, similarly, x; > 0in Dy.
We claim that once I'(¢) entersinto D>, then I'(¢) will not enter D1 without leav-
ing B. Suppose that the claim is not true. Then there is the smallest 11 > 0 such
that x1(f1) + x2(t1) = 1 — A} and p(r1) > pc, and hence the first equation of
(1.3) yields x3(r1) = 0. Notice that from the second equation of (1.3) we have

f1(0]
F(po) f20) = 1= — 2L Then

x5(11) = x2(t)[ f (p(12)) f2007) — 1] + gx1(t1) fi(A])
< (L= x1(tr) = ADLf (pe) f2(0]) = 1] + gxa(t1) f1(A])
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x1+x2=1->\T

|
A |
| usEl X Di
| |
[ T L
//_ ______ T:_\?_\L:_‘L‘/_"é____
/ B : /‘T P 0
, 001 , 0=
Fig. 4. Thesets D; and D,.
1—x1(1) — 2]
= ﬁ(_qxlcfl(ki)) + gx1(t1) f1(A])
— X1 — A%
(x1(t1) — x10)(A = AY)
= qf1(0)) L <o 39

1—x16—)q -

and hence (x1 + x2)' (1) < 0, contradicting (x1 + x2)’(r1) > 0. This affirms our
claim.

Suppose that Lemma 3.5 is not true. Then I'(¢) either staysin D1 forever, or
staysin D, after sometime 7 > 0. In both cases, we have that x1(r) is monotone
after f and so x1 (1) — x1 € [0, x1c] ast — oo. Hence

I/~ Xy ()] di| = If x1 (1) dt| = |x1(00) — x1(1)| < 00.
t t

Since |x(¢)| is bounded on [0, oo) it follows that x;(r) — Oast — oo and so
M o[ (1—q) f1(1—x1(t) —x2()) — 1] = 0and solim;—, oo (1—x1(¢) —x2(t)) =
A1, and so lim; . x2(t) = 1 — A7 — X1 = X2. Then from the third equation of
(1.3) wecan get lim,—oo p(t) = p € [pe, 1. (x1, X2, p) cannot be E, because
of the directions of stable manifold of E.. So (x1, x2, p) = (0,0, 1), or (0, X2, 1)
wherexo = 1— f{l(l/f(l)) < 1— A%, which are another two equilibrium points
of (1.3) in D». But then from (2.4) we have in both cases that

1-¢9)fA(x1(9) 1
—_—X1 = =X

xp=x1[A—q)f1l —x1—x2) — 1] > > %1

for sufficiently large ¢ > 0O, and then x1(¢) > const - e%t~—> oo a8st — 0o, Con-
tradicting x1 = 0inboth cases. Therefore, I'(¢) will leave B eventually. Lemma 3.3
and Lemma 3.4 yield Lemma 3.5. |

By the similar waysto the proofs of the above lemmas, we can get thefollowing
two lemmas, thereby completing the proof of (3.6).
Lemma3.6. Let I"'(0) € 5101. Then, thereisa g > 0 suchthat I'(z) € 5101 for

t € [0.10), T'(t0) € B1o1NB1ooWith p'(10) < 0,andT'(t) € BaooTors € (to, fo+¢)
and small € > 0.
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Fig. 5. Thesets H and G, thecurver.

Lemma3.7. LetT"'(0) e B = l%looUlo?noU({xz = X2¢, X1 < X1 < 1—x2.,0<
p < pe} N B). Then, there exists 19 > 0 such that I'(z) € B’ for t € [0, 1p),

I'(t0) € H, x}(to) < 0,and T'(t) € Boao for 1 € (1o, fo + €) and small € > O.
Now we are in the position to prove Theorem 3.1.

Proof of Theorem 3.1. From the abovelemmasand (3.6), it followsthat for I'(0)
H\ E., thereisasmalest T = T(I'(0) > Owith I'(T') € H. We then define the
Poincare mapping P on H by

P(T(0) =I(T) ifIr'(0 # Ec, P(E.) = E..

The continuity of P on H \ E. follows from x](T") < 0 and the implicit function
theorem.

We next show by construction that there is asimply connected closed set G C
H \ {E.} such that P maps G into itself. Once this is done, Brouwer fixed point
theoremyieldsthat P | hasafixed pointin G and the solution of (1.3) through such
afixed point isanontrivial periodic solution of (1.3). Thefollowing construction of
G follows essentially from Hastings and Murray [2]. Theideaisto show that there
isasimple continuous curve y in H with the following properties (see Figure 5):

(a) y does not contain E;

(b) y liesin theinterior of H except for its endpoints, which liesin the faces
x = xg. and p = p, respectively;

(c) Define the region G to be the one of the two subregions of H divided by y
which does not contain E..

Therefore, it remains to show the existence of the curve y. In order to to do
that, we rewrite the system (1.3) around E.. Let J denote, as before, the matrix for
the linearized system of (1.3) at E... Since J has one negative eigenvalue and either
two positive eigenvalues, which are possibly equal, or two complex conjugate ei-
genvalues with positive real part, it follows from linear algebrathat thereis areal
nonsingular matrix S = {s;;}3x3 With (s11, s21, s31)T = w such that

s1Js=K,
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where w isgivenin (3.5) with ¢ = 1 and K hasthe form

p 0 0
K = <0 r1 ()‘1) ,
0 —02 2

where p < 0 isthe negative eigenvalue of J and r1, r2, o1 and o> are determined
by the following three cases:

cae()ri=r2=r > 0,01 = 02 = 0 > 0, wherer + io are the complex
conjugate eigenvalues of J with positive rea part;

case (ii) r1 > 0, r2 > 0, where r1 and r; are two positive eigenvalues of J;

case (iii)rpy =rp =r > 0,01 = € > 0,00 = 0, where r is the positive
eigenvalue of J with multiplicity of 2 and ¢ > 0 can be arbitrarily small.

If weletu = (x1, x2, p) andset v = S~1 (u — E,), then the system (1.3) can
be written in the form

v =Kv+ h(v) (3.10)
where
ho) _
loi—0 flvfl

Let L denotethelinein R through E,. and parallel to the eigenvector w of J cor-
responding to p. Consider the cylinder C,, for any o > 0, whose axis is v1-axis
and whose equation in the v coordinate systemis

v% + v% =a.

Since S - (v, 0, O)T = v1(s11, 521, S31)T = viwT, it follows that each C‘; =
S—1.C, + E., isacylinder in (x1, x2, p)-space with elliptical cross section and
axis L (see Figure 6). Along solution curves of (3.10), as||v|| — O,
W3 +v3) = 2r(v3 +v3) + o([lv]|?)
provided that case (i) occurs,
(V5 +v3) = 2r105 + 2205 + o(l|v]|?)
provided that case (ii) occurs, and
(v% + v%)’ = 2r(v% + v%) + 2evav3 + o(|[v]1?)

provided that case (iii) happens.

From our choice that ¢ = 1 in (3.5), the eigenvector w has positive compo-

nents, and hence (L N ;}) \{E.} C Eooo U ;}111. Therefore, C,, intersects each
u;-axisfor i = 1, 2, 3, and hence the boundary 94, C C|, provided that « > O
is so small that A, N 9B = ¥, where A = [B \ (Booo U Bu11 U (Ec)] N CL.
Hence, we have v3 + v3 = « for u € 3A,. And hence for u € 94,, we have
v < K1 — (v5 + v3) = K1 — @, where K1 > Oisthe constant such that [v] < K1
for v satisfying v(#) € B, and then

o

Vv =a= (K1—a) > 02 = 02,

Ki—« Ki—«
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Fig. 6. ThecylindersC, and C.,.

and then
(v% + v%)’ > (2F — e)(v% + v%) + o(v% + v%),

where 7 = r if the case (i) or (iii) occurs, and 7 = min{ry, o} if case (ii) oc-
curs. Therefore, by setting e < 27, we have that the solution of (1.3) starting in
B\ (4o U Booo U B111 U {E.}) will remain inside itself. Now, we fix asufficiently
small « > 0 and then definey = C, N H = 8A, N H. Since C,, and H are both
simply connected sets, it follows that y is a continuous curve. From our construc-
tion, y also satisfiesall other requirements (a), (b) and (c) as mentioned above. This
completes the proof of Theorem 3.1. |

4. Discussion

The main result of the paper provides a set of sufficient conditions for the exis-
tence of periodic solutions of System (1.3). Though those conditions are not easily
checked analytically, they are verifiable, at least numerically as demonstrated. Our
result does not provide any information about the stability of the periodic solutions.

However, it does show that most solutions starting in B oscillate eventudly in the
way as described in (3.6) with finite non-zero amplitudes. Thisimpliesthat the pla-
smid-bearing population survives and the host cells do not loose the plasmid and
revert to their unaltered phenotype, the plasmid-free cells, which isthe interesting
part to themodel considered. We hopethat the parameters satisfying our main result
fall within the realistic range of interest to biologists.

Acknowledgements. The author thanks Professor Stuart P. Hastingsfor hisreading aninitial
draft and the referee for useful suggestions.
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