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Abstract. We obtain necessary and sufficient conditions on the existence of a unique posi-
tive equilibrium point and a set of sufficient conditions on the existence of periodic solutions
for a 3-dimensional system which arises from a model of competition between plasmid-
bearing and plasmid-free organisms in a chemostat with an inhibitor. Our results improve
the corresponding results obtained by Hsu, Luo, and Waltman [1].

1. Introduction

In this paper, we consider the existence of positive equilibriums and positive pe-
riodic solutions for a 3-dimensional dynamical system established by Hsu, Luo
and Waltman [1] in studying a model of competition between plasmid-bearing and
plasmid-free organisms in a chemostat with an inhibitor. The physical setting is
well described in that paper, where the chemostat is studied

“as a model for the manufacture of products by genetically altered organ-
isms. The new product is coded by the insertion of a plasmid, a piece of
genetic material, into the cell. This genetic material is reproduced when
the cell divides. The organism carrying the plasmid, the plasmid-bearing
organism, is likely to be a lesser competitor than one without, the plasmid-
free organism, because of the added load on its metabolic machinery. The
survival of the organism without the plasmid, reduces the efficiency of the
production process, and, if it is a sufficiently better competitor, eliminates
the altered organisms from the chemostat, halting the production. Unfortu-
nately, a small fraction of the plasmids are lost during reproduction, intro-
ducing the plasmid-free organisms into the chemostat. To compensate for
this, an additional piece of genetic material is added to the plasmid, one that
codes for resistance to an inhibitor (an antibiotic) and the inhibitor is added
to the feed bottle of the chemostat”.
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Based on the above principle and the earlier work of Stephanopoulis and Lap-
idus [7] and Lenski and Hattingh [8], Hsu, Luo, and Waltman constructed the
following mathematical model:

S′ = (S(0) − S)D − f1(S)
x1

γ
− f (p) f2(S)

x2

γ

x′
1 = x1[(1 − q)f1(S)−D] (1.1)

x′
2 = x2[f (p) f2(S)−D] + qf1(S)x1

p′ = (p(0) − p)D − f3(p)x1

S(0) ≥ 0, p(0) ≥ 0, xi(0) > 0, i = 1, 2,

withfi(S) = miS
ai+S , i = 1,2,f3(p) = δp

K+p , andf (p) = e−µp.HereS is the limiting
nutrient concentration, x1 is the plasmid-bearing organism, x2 is the plasmid-free
organism, p is the inhibitor. γ is called a yield constant and q is a parameter which
reflects the loss of the plasmid,S(0) is the input concentration of the nutrient,D is the
washout rate of the chemostat, andp(0) is the input concentration of the inhibitor, all
of which are assumed to be constant and are under the control of the experimenter.
mi , ai , i = 1, 2, are the maximal growth rates of the competitors (without an
inhibitor) and are Michaels-Menten constants, respectively; δ and K play similar
roles for the inhibitor, δ being uptaken by x1, and K being a Michaels-Menten
parameter; all those parameters are measurable in the laboratory. The formulations
of fi , i = 1, 2, 3, based on experimental evidences, going back to Monod [14], are
most often used as the uptake functions. The function f (p) represents the degree of
inhibition of p on the growth rate (or uptake rate) of x2. However, in this paper, we
do not restrict f , and fi , i = 1, 2, 3, to those special forms.

When p ≡ 0 in (1.1), the above model reduces to the one studied by Steph-
anopoulis and Lapidus [7], which concerns the competition of plasmid-bearing
and plasmid-free organisms; while when q = 0 in (1.1), the model reduces to the
one proposed by Lenski and Hattingh [8], which concerns the competition of two
organisms in the presence of an inhibitor affecting one of the organisms. If both
sets of conditions hold, then (1.1) was studied by Smith and Waltman [6]. Plasmid
models are also discussed in [7], [8], [10], [11] and [12].

To reduce the number of parameters in System (1.1), the following scales are
used in [1]:

S̄ = S

S(0)
, p̄ = p

p(0)
, x̄i = xi

γ S(0)
, τ = Dt,

m̄i = mi

D
, āi = ai

S(0)
, δ̄ = γ δS(0)

D
, K̄ = K

p(0)
.

Then (1.1) becomes, after dropping the bars, the following non-dimensional differ-
ential equations:

S
′ = 1 − S − f1(S)x1 − f (p)f2(S)x2,

x
′
1 = x1[(1 − q)f1(S)− 1],

x
′
2 = x2(f (p)f2(S)− 1)+ qf1(S)x1, (1.2)
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p
′ = 1 − p − f3(p)x1,

S(0) ≥ 0, xi(0) > 0, p(0) ≥ 0, i = 1, 2.

Let �(t) = 1 − x1(t) − x2(t) − S(t). From (1.2) it follows that �′ = −� and
hence �(t) = �(0)e−t goes to zero exponentially as t → ∞. Notice also that the
equation for p implies that p eventually satisfy 0 ≤ p ≤ 1. Therefore, the omega
limit set of (1.2) must lie in the set

� := {(S, x1, x2, p) : S + x1 + x2 = 1, S ≥ 0, x1 ≥ 0, x2 ≥ 0, 0 ≤ p ≤ 1},
and trajectories (x1, x2, p) on the omega limit set must satisfy

x
′
1 = x1[(1 − q) f1(1 − x1 − x2)− 1]

x
′
2 = x2[f (p) f2(1 − x1 − x2)− 1] + q x1 f1(1 − x1 − x2) (1.3)

p
′ = 1 − p − f3(p) x1

with (x1(t), x2(t), p(t)) ∈ B for all t ∈ [0,∞), where the set B is defined by

B := {(x1, x2, p) : 0 ≤ x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0, 0 ≤ p ≤ 1}
which is positively invariant set of (1.3) (see Proposition 2.1 in Section 2). There-
fore, as in [1], we restrict ourself to study (1.3) in B in the rest of the paper.

When q = 0, (1.3) is a competitive system, and so by applying a Poincare–Ben-
dixson-like Theorem [4] for 3-dimensional competitive systems, Hsu and Waltman
[3] proved the existence of periodic solutions for (1.3). But when q �= 0, (1.3) is
no longer competitive, and so no such a general theorem can be applied. However,
by using a perturbation result of Smith [5], Hsu, Luo and Waltman also obtained
the existence of periodic solutions of (1.3) for sufficiently small q. Unfortunately
the perturbation theorem [5] could not tell that how small q has to be to ensure the
existence of such periodic solutions.

In this paper, we will present a set of verifiable conditions on q to ensure the
existence of periodic solutions in B for (1.3) with f and fi , i = 1, 2, 3 satisfying
certain conditions (see below) which are satisfied by the above specific forms of
them. If (1.3) has periodic solutions when q = 0, then our conditions on q are
automatically satisfied for sufficiently small q > 0, which implies by our main
result that (1.3) has periodic solutions for sufficiently small q > 0. Those periodic
solutions can be regarded as bifurcating from the periodic solutions of (1.3) with
q = 0. This is exactly the existence result of [1]. However, if (1.3) has no periodic
solution when q = 0, our conditions on q can be still satisfied for some q > 0 and
the resulting periodic solutions from our result are not found in [1].

We will also give necessary and sufficient conditions on the existence of a
unique positive equilibrium point in B for (1.3), which has to be in the interior set
◦
B of B. Such equilibrium points of (1.3) with q > 0 sufficiently small bifurcate
from the positive equilibrium point of (1.3) with q = 0 if it has, or else they bi-
furcate from the one of equilibrium points of (1.3) with q = 0 on the boundary of
B. The latter case is not found in [1] either. The existence of positive equilibrium
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points is necessary to our proof of the existence result on periodic solutions for
(1.3).

The plan of this paper is as follows. In Section 2 we will state and prove the
results on the existence of a unique positive equilibrium point in B for (1.3). We
will present them for q = 0 and q �= 0 separately, since the limit, as q → 0, of the
necessary and sufficient conditions for the existence of positive equilibrium points
of (1.3) with q > 0 yields only sufficient conditions for that of (1.3) with q = 0.
We will also state such existence results obtained in [1] as corollaries of our results.
The main result on the existence of periodic solutions of (1.3) is stated and proved
in Section 3. Since we do not restrict f and fi , i = 1, 2, 3, to the specific forms
as stated above, we will also apply in this section, as an example, our main result
to the case of f and fi , i = 1, 2, 3, with those special forms. A brief discussion of
our results is given in the last section.

Throughout the paper, we assume that f , fi , i = 1, 2, 3, and q satisfy the
following assumptions:

(A) f is positive and f ′ is negative in [0, 1];
(B) fi and f ′

i , i = 1, 2, 3, are positive, f ′′
2 is negative in [0, 1], and fi(0) = 0

for i = 1, 2, 3;
(C) q ≥ 0.

We will also use the following definition:

Definition. (i) λ∗
1(q) for q ∈ [0, 1 − 1

f1(1)
) is defined by

f1(λ
∗
1(q)) = 1

1 − q
(1.4)

whenever f1(1) > 1;
(ii) g(x1) is the inverse function of h(p) := (1 − p)/f3(p) for p ∈ (0, 1].
(iii) A positive equilibrium point of (1.3) means that all its components are

positive and it lies in B.

Remark 1.1. (i) Since f1(x) is strictly increasing in [0,∞), it follows that λ∗
1(q)

is well-defined and increasing for q ∈ [0, 1 − 1/f1(1)), λ∗
1(0) = f−1

1 (1), and

limq→1−1/f1(1) λ
∗
1(q) = 1. Hence f−1

1 (1) ≤ λ∗
1(q) < 1 for q ∈ [0, 1 − 1/f1(1)).

(ii) Since h(p) is positive and decreasing in (0, 1], limp→0− h(p) = ∞ and
h(1) = 0, it follows that g(x1) is positive and decreasing for all x1 ∈ [0,∞),
g(0) = 1, and g(∞) = 0.

(iii) Since we are only interested in (1.3) in B, it is natural to consider its
equilibrium points only in B.

2. Existence of positive equilibrium

In this section, we give necessary and sufficient conditions on the existence of a
unique positive equilibrium of (1.3). Those conditions will be assumed in our the-
orem on the existence of periodic solutions of (1.3) in the next section. The main
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result of this section also improves Theorems 4.2 and 4.3 of [1], where two sets of
sufficient conditions were given on the existence of positive equilibrium of (1.3).

Proposition 2.1. (i) Every positive equilibrium of (1.3) lies in
◦
B, the interior set of

B, i.e.

◦
B = {(x1, x2, p) : x1 > 0, x2 > 0, 0 < x1 + x2 < 1, 0 < p < 1}.

(ii) The plane x1 = 0 and p-axis are both positively invariant for (1.3).

(iii) B and
◦
B are both positively invariant for (1.3).

Proof. (i) Assume that (x1c(q), x2c(q), pc(q)) is positive equilibrium of (1.3). It
suffices to show that pc(q) < 1 and x1c(q)+ x2c(q) < 1. The former inequality is
derived at once from the third equation of (1.3). Assume that x1c(q)+ x2c(q) = 1.
Then it follows that f1(1 − x1c(q) − x2c(q)) = 0 and then the first equation of
(1.3) yields x1c = 0, contradicting x1c(q) > 0. Therefore x1c(q)+ x2c(q) < 1.

(ii) Suppose that x1(0) = 0. Then from the first equation of (1.3), it follows
that

x(t) = x(0)exp
( ∫ t

0
[(1 − q) f1(1 − x1 − x2)− 1] dt

)
= 0 for all t > 0,

and so the plane x1 = 0 is positively invariant.
Suppose that x1(0) = x2(0) = 0. Then from above x1(t) ≡ 0, and then substi-

tuting it into the second equation of (1.3) yields x2(t) ≡ 0 in the same way as that
of showing x1 ≡ 0. Therefore, p-axis is also positively invariant.

(iii) Suppose that (x1(0), x2(0), p(0)) ∈ ◦
B. Then x1(0) + x2(0) < 1 yields

x1(t) + x2(t) < 1 for all t > 0, for else let t0 be the first time such that x1(t0) +
x2(t0) = 1. Then adding the first two equations of (1.3) together yields

(x1(t0)+ x2(t0))
′ = −(x1(t0)+ x2(t0)) = −1 < 0

which contradicts (x1(t0) + x2(t0))
′ ≥ 0. The positive invariance of the plane

x1 = 0 from (ii) implies that if x1(0) > 0, then x1(t) > 0 for all t > 0.
Assume that there is a t1 > 0 such that x2(t1) = 0 and x2(t) > 0 in [0, t1).

Then from the second equation of (1.3) we get x
′
2(t1) = qx1(t1) f1(1 − x(t1)) > 0

which contradicts x′
2(t1) ≤ 0. Hence x2(t) > 0 for all t ≥ 0.

Assume that there is a t2 > 0 such that p(t2) = 0 and p(t) > 0 for t ∈ [0, t2).
Then the third equation of (1.3) yields p′(t2) = 1 > 0, which contradicts the
definition of t2. Hence p(t) > 0 for all t ≥ 0.

Finally, assume that there is a t3 > 0 such that p(t3) = 1 and p(t) < 1 for
t ∈ [0, t3). Then the third equation of (1.3) yields p′(t2) = −x1(t3)f3(1) < 0,
which contradicts the definition of t3. Hence p(t) < 1 for all t ≥ 0.

Therefore,
◦
B is positively invariant.

By the continuity of solutions with respect to initial data and the invariance of
◦
B, it follows that B is positively invariant for (1.3). ��
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Theorem 2.1. (1.3) with q = 0 has a positive equilibrium point (x1c(0), x2c(0),
pc(0)) if and only if

0 < 1 − 1

f1(1)
, (i.e. f1(1) > 1), (2.1)

and
1/f (g(1 − λ∗

1(0))) < f2(λ
∗
1(0)) < 1/f (1) (2.2)

hold. Moreover, this equilibrium point is unique and given by

x1c(0) = g−1(pc(0)), x2c(0) = 1 − λ∗
1(0)− x1c(0), pc(0) = f−1(1/f2(λ

∗
1(0))).

(2.3)

Proof. Suppose that (1.3) with q = 0 has a positive equilibrium point (x1c(0),
x2c(0), pc(0)). Then from the first equation of (1.3) and the definition of λ∗

1(0), we
get 1−x1c(0)−x2c(0) = f−1

1 (1) = λ∗
1(0), which yields 0 < λ∗

1(0) < 1 and hence
(2.1) holds. From the third equation of (1.3), we get pc(0) = g(x1c(0)). Notice
that 1 − λ∗

1(0) > x1c(0) > 0, and g is decreasing and positive in (0,∞). It follows
that pc(0) = g(x1c(0)) > g(1 − λ∗

1(0)) > 0. Also note that the third and second
equations of (1.3) with q = 0 yield pc(0) < 1 and 1/f (pc) = f2(λ

∗
1(0)) . Then

(2.2) follows.
Conversely, suppose that (2.1) and (2.2) hold. Then (2.1) and (2.2) yield 0 <

λ1(0) < 1 and f (1) < 1/f2(λ
∗
1(0)) < f (g(1 − λ∗

1(0))). We therefore can solve
pc(0) uniquely from the second equation of (1.3) and the decrease of f and get
pc(0) = f−1(1/f2(λ

∗
1(0))) ∈ (g(1 − λ∗

1(0)), 1). Thus from the third equation of
(1.3) and the fact that g−1 is decreasing

0 < x1c(0) := g−1(pc(0)) < g−1(g(1 − λ∗
1(0))) = 1 − λ∗

1(0).

Finally, from the first equation of (1.3) we get x2c(0) = 1 −λ∗
1(0)− x1c(0). There-

fore, (1.3) has a unique positive equilibrium point (x1c(0), x2c(0), pc(0)) satisfying
(2.3).

If (1.3) has a positive equilibrium, then the first part of the proof yields (2.1)
and (2.2), and the second part of the proof implies that this equilibrium must satisfy
(2.3). Therefore, (1.3) has a unique positive equilibrium provided that (2.1) and
(2.2) hold. ��
Theorem 2.2. (i) (1.3) with q > 0 has a positive equilibrium point if and only if

q < 1 − 1

f1(1)
, (i.e. λ∗

1(q) < 1) (2.4)

and
f2(λ

∗
1(q)) < 1/f (1) (2.5)

hold. This equilibrium point is the unique positive equilibrium of (1.3), is denoted
by (x1c(q), x2c(q), pc(q)), and satisfies

x2c(q) = 1 − λ∗
1(q)− x1c(q), pc(q) = g(x1c(q)), (2.6)
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where x1c is the unique root of the equation

F(x1) := [f (g(x1)) f2(λ
∗
1(q))− 1] [1 − λ∗

1(q)− x1] + q

1 − q
x1 = 0, (2.7)

in (0, 1 − λ∗
1(q)).

Furthermore, if

1/f (g(1 − λ∗
1(q))) < f2(λ

∗
1(q)), (2.8)

then,

x1c(q) < x̃1(q) < 1 − λ∗
1(q), 0 < ν(q) < x2c(q) < 1 − λ∗

1(q) (2.9)

where

ν(q) = 1 − λ∗
1(q)− x̃1(q), x̃1(q) = g−1(p̃(q)), p̃(q) = f−1(1/f2(λ

∗
1(q))).

(2.10)
(ii) The following holds:

lim
q→0

(x1c(q), x2c(q), pc(q))

=
{
(x1c(0), x2c(0), pc(0)) if 1/f (g(1 − λ∗

1(0))) < f2(λ
∗
1(0)),

(1 − λ∗
1(0), 0, g(1 − λ∗

1(0))) if 1/f (g(1 − λ∗
1(0))) ≥ f2(λ

∗
1(0)).

(2.11)

Proof. (i) Suppose that (x1c(q), x2c(q), pc(q)) is a positive equilibrium point of
(1.3) for given q ∈ (0, 1). Then the definition of λ∗

1(q) and the first equation
of (1.3) implies that the first equality in (2.6) holds, and hence 0 < λ∗

1(q) =
f−1

1 (1/(1 − q)) < 1, i.e., (2.4) holds. From the third equations of (1.3), we get the
second equality in (2.6). Then substituting the equalities in (2.6) into the second
equation of (1.3) it follows that x1c(q) is a positive root of (2.7) in (0, 1 − λ∗

1(q)).
It is easy to see that the equation (2.7) is equivalent to the equation

F1(x1) = F2(x1) (2.12)

in (0, 1 − λ∗
1(q)), where

F1(x1) = f (g(x1)) f2(λ
∗
1(q))−1, and F2(x1) = − qx1

(1 − q)(1 − λ∗
1(q)− x1)

,

and hence x1c(q) is the root of (2.12) in (0, 1−λ∗
1(q)). Notice thatF1(x1) is contin-

uous and is strictly increasing on [0,∞) (since g(x1) is decreasing and positive in
[0,∞)), F1(0) = f (1)f2(λ

∗
1(q))− 1 and limx1→∞ F1(x1) = f (0) f2(λ

∗
1(q))− 1;

Clearly, F2(x1) is continuous and is strictly decreasing on [0, 1 − λ∗
1(q)) for x ∈

[0, 1 − λ∗
1(q)), F2(0) = 0 and limx1→1−λ∗

1(q)
F2(x1) = −∞. See Figure 1. There-

fore x1c(q) is the unique root of (2.12) in (0, 1 − λ∗
1(q)), and F1(0) < F1(x1c) =

F2(x2c) < 0, which yields (2.5).
Assume that (2.4) and (2.5) hold. Then 0 < λ∗

1(q) < 1 and F1(0) = f (1)
f2(λ

∗
1(q)) − 1 < 0. Therefore, F1(0) − F2(0) < 0 and F1(x1) − F2(x1) →
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Fig. 1. In (A), 1/f (g(1 − λ∗
1(q))) < f2(λ

∗
1(q)) < 1/f (1), while in (B), f2(λ

∗
1(q)) <

1/f (g(1 − λ∗
1(q))).

∞ as x1 → 1 − λ∗
1(q). Hence by mean value theorem and the monotonicity of

F1(x1)−F2(x1) on [0, 1−λ∗
1(q)), there exists a unique x1c(q) ∈ (0, 1−λ∗

1(q)) such
that F1(x1c(q)) − F2(x1c(q)) = 0, and hence F(x1c(q)) = 0. Define x2c(q) and
pc(q) by (2.6). Then it follows that (x1c(q), x2c(q), pc(q)) is a positive equilibrium
of (1.3).

If (2.8) also holds, then F1(1 − λ∗
1(q)) > 0 and then F1(x1) = 0 has a unique

root x̃1(q) ∈ (0, 1−λ∗
1(q)) satisfying (2.10). Notice thatF1(x1c(q)) < 0. It follows

that x1c(q) < x̃1(q) < 1 − λ∗
1(q), and hence from (2.6) the second inequality in

(2.9) also follows.
(ii) Since λ∗

1(q) is continuous for q ∈ [0, 1 − 1/f1(1)), it follows that the func-
tions F1 and F2 are continuous with respect to q. Hence, if 1/f (g(1 − λ∗

1(0))) <
f2(λ

∗
1(0)) holds, then (2.4), (2.5) and (2.8) hold for q > 0 sufficiently small, and

hence (x1c(q), x2c(q), pc(q)) exists for q≥0 sufficiently small and limq→0(x1c(q),

x2c(q), pc(q)) = (x1c(0), x2c(0), pc(0)). However, if 1/f (g(1 − λ∗
1(0))) >

f2(λ
∗
1(0)), then f2(λ

∗
1(0)) < 1/f (1) holds and hence (2.4), (2.5) hold for q > 0

sufficiently small. Therefore, (x1c(q), x2c(q), pc(q)) exists for q > 0 sufficient-
ly small. Notice that F1(1 − λ∗

1(q)) → F1(1 − λ∗
1(0)) ≤ 0 as q → 0 and

limq→0 F2(x1) = 0 for any x1 ∈ [0, 1 − λ∗
1(q)) and limq→0 λ

∗
1(q) = λ∗

1(0). It fol-
lows that limq→0 x1c(q) = 1−λ∗

1(0), and then (2.6) yields limq→0 x2c(q) = 0 and
limq→0 pc(q) = pc(0). If 1/f (g(1 − λ∗

1(0))) = f2(λ
∗
1(0)), then either 1/f (g(1 −

λ∗
1(q))) < f2(λ

∗
1(q)) or 1/f (g(1−λ∗

1(q))) ≥ f2(λ
∗
1(q)) for sufficiently small q >

0. Either case yields the existence of (x1c(q), x2c(q), pc(q)) for q > 0 small. The
combination of the above arguments also yields limq→0(x1c(q), x2c(q), pc(q)) =
(1 − λ∗

1(q), 0, g(1 − λ∗
1(q))). This completes the proof of (ii) and therefore the

proof of Theorem 2.2. ��

Remark 2.1. 1. If q = 0, then F2 ≡ 0 and F(x1) = F1(x1)(1 − λ∗
1(0) − x1).

Hence that F1(x1) = 0 has a root in (0, 1 − λ∗
1(0)) if and only if F1(x1) = 0 has a

root in (0, 1−λ∗
1(0)), which is equivalent to F1(0) < 0 and F1(1−λ∗

1(0)) > 0, i.e.
(2.2). This gives an alternative way to see why (2.2) is necessary for the existence
of (x1c(0), x2c(0), pc(0)).



Periodic solutions 79

2. From (2.11) it follows that if f2(λ
∗
1(0)) > 1/f (g(1 − λ∗

1(0))), then (x1c(q),

x2c(q), pc(q)) bifurcates from (x1c(0), x2c(0), pc(0)), and else (x1c(q), x2c(q),

pc(q)) bifurcates from (1 − λ∗
1(0), 0, g(1 − λ∗

1(0))) which is also an equilibrium
of (1.3) with q = 0. This is exactly implied in the following two corollaries.

Corollary 2.1. (1.3) has a unique positive equilibrium point for sufficiently small
q ≥ 0 if and only if (2.1) and (2.2) hold. Moreover, limq→0(x1c(q), x2c(q), pc(q))

= (x1c(0), x2c(0), pc(0)).

Corollary 2.2. Assume that (2.1) and f2(λ
∗
1(0)) ≤ 1/f (g(1 − λ∗

1(0))). Then (1.3)
has a unique positive equilibrium for sufficiently small q > 0, but has no pos-
itive equilibrium for q = 0. Moreover, limq→0(x1c(q), x2c(q), pc(q)) = (1 −
λ∗

1(0), 0, g(1 − λ∗
1(0))).

The following two corollaries are generalizations of Theorems 4.2 and 4.3 of
[1] respectively.

Corollary 2.3. Assume that q > 0 and that (2.4) holds. Also assume that f2(1) <
1/f (1). Then (1.3) has a unique positive equilibrium.

Corollary 2.4. Assume that q ∈ (0, 1) and (2.4) hold. Also assume that λ∗
1(q) <

λ∗
2 < 1, where f2(λ

∗
2) = 1/f (1). Then (1.3) has a unique positive equilibrium.

In the rest of paper, we will drop q in x1c(q), x2c(q), pc(q) and λ∗
1(q) when-

ever no confusion can be made. Also, we use " (t) := (x1(t), x2(t), p(t)) and
Ec = (x1c, x2c, pc) to denote the solutions and the positive equilibrium of (1.3)
respectively for any given q as long as they exist. As in [1], the Jacobian of (1.3)
at Ec is given by

J =
(
m11 m12 0
m21 m22 m23
m31 0 m33

)
,

where

m11 = m12 = −(1 − q)x1c f
′
1(λ

∗
1),

m21 = −x2cf (pc) f
′
2(λ

∗
1)+ q f1(λ

∗
1)− qx1c f

′
1(λ

∗
1),

m22 = −x1c

x2c
qf1(λ

∗
1)− x2cf (pc) f

′
2(λ

∗
1)− qx1c f

′
1(λ

∗
1),

m23 = x2cf
′(pc) f2(λ

∗
1),

m31 = = −f3(pc),

m33 = −1 − f ′
3(pc)x1c.

We note that x2c in the denominator of the first term of m22 was missing in [1].
By the properties of f1 and f2, it follows that m11 = m12 < 0, m22 < 0, m23 <

0, m31 < 0, and m33 < 0. The characteristic equation of J is given

λ3 + B1λ
2 + B2λ+ B3 = 0,
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where

B1 = −m11 −m22 −m33,

B2 = m11(m22 −m21)+m33(m11 +m22), (2.13)

B3 = −m11m33(m22 −m21)−m12m23m31.

Clearly, B1 > 0. Since m22 −m21 = −q(1 + x1c
x2c

)
f1(λ

∗
1) < 0 and m11 = m12, we

can easily derive B2 > 0 and B3 > 0. Then by a simple argument or by directly
applying Routh Hurwitz criterion we obtain

Proposition 2.2. If B1B2 > B3, then Ec is asymptotically stable. If B1B2 < B3,
Ec is unstable with a one dimensional stable manifold, and J has a negative eigen-
value ρ.

3. Existence of periodic solutions

We first state our main result:

Theorem 3.1. Assume that q > 0 and that (2.4), (2.5), and

B1B2 < B3, (3.1)

hold. Assume also that

q <
f (pc(q))f

′
2(1 − x2c(q))

f1(1 − x2c(q))
x2c(q) =: ν1(q) (3.2)

holds, where Bi , i = 1, 2, 3 are given in (2.13). Then there exists a nontrivial peri-
odic solution of (1.3) lying in the interior of the box B. Moreover, all solutions of

(1.3) starting in
◦
B, except those in the stable manifold of Ec, oscillates eventually

in
◦
B with non-decaying amplitudes.

Remark 3.1. Assumptions (2.4), (2.5) and (3.1) are just used to guarantee the ex-
istence and instability of positive equilibrium. Since system (1.3) with q > 0 is not
competitive, the existence and instability of positive equilibrium is not, generally
speaking, sufficient to ensure the existence of periodic solutions for (1.3) and some
extra conditions are needed. Assumption (3.2) is just such a condition. Numerical
results shows that it is not the best possible conditions.

Corollary 3.1. Assume that q > 0 and that (2.4), (2.5), (2.8) and (3.1) hold. Assume
also that

q ≤ f (1)f ′
2(1 − ν(q))

f1(1 − ν(q))
ν(q) =: ν2(q), (3.3)

where ν(q) is defined in Theorem 2.2. Then the conclusions of the Theorem 3.1
hold.

Proof. By Theorem 3.1 it suffices to show that ν2(q) < ν1(q). This follows from
the facts that f1 is increasing and positive on (0,∞), f ′

2 is decreasing and positive
on (0,∞), 0 < ν(q) < x2c(q) from Theorem 2.2, and 0 < pc(q) < 1. ��
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Corollary 3.2. Assume that q ≥ 0 and (2.1), (2.2) and (3.1) hold. Then for suffi-
ciently small q > 0, the conclusions of Theorem 3.1 hold.

Proof. Since ν(0) = x2c(0) from Theorems 2.1 and 2.2, it follows that 0 < ν(0) <
1. Hence from the definition of ν2(0) in (3.3) we have ν2(0) > 0, and hence from
the continuity of ν2(q) with respect to q, (3.3) holds for sufficiently small q > 0.
Since (2.1), (2.2) and (3.1) implies that (2.4), (2.5), (2.8) and (3.1) also hold for
sufficiently small q > 0, Corollary 3.2 follows immediately from Corollary 3.1. ��
Corollary 3.3. In addition to the assumptions of Theorem 3.1, we assume that
f2(λ

∗
1(0)) ≤ 1/f (g(1 − λ∗

1(0))). Then the distance between any periodic solution
obtained in Theorem 3.1 and the point (1 − λ∗

1(0), 0, g(1 − λ∗
1(0))) goes to 0 as

q → 0.

Remark 3.2. Corollary 3.2 implies the existence part of Theorem 5.1 [1]. In this
case, the periodic solutions of (1.3) with q > 0 sufficiently small are bifurcated from
the periodic solutions of (1.3) with q = 0. Corollaries 3.3 and 2.2 imply that the pe-
riodic solutions and the positive equilibriums of (1.3) with q > 0 sufficiently small
are bifurcated simultaneously from the equilibrium (1 −λ∗

1(0), 0, g(1 −λ∗
1(0))) of

(1.3) with q = 0.

Before proving Theorem 3.1, we address how to check the conditions of Theo-
rem 3.1. For given fi , i = 1, 2, 3, f and q, most of the conditions in Theorem 3.1
are in term of λ∗

1(q) and (x1c(q), x2c(q), pc(q)), and therefore we have to compute
them in order to check those conditions. To compute (x1c(q), x2c(q), pc(q)), we
need to compute λ∗

1(q) first. Since, for most functions, the inverses of them (if they
have) cannot be calculated analytically, λ∗

1(q) = f−1
1 (1/(1 − q)), g(1 − λ∗

1(q)) =
h−1(1 − λ∗

1(q)) and g(x1c(q)) = h−1(x1c(q)) would most likely have to be done
numerically. Once λ∗

1(q) is known, it follows from Theorem 2.2 that we have to
solve the equation (2.7) for x1. This would also most likely have to be done nu-
merically. Next, by means of Mathematica we apply Theorem 3.1 to a concrete
case.

Example. Assume that f (p) = e−µp, fi(s) = mis/(ai + s) for i = 1, 2, and
f3(s) = δs/(K + s) with a1 = 3.5, a2 = 0.5, m1 = 6.0, m2 = 5.0, K = 0.1,
δ = 50.0, and µ = 5.0 as in [3]. In this case, g(x1) can be calculated explicitly,
given by

g(x1) = 1

2
[
√
(K − 1 + δx1)2 + 4K − (K − 1 + δx1)]. (3.4)

In order for q to satisfy the condition (2.4), it has to be 0 ≤ q ≤ 0.25. Set
q = 0.08. Using Mathematica, we get λ∗

1 = 0.774336, f2(λ
∗
1) = 3.03819, and

1/f (1) = eµ = 148.413. So the condition (2.5) holds. Again by Mathematica we
can calculate x1c = 0.0224377 from (2.7), x2c = 0.203226 and pc = 0.224182
from (2.6), and then B1B2 − B3 = −0.291389 < 0 and ν1 = 0.0885201 by their
definitions. Therefore, conditions (3.1) and (3.2) are also satisfied, and hence The-
orem 3.1 yields that there is a periodic solution for (1.3) with q = 0.08. By using
a numerical integration, we indeed can see the periodic solutions (see Figure 2).
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It is not surprising that Figure 2 is very similar to Figure 6.6 [3] since we take
the same set of parameters as those in [3] except now that q is not equal to 0 but
small. We have checked several other values of q smaller than 0.08, and all the
conditions of Theorem 3.1 are satisfied. However, we can not tell if that is true for
all q ∈ [0, 0.08]. Condition (3.2) fails at q = 0.1, though numerically periodic
solutions are found there. So apparently the condition (3.2) is not the best possible
condition.

Now we outline the proof of Theorem 3.1. From Theorem 2.2, the assumptions
(2.4) and (2.5) in Theorem 3.1 imply the existence of the unique positive equilib-
rium Ec, and from Proposition 2.2 the assumption (3.2) yields that Ec is unstable
with a 1-dimensional stable manifold. Letw be the eigenvector of J associated with
its negative eigenvalue ρ. Then it is easy to show that w has the form

w =
( m12

ρ−m11
1

m31
ρ−m33

· m12
ρ−m11

)
c, c ∈ (−∞,∞). (3.5)

We claim that m12
ρ−m11

> 0 and m31
ρ−m33

· m12
ρ−m11

> 0. It suffices to show that ρ −
m11 < 0 and ρ − m33 < 0. Let ρ2 and ρ3 be the other two eigenvalues of J.
Then ρ2 + ρ3 ≥ 0. Since ρ + ρ2 + ρ3 = m11 + m22 + m33, it follows that
ρ−m11 = m22 +m33 − (ρ2 +ρ3) ≤ m22 +m33 < 0 and, similarly, ρ−m33 < 0.
This confirms our claim. Therefore, it follows from this claim thatw points into the
positive octant if c > 0 and the negative octant if c < 0, where the octant is in the

Fig. 2. The graphs of solution (x1, x2, p).
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coordinates with the origin translated to Ec. Using the planes x1 = x1c, x2 = x2c
and p = pc we divide B into eight subsets Bijk , i, j, k = 0, 1 (see Figure 3), given
by

B100 = {(x1, x2, p) ∈ B : x1c ≤ x1 ≤ 1, 0 ≤ x2 ≤ x2c, 0 ≤ p ≤ pc},
B110 = {(x1, x2, p) ∈ B : x1c ≤ x1 ≤ 1, x2c ≤ x2 ≤ 1, 0 ≤ p ≤ pc},
B010 = {(x1, x2, p) ∈ B : 0 ≤ x1 ≤ x1c, x2c ≤ x2 ≤ 1, 0 ≤ p ≤ pc},
B011 = {(x1, x2, p) ∈ B : 0 ≤ x1 ≤ x1c, x2c ≤ x2 ≤ 1, pc ≤ p ≤ 1},
B001 = {(x1, x2, p) ∈ B : 0 ≤ x1 ≤ x1c, 0 ≤ x2 ≤ x2c, pc ≤ p ≤ 1},
B101 = {(x1, x2, p) ∈ B : x1c ≤ x1 ≤ 1, 0 ≤ x2 ≤ x2c, pc ≤ p ≤ 1},
B000 = {(x1, x2, p) ∈ B : 0 ≤ x1 ≤ x1c, 0 ≤ x2 ≤ x2c, 0 ≤ p ≤ pc},
B111 = {(x1, x2, p) ∈ B : x1c ≤ x1 ≤ 1, x2c ≤ x2 ≤ 1, pc ≤ p ≤ 1}.

To define the Poincâre map, we first define the surface H by

H = B110 ∩ B010.

Then, using the assumptions of Theorem 3.1 we can show by a series of lemmas
that any solution " (t) of (1.3) with " (0) ∈ H \ {0} will eventually come back to

Fig. 3. The sets H and Bijk (i, j, k = 0, 1).
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◦
H , the interior set of H , in the following way

H \ {0} →
{ ◦
B010◦
B011

→ ◦
B011 ↔ ◦

B001 → ◦
B101 → ◦

B100 ↔ ◦
B110 → ◦

H. (3.6)

Therefore, we can define the Poincare map P on H \ {0} by the first return point

of "(t) in
◦
H . We also define P(Ec) = Ec. The continuity of P on

◦
H follows

from the continuous dependence of solutions with respect to the initial data, while
the continuous of P at Ec can be shown from the facts that in a neighborhood of
Ec, system (1.3) is topologically equivalent to its linearized system since Ec is a
saddle point, and outside this neighborhood, solutions of (1.3) is continuous with
respect to the initial data. Therefore by Brouwer fixed point theorem P has at least
one fixed point on H . However, notice that Ec is a fixed point for P . Hence we
don’t know if there is another fixed point for P on H , and if it has, the solution of
(1.3) through this point is a nontrivial periodic solution since there is no any other
equilibrium point on H for (1.3). To show that P indeed has another fixed point,
we will use a similar idea to that used by Hastings and Murray [2], i.e. we will
find a simply connected closed subset G of H \ {Ec} such that P maps G to itself,
and hence P has a fixed point on G by applying the Brouwer fixed point to P |G
on G. The construction of G is similar to that employed in [2], and for reader’s
convenience, we will give its detail in the proof of Theorem 3.1.

The proof of (3.6) is accomplished by Lemmas 3.1-3.7. Lemma 3.1 shows that

the solution "(t) starting from the edge {p = pc} ∩ (H \ {Ec}) goes to
◦
B011

immediately and "(t) goes to
◦
B010 immediately if it starts from anywhere else in

H \ {Ec}. Lemma 3.2 shows that the solution starting from
◦
B010 leaves

◦
B010 at

some time t through the face
◦
B010 ∩ ◦

B011 and then goes into
◦
B011 immediately.

Lemma 3.3 shows that if the solution escapes from
◦
B011, it has to leave from the

face
◦
B011 ∩ ◦

B001. Then Lemma 3.4 shows that if the solution leaves from
◦
B001,

it will leave either through the face
◦
B011 ∩ ◦

B001 and then go to
◦
B011 immediately

or through the face
◦
B001 ∩ ◦

B101 and then go to
◦
B101 immediately. Therefore, it

may happen that the solution will move from
◦
B011 through the face

◦
B011 ∩ ◦

B001

to
◦
B001 forward and backward forever without leaving them, which is not desired.

We exclude this possibility in Lemma 3.5 and therefore the solution will eventually

go to
◦
B101 in a way of (3.6). The rest of (3.6) can be similarly proved and so we

just state the corresponding results in Lemmas 3.6 and 3.7 without their proofs.
We remark that the condition (3.2) is only used in the proof of Lemma 3.2 and

Lemma 3.7 to prevent orbits from
◦
B010 going to B000 and from

◦
B101 going to B111

respectively (note that the stable manifold of Ec of (1.3) lies in B000 and B111).

Lemma 3.1. Let " (0) ∈ H \ {Ec}. Then for t > sufficiently small ε > 0,

if p(0) = pc, then " (t) ∈ ◦
B011, and else, " (t) ∈ ◦

B010.
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Proof. According to the possible position of "(0) onH \{Ec}, we have to consider
the following 8 cases.

Case 1. Assume that

" (0) ∈ {x = x1c, x2 = x2c, p = 0}.
Then

x′
1(0) = x1c[(1 − q)f1(1 − x1c − x2c)− 1] = 0,

x′
2(0) = x2c[f (0)f2(λ

∗
1)− 1] + qf1(λ

∗
1)x1c

> x2c[f (pc)f2(λ
∗
1)− 1] + qx1cf1(λ

∗
1)

= 0,

p′(0) = 1,

and

x′′
1 (0) = −(1 − q)x1cf

′
1(λ

∗
1)x

′
2(0) < 0.

So " (t) ∈ ◦
B010 for all t > 0 but small.

Case 2. Assume that

" (0) ∈ {x1 = x1c, x2 = x2c, 0 < p < pc}.
Then, by a similar way to that in Case 1 we can show that

x′
1(0) = 0, x′

2(0) > 0, x′′
1 < 0.

Therefore "(t) ∈ ◦
B010 for all t > 0 small.

Case 3. Assume that

"(0) ∈ {x1 = x1c, x2c < x2 < 1 − x1c, p = 0}.
Then

x′
1(0) = x1c[(1 − q)f1(1 − x1c − x2(0))− 1]

< x1c[(1 − q)f1(1 − x1c − x2c)− 1]

= 0,

p′(0) = 1 > 0.

Hence, "(t) ∈ ◦
B010 for t > 0 small.

Case 4. Assume that

"(0) ∈ {x1 = x1c, x2c < x2 < 1 − x1c, 0 < p < pc}.
Then the same way as that in the proof of Case 3 yields x′

1(0) < 0, and hence

"(t) ∈ ◦
B010 for small t > 0.
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Case 5. Assume that

"(0) ∈ {x1 = x1c, x2c < x2 < 1 − x1c, p = pc}.

Then the same way as that in the proof of Case 3 yields x′
1(0) < 0. From the third

equation of (1.3) one gets p′(0) = 0 and p′′(0) = −f3(pc)x
′
1(0) > 0. Hence

"(t) ∈ ◦
B011 for t > 0 small.

Case 6. Assume that

"(0) ∈ {x1 = x1c, x2 = 1 − x1c, p = 0}.

Then from (1.3) and the fact that f1(0) = f2(0) = 0, we get

x′
1(0) = x1c[(1 − q)f1(0)− 1] = −x1c < 0,

x′
1(0)+ x′

2(0) = −x1c − x2c < 0,

p′(0) = 1 > 0,

and then, noting that x2(0) = 1 −x1c > 1 −λ∗
1 −x1c = x2c, we have "(t) ∈ ◦

B010
for t > 0 small.

Case 7. Assume that

"(0) ∈ {x1 = x1c, x2 = 1 − x1c, 0 < p < pc}.

Then the same way as that in the proof of Case 6, we get

x′
1(0) < 0, x′

1(0)+ x′
2(0) < 0, x2(0) > x2c.

Hence "(t) ∈ ◦
B010 for t > 0 small.

Case 8.

"(0) ∈ {x1 = x1c, x2 = 1 − x1c, p = pc}.

Then from the proof of Case 6, x′
1(0) < 0, and x′

1(0)+ x′
2(0) < 0. From the third

equation of (1.3), it follows that p′(0) = 0 and p′′(0) = −f3(pc)x
′
1(0) > 0.

Therefore "(t) ∈ ◦
B011 for t > 0 small.

Checking the above cases, we see that p(0) = pc occurs only in Cases 5 and

8, both of which yield " (t) ∈ ◦
B011, while all other cases yield " (t) ∈ ◦

B010 for all
small t > 0. This completes the proof of Lemma 3.1. ��

Lemma 3.2. Let "(0) ∈ ◦
B010. Then there is t0 > 0 such that "(t) ∈ ◦

B010 for
t ∈ [0, t0), "(t0) ∈ ∂B010 with 0 < x1(t0) < x1c, x2(t0) > x2c and p(t0) = pc,

p′(t0) > 0, and "(t) ∈ ◦
B011 for t ∈ (t0, t0 + ε) and sufficiently small ε > 0.
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Proof. First, we show that "(t) cannot stay in
◦
B010 for all t > 0. Suppose that the

claim is not true. Then for all t ≥ 0

p′ = 1 − p − f3(p)x1 > 1 − p − f3(p)x1c > 1 − pc − f3(pc)x1c = 0,

and hence p(t) → p ∈ (0, pc]. We show that p = pc. Since 0 <
∫∞

0 p′(t) dt =
p̄ − p(0) < ∞ and p′′ = −p′ − f3(p)p

′x1 − f3(p)x
′
1 is bounded on [0,∞), it

follows by a simple argument that p′(t) → 0 as t → ∞, and hence from the third
equation of (1.3) we get x1(t) → 1−p̄

f3(p̄)
=: x̄ as t → ∞. Then, using the function

1−p
f3(p)

is decreasing in (0, 1] and 0 < p̄ ≤ pc < 1, we have x̄ ≥ x1c. However,

x1(t) ≤ x1c for all t > 0 yields x̄ ≤ x1c. Therefore, it must be x̄ = x1c, which, in
turn, yields from the definition of x̄ that p̄ = pc. Then from the first equation of
(1.3), we get x2(t) → x2c as t → ∞. So "(t) → Ec as t → ∞ and so "(t) lies
on the stable manifold of Ec, which contradicts that the stable manifold of Ec does
not lie in B010. Therefore there exists a first time t0 > 0 such that "(t0) ∈ ∂B010.

Next, we show that 0 < x1(t0) < x1c, x2c < x2(t0) and so, from Proposi-
tion 2.1, it must be p(t0) = pc. Suppose that x1(t0) = x1c. Then x′

1(t0) ≥ 0.
However, if x2(t0) > x2c,

x′
1(t0) = x1c[(1 − q)f1(1 − x1c − x2(t0))− 1]

< x1c[(1 − q)f1(1 − x1c − x2c)− 1] = 0,

which yields a contradiction; if x2(t0) = x2c, then p(t0) < pc, and from (1.3)

x′
1(t0) = 0,

x′
2(t0) = x2c[f (p(t0)) f2(λ

∗
1)− 1] + x1cqf1(λ

∗
1)

> x2c[f (pc) f2(λ
∗
1)− 1] + x1cqf1(λ

∗
1) = 0,

which again contradictsx′
2(t0) ≤ 0. Sincex2(t0) ≥ x2c, it follows that 0 < x1(t0) <

x1c.
To show x2(t0) �= x2c, we again use contradiction. Suppose that x2(t0) = x2c.

Then

x′
2(t0) ≥ x2c[f (pc) f2(1 − x1(t0)− x2c)− 1] + qx1(t0)f1(1 − x1(t0)− x2c)

:= F3(x1(t0)).

We show that F ′
3(x1) < 0 for x1 ∈ [0, 1 − x2c) by (3.2). In fact, since f ′

2(x) > 0
and f ′′

2 (x1) < 0 for all x1 > 0, it follows that f ′
2(1 − x1 − x2c) > f ′

2(1 − x2c) and
f1(1 − x1 − x2c) < f1(1 − x2c) for x1 ∈ [0, 1 − x2c). Therefore, by (3.2) we have
for x1 ∈ [0, 1 − x2c),

F ′
3(x1) = −x2cf (pc) f

′
2(1 − x1 − x2c)+qf1(1 − x1 − x2c)−qx1f

′
1(1 − x1 − x2c)

≤ −x2cf (pc)f
′
2(1 − x2c)+ qf1(1 − x2c) < 0.

ThereforeF3(x1(t0)) > F3(x1c) = 0 and so x′
2(t0) > 0, which contradicts x′

2(t0) ≤
0. Thus, x2(t0) > x2c.
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Finally, from the third equation of (1.3) we get

p′(t0) = 1 − pc − f3(pc)x1(t0) > 1 − pc − f3(pc)x1c = 0,

which together with the position of "(t0) yields "(t) ∈ ◦
B011 for t ∈ (t0, t0 + ε)

and small ε > 0. This completes the proof of Lemma 3.2. ��

Lemma 3.3. Let"(0) ∈ ◦
B011. Assume that there is t0 > 0 such that"(t0) ∈ ∂ B011

and "(t) ∈ ◦
B011 for t ∈ [0, t0). Then

0 < x1(t0) < x1c, x2(t0) = x2c, pc < p(t0) < 1,

and, either "(t) ∈ ◦
B001 or "(t) ∈ ◦

B011 for t ∈ (t0, t0 + ε) and sufficiently small
ε > 0.

Proof. First, suppose p(t0) = pc. Then if x1(t0) < x1c,

p′(t0) = 1 − pc − f3(pc)x1(t0) > 1 − pc − f3(pc)x1c = 0.

which contradicts p′(t0) ≤ 0; else if x1(t0) = x1c, then x2(t0) > x2c and then

x′
1(t0) = x1c[(1 − q)f1(1 − x1c − x2(t0))− 1]

< x1c[(1 − q)f1(1 − x1c − x2c)− 1] = 0, (3.7)

which contradicts x′
1(t0) ≥ 0. So p(t0) > pc.

Next, assume that x1(t0) = x1c. Then if x2(t0) > x2c, then (3.7) holds, which
contradicts x′

1(t0) ≥ 0. Therefore if x1(t0) = x1c, it must be x2(t0) = x2c. Then
from (1.3) we get x′

1(t0) = 0, x′
2(t0) < 0 (since p(t0) > pc), and x′′

1 (t0) =
−(1 − q)x1cf

′
1(1 − λ∗

1) x
′
2(t0) > 0, which implies that x1(t) > x1c for t < t0,

contradicting "(t) ∈ ◦
B011 for t < t0. Therefore, x1(t0) < x1c.

Hence, it follows from"(t0) ∈ ∂B011 that x2(t0) = x2c. Since the sign of x′
2(t0)

cannot be determined from (1.3) and the solution cannot stay in the face x2 = x2c,
the lemma 3.3 follows. ��

Lemma 3.4. Let "(0) ∈ ◦
B001. Assume that there is a t0 > 0 such that "(t0) ∈

∂ B001. Then p(t0) > pc, and, for t ∈ (t0, t0 + ε) with ε > 0 small,

either "(t) ∈ ◦
B001, or "(t) ∈ ◦

B011, or "(t) ∈ ◦
B101.

Moreover, if the last case occurs, then x1(t0) = x1c, x2(t0) < x2c and x′
1(t0) > 0,

and "(t) passes through the face
◦
B001 ∩ ◦

B101 transversally from
◦
B001 into

◦
B101.

Proof. Suppose p(t0) = pc. Then, if x1(t0) < x1c,

p′(t0) = 1 − pc − f3(pc)x1(t0) > 1 − pc − f3(pc)x1c = 0,
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which contradicts p′(t0) ≤ 0. Assume that x1(t0) = x1c. Then from (1.3), p′(t0) =
0, and

x′
1(t0) = x1c[(1 − q)f1(1 − x1c − x2(t0))− 1]

> x1c[(1 − q)f1(1 − x1c − x2c)− 1]

= 0 (since now x2(t0) < x2c),

and so p′′(t0) = −f3(pc)x
′(t0) < 0, which combining with p′(t0) = 0 implies

p(t0) = pc is a local maximum of p(t), contradicting p(t) > pc for t < t0.
Therefore p(t0) > pc.

Suppose x1(t0) = x1c. If x2(t0) = x2c, then

x′
2(t0) = x2c[f (p(t0))f2(λ

∗
1)− 1] + qx1cf1(λ

∗
1)

< x2c[f (pc)f2(λ
∗
1)− 1] + qx1cf1(λ

∗
1) = 0, (3.8)

contradicting x′
2(t0) ≥ 0. Hence x2(t0) < x2c, and then

x′
1(t0) = x1c[(1 − q)f1(1 − x1c − x2(t0))− 1]

> x1c[(1 − q)f1(1 − x1c − x2c)− 1] = 0,

which together with p(t0) < pc, as we just proved, implies "(t) ∈ ◦
B101 for

t ∈ (t0, t0 + ε) and small ε > 0.
Suppose now that x2(t0) = x2c. From (3.8) it follows that x1(t0) < x1c. Since

also p(t0) > pc, the sign of x′
2(t0) cannot be determined from (1.3): either x′

2(t0) ≤
0 or x′

2(t0) > 0. Therefore we have "(t) ∈ (
◦
B011 ∪ ◦

B001) for t ∈ (t0, t0 + ε) and
small ε > 0.

Combining above results and Proposition 2.1, Lemma 3.4 follows. ��

Lemma 3.5. Let "(0) ∈ B̃ := ◦
B011 ∪ ◦

B001 ∪ ({0 < x1 < x1c, x2 = x2c, pc <

p < 1} ∩ B), and t0 = sup{t > 0 : "(s) ∈ B̃ for s ∈ ([0, t)}. Then t0 < ∞,

"(t0) ∈ ◦
B001 ∩ ◦

B101, x′
1(t0) > 0, and "(t) ∈ ◦

B101 for t ∈ (t0, t0 + ε) and small
ε > 0.

Proof. Write B̃ = D1 ∪ D2, where D1 = {x1 + x2 ≥ 1 − λ∗
1} ∩ B̃ and D2 =

{x1 + x2 < 1 − λ∗
1} ∩ B̃ (see Figure 4).

Then in D1, x′
1 ≤ x1[(1 − q)f1(λ

∗
1) − 1] = 0 and, similarly, x′

1 > 0 in D2.
We claim that once "(t) enters into D2, then "(t) will not enter D1 without leav-
ing B̃. Suppose that the claim is not true. Then there is the smallest t1 > 0 such
that x1(t1) + x2(t1) = 1 − λ∗

1 and p(t1) > pc, and hence the first equation of
(1.3) yields x′

1(t1) = 0. Notice that from the second equation of (1.3) we have

f (pc)f2(λ
∗
1)− 1 = − qx1cf1(λ

∗
1)

1−x1c−λ∗
1

. Then

x′
2(t1) = x2(t1)[f (p(t1))f2(λ

∗
1)− 1] + qx1(t1)f1(λ

∗
1)

< (1 − x1(t1)− λ∗
1)[f (pc)f2(λ

∗
1)− 1] + qx1(t1)f1(λ

∗
1)
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Fig. 4. The sets D1 and D2.

= 1 − x1(t1)− λ∗
1

1 − x1c − λ∗
1
(−qx1cf1(λ

∗
1))+ qx1(t1)f1(λ

∗
1)

= qf1(λ
∗
1)
(x1(t1)− x1c)(1 − λ∗

1)

1 − x1c − λ∗
1

≤ 0, (3.9)

and hence (x1 + x2)
′(t1) < 0, contradicting (x1 + x2)

′(t1) ≥ 0. This affirms our
claim.

Suppose that Lemma 3.5 is not true. Then "(t) either stays in D1 forever, or
stays in D2 after some time t̃ ≥ 0. In both cases, we have that x1(t) is monotone
after t̃ and so x1(t) → x1 ∈ [0, x1c] as t → ∞. Hence

|
∫ ∞

t̃

|x ′
1(t)| dt | = |

∫ ∞

t̃

x′
1(t) dt | = |x1(∞)− x1(t̃)| < ∞.

Since |x′′
1 (t)| is bounded on [0,∞) it follows that x′

1(t) → 0 as t → ∞ and so
limt→∞[(1−q)f1(1−x1(t)−x2(t))−1] = 0 and so limt→∞(1−x1(t)−x2(t)) =
λ∗

1, and so limt→∞ x2(t) = 1 − λ∗
1 − x̄1 := x̄2. Then from the third equation of

(1.3) we can get limt→∞ p(t) = p̄ ∈ [pc, 1]. (x̄1, x̄2, p̄) cannot be Ec because
of the directions of stable manifold of Ec. So (x̄1, x̄2, p̄) = (0, 0, 1), or (0, x̃2, 1)
where x̃2 = 1 − f−1

2 (1/f (1)) < 1 − λ∗
1, which are another two equilibrium points

of (1.3) in D̄2. But then from (2.4) we have in both cases that

x′
1 = x1[(1 − q)f1(1 − x1 − x2)− 1] >

(1 − q)f1(λ
∗
1(q))

2
x1 = 1

2
x1

for sufficiently large t > 0, and then x1(t) > const · e 1
2 t → ∞ as t → ∞, con-

tradicting x̄1 = 0 in both cases. Therefore,"(t)will leave B̃ eventually. Lemma 3.3
and Lemma 3.4 yield Lemma 3.5. ��

By the similar ways to the proofs of the above lemmas, we can get the following
two lemmas, thereby completing the proof of (3.6).

Lemma 3.6. Let "(0) ∈ ◦
B101. Then, there is a t0 > 0 such that "(t) ∈ ◦

B101 for

t ∈ [0, t0),"(t0) ∈ ◦
B101∩

◦
B100 withp′(t0) < 0, and"(t) ∈ ◦

B100 for t ∈ (t0, t0+ε)
and small ε > 0.
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Fig. 5. The sets H and G, the curve r .

Lemma 3.7. Let "(0) ∈ B̃ ′ = ◦
B100 ∪ ◦

B110 ∪ ({x2 = x2c, x1c < x1 < 1 −x2c, 0 <
p < pc} ∩ B). Then, there exists t0 > 0 such that "(t) ∈ B̃ ′ for t ∈ [0, t0),

"(t0) ∈ ◦
H , x′

1(t0) < 0, and "(t) ∈ ◦
B010 for t ∈ (t0, t0 + ε) and small ε > 0.

Now we are in the position to prove Theorem 3.1.

Proof of Theorem 3.1. From the above lemmas and (3.6), it follows that for"(0) ∈
H \ Ec, there is a smallest T = T ("(0) > 0 with "(T ) ∈ H . We then define the
Poincare mapping P on H by

P("(0)) = "(T ) if "(0) �= Ec, P (Ec) = Ec.

The continuity of P on H \ Ec follows from x′
1(T ) < 0 and the implicit function

theorem.
We next show by construction that there is a simply connected closed set G ⊂

H \ {Ec} such that P maps G into itself. Once this is done, Brouwer fixed point
theorem yields thatP |G has a fixed point inG and the solution of (1.3) through such
a fixed point is a nontrivial periodic solution of (1.3). The following construction of
G follows essentially from Hastings and Murray [2]. The idea is to show that there
is a simple continuous curve γ in H with the following properties (see Figure 5):

(a) γ does not contain Ec;
(b) γ lies in the interior of H except for its endpoints, which lies in the faces

x = x2c and p = pc respectively;
(c) Define the region G to be the one of the two subregions of H divided by γ

which does not contain Ec.
Therefore, it remains to show the existence of the curve γ . In order to to do

that, we rewrite the system (1.3) around Ec. Let J denote, as before, the matrix for
the linearized system of (1.3) at Ec. Since J has one negative eigenvalue and either
two positive eigenvalues, which are possibly equal, or two complex conjugate ei-
genvalues with positive real part, it follows from linear algebra that there is a real
nonsingular matrix S = {sij }3×3 with (s11, s21, s31)

T = w such that

S−1JS = K,
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where w is given in (3.5) with c = 1 and K has the form

K =
(
ρ 0 0
0 r1 σ1
0 −σ2 r2

)
,

where ρ < 0 is the negative eigenvalue of J and r1, r2, σ1 and σ2 are determined
by the following three cases:

case (i) r1 = r2 = r > 0, σ1 = σ2 = σ > 0, where r ± iσ are the complex
conjugate eigenvalues of J with positive real part;

case (ii) r1 > 0, r2 > 0, where r1 and r2 are two positive eigenvalues of J;
case (iii) r1 = r2 = r > 0, σ1 = ε > 0, σ2 = 0, where r is the positive

eigenvalue of J with multiplicity of 2 and ε > 0 can be arbitrarily small.
If we let u = (x1, x2, p) and set v = S−1 (u − Ec), then the system (1.3) can

be written in the form
v′ = Kv + h(v) (3.10)

where

lim
‖v‖→0

h(v)

‖v‖ = 0.

Let L denote the line in R3 through Ec and parallel to the eigenvector w of J cor-
responding to ρ. Consider the cylinder Cα , for any α > 0, whose axis is v1-axis
and whose equation in the v coordinate system is

v2
2 + v2

3 = α.

Since S · (v1, 0, 0)T = v1(s11, s21, s31)
T = v1w

T , it follows that each C′
α =

S−1 · Cα + Ec, is a cylinder in (x1, x2, p)-space with elliptical cross section and
axis L (see Figure 6). Along solution curves of (3.10), as ‖v‖ → 0,

(v2
2 + v2

3)
′ = 2r(v2

2 + v2
3)+ o(‖v‖2)

provided that case (i) occurs,

(v2
2 + v2

3)
′ = 2r1v

2
2 + 2r2v

2
3 + o(‖v‖2)

provided that case (ii) occurs, and

(v2
2 + v2

3)
′ = 2r(v2

2 + v2
3)+ 2εv2v3 + o(‖v‖2)

provided that case (iii) happens.
From our choice that c = 1 in (3.5), the eigenvector w has positive compo-

nents, and hence (L ∩ ◦
B) \ {Ec} ⊂ ◦

B000 ∪ ◦
B111. Therefore, C′

α intersects each
ui-axis for i = 1, 2, 3, and hence the boundary ∂Aα ⊂ C′

α provided that α > 0

is so small that Aα ∩ ∂B = ∅, where Aα := [B \ ( ◦
B000 ∪ ◦

B111 ∪ {Ec})] ∩ C′
α .

Hence, we have v2
2 + v2

3 = α for u ∈ ∂Aα . And hence for u ∈ ∂Aα , we have
v2

1 ≤ K1 − (v2
2 + v2

3) = K1 − α, where K1 > 0 is the constant such that |v| ≤ K1
for v satisfying v(u) ∈ B, and then

v2
2 + v2

3 = α = α

K1 − α
(K1 − α) ≥ α

K1 − α
v2

1 =: δv2
1,
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Fig. 6. The cylinders Cα and C ′
α .

and then

(v2
2 + v2

3)
′ ≥ (2r̃ − ε)(v2

2 + v2
3)+ o(v2

2 + v2
3),

where r̃ = r if the case (i) or (iii) occurs, and r̃ = min{r1, r2} if case (ii) oc-
curs. Therefore, by setting ε < 2r̃ , we have that the solution of (1.3) starting in

B \ ( ◦
Aα ∪ ◦

B000 ∪ ◦
B111 ∪ {Ec}) will remain inside itself. Now, we fix a sufficiently

small α > 0 and then define γ = C′
α ∩H = ∂Aα ∩H . Since C′

α and H are both
simply connected sets, it follows that γ is a continuous curve. From our construc-
tion, γ also satisfies all other requirements (a), (b) and (c) as mentioned above. This
completes the proof of Theorem 3.1. ��

4. Discussion

The main result of the paper provides a set of sufficient conditions for the exis-
tence of periodic solutions of System (1.3). Though those conditions are not easily
checked analytically, they are verifiable, at least numerically as demonstrated. Our
result does not provide any information about the stability of the periodic solutions.

However, it does show that most solutions starting in
◦
B oscillate eventually in the

way as described in (3.6) with finite non-zero amplitudes. This implies that the pla-
smid-bearing population survives and the host cells do not loose the plasmid and
revert to their unaltered phenotype, the plasmid-free cells, which is the interesting
part to the model considered. We hope that the parameters satisfying our main result
fall within the realistic range of interest to biologists.
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