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1. INTRODUCTION

The skin of vertebrates, as the largest organ of the body, forms many spe-
cialized structures, for example, hair, scales, feathers, and glands, which are
distributed over the skin in highly ordered fashion. The mechanisms involved
in the formation and distribution of these appendages are not well under-
stood, and, various mathematical models have been proposed for the purpose
of the understanding of these mechanisms (see [11] and references therein).

Vertebrate skin is composed of two layers—the epidermis and the dermis.
There is sound biological evidence that skin organ formation typically occurs
due to interaction between these two layers. Based on this fact, Cruywagen
and Murray [3] proposed a tissue interaction model for vertebrate skin
pattern morphogenesis by using a mechanochemical mechanism to describe
epithelial sheet motion and a reaction-diffusion-chemotaxis mechanism to
model the dermal cell movements. Tissue interaction is introduced by the
morphogens produced separately in the dermis and the epithelium. Those



morphogens diffuse across the basal lamina, which separates the epidermis
and the dermis, and induce cell movements and deformation. The model con-
sists of seven coupled nonlinear partial differential equations: four to
describe the production, degradation, and diffusion of the chemicals within
and between layers, two conservation equations for dermal and epidermal cell
densities, and a force balance equation for modelling stress in the epithelium.
While the full system is too complicated to render any useful mathematical
analysis, a special case of the model in one space dimension was considered
in [3–5] where the full model is reduced into a system of two partial differ-
ential equations, which, after non-dimensionalization, has the form:

b
“

4h̃

“x4 − m
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“t “x2 −
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4 , (1.1)
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3 ñ
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1 1 − h̃

1+cñ
24 , (1.2)

where h̃ stands for the epithelial dilation, ñ stands for the dermal cell density,
and, b, m, r, y, n, a, c are positive constants. We refer the readers to [3–5]
and the references therein for a detailed derivation of the model and its
biological background.

As a natural biological object in tissue interactions, the phenomenon of
travelling waves for the system (1.1)–(1.2) was first investigated by
Cruywagen, Maini, and Murray [4]. The travelling wave fronts (h̃(z̃), ñ(z̃))
satisfy a system of ordinary differential equations in z̃ and a pair of bound-
ary conditions at z̃= ± .:

b
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dz̃ 4 − mc
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3 ñ

1+n(1 − h̃)
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dñ
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+ñ(1 − ñ)=a
d
dz̃

3 ñ
d
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1 1 − h̃

1+cñ
24 , (1.4)

lim
z Q − .

(h̃, ñ)=(0, 0), lim
z Q .

(h̃, ñ)=(0, 1), (1.5)

where z̃=x+ct and c > 0 is a travelling wave speed. Note that if a=0, then
(1.4) decouples from (1.3) and becomes the classical Fisher equation which is
known to exhibit travelling wave solutions only with wave speed c \ 2.
Based on this observation and the local stability analysis at the equilibria of
(1.3)–(1.4), it was conjectured in [4] that (1.3)–(1.5) admit solutions for suf-
ficiently large c. This motivates the re-scalings:

h̃(z̃)=
y

rc2 h(z), ñ(z̃)=n(z), z̃=cz, e=
1
c2 ,

518 Ai, Chow, and Yi



which reduce the equations (1.3)–(1.5) into the following singularly per-
turbed system:

be2 d4h

dz4 − me
d3h

dz3 − e
d2h

dz2+rh=r
d2

dz2
3 n

1+n(1 − eyr1h)
4 , (1.6)

e
d2n
dz2 −

dn
dz

+n(1 − n)=ea
d
dz

3n
d
dz

11 − eyr1h

1+cn
24 , (1.7)

lim
z Q − .

(h, n)=(0, 0), lim
z Q .

(h, n)=(0, 1), (1.8)

where r1=1/r and e is sufficiently small. By using regular series expansions
of the form

h(z)=h0(z)+eh1(z)+ · · · , n(z)=n0(z)+en1(z)+ · · · ,

an approximation to the solutions of (1.6)–(1.8) is obtained in [4], provided
that they exist. In particular, the O(1) terms of the above approximation
read

h0=
1

1+n

d2n0

dz2 ,
dn0

dz
=n0(1 − n0). (1.9)

Hence with the initial condition n0(0)=1
2,

n0(z)=ez/(1+ez). (1.10)

Based on the contraction mapping principle, a rigorous proof of the exis-
tence of solutions (he, ne) to (1.6)–(1.8) was recently obtained in [1].
However, it was unknown that whether the wave solutions obtained in [1]
are biologically meaningful in the sense that the density ne should always stay
between 0 and 1, and, the dilation he should not tend to 0 in an oscillatory
manner as z Q ± .. The non-oscillatory behavior of (he, ne) is also an
important issue when the stability of (he, ne) is considered, because an oscil-
latory wave solution can be unstable even in the sense of weighted norms (see
Chapter 5 in [8]).

In this paper, we will use the geometric theory of singular perturbations
to give a new proof for the existence of (he, ne). Not only is the new proof
much simpler than that in [1] but also it provides more physical and geo-
metrical insight into the wave solutions. For instance, we will actually show
that 0 < ne < 1 on (−., .) and he is non-oscillatory as z Q ± .. Using the
geometric theory, we will also obtain a global uniqueness result for n=0
within the class of physical solutions.
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The main result of the paper is the following:

Theorem. Let h0 and n0 be as in (1.9), (1.10) respectively. Then the
following holds for e sufficiently small.

(i) There is a unique solution (he, ne) to (1.6)–(1.8) that satisfies
ne(0)=1

2, n −

e > 0 on (−., .), and

: d j

dz j (he(z) − h0(z)): [ Cje, : d j

dz j (ne(z) − n0(z)): [ Cje,
(1.11)

for all z ¥ (−., .) and j=0, 1,..., where, for each j, Cj > 0 is a
constant independent of e. Moreover, (he, ne) has the following
asymptotic behavior:
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as z Q − ., and,
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as z Q ., where, cj − , lj − (j=1, 2, 3), c1+, d1+, l1+ are constants
such that c1 − > 0, |c2 − |+|c3 − | ] 0, c1+ < 0, and, as e Q 0,

l1 − ’ 1, l2 − ’ 3= r

me
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be
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where

L=
(1+c)2

(1+c)2+ac
, k=

ayL2

(1+c)(1+n)
.

Hence he is non-oscillatory as z Q ± ..

(ii) If n=0, then the solution to (1.6)–(1.8) is globally unique in
the class of physical solutions, that is, if (he, ne) and (h̃e, ñe)
are two solutions of (1.6)–(1.8) with 0 < ne < 1, 0 < ñe < 1 and
ñe(0)=n(0), then (h̃e, ñe)=(he, ne).

The geometric theory of singular perturbations has proven to be a
powerful tool in the study of the existence of connecting orbits in singularly
perturbed systems (see [9] and the references therein). However, although
solutions to (1.6)–(1.8) are connecting orbits for (1.6)–(1.7), their existence
does not directly follow from the geometric theory due to the appearance of
multiple time scales in our problem. A key idea in the proof of our main
result is to apply the geometric theory of singular perturbations twice, in
order to separate different fast time scales in our system. We refer the readers
to [2, 6, 8–10, 12] and the references therein for general literature of the
geometric theory of singular perturbations and its applications.

The rest of the paper is devoted to the proof of our main result. In Sec-
tion 2, we reformulate the system (1.6)–(1.8) into an equivalent system. The
problems of existence and uniqueness of solutions for the new system will be
treated in Section 3 and Section 4 respectively. Our proof for the uniqueness
of solutions is motivated by that of [7], along with the application of two
lemmas proved in [1]. For the reader’s convenience, we include these
lemmas in the Appendix.

2. AN EQUIVALENT SYSTEM

Let v :=>z
−. >t

−. h(g) dg dt. Then it is to be seen that the system
(1.6)–(1.8) is equivalent to the following system:

be2 d4v
dz4 − me

d3v
dz3 − e

d2v
dz2+rv=

rn
1+n(1 − eyr1vœ)

, (2.1)

e
d2n
dz2 −

dn
dz

+n(1 − n)=ea
d
dz

3n
d
dz

11 − eyr1vœ

1+cn
24 , (2.2)

lim
z Q − .

(v, n)=(0, 0), lim
z Q .

(v, n)=1 1
1+n

, 12 . (2.3)
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Consequently, our main result stated in the previous section can be re-for-
mulated with respect to the new system as follows.

Theorem 2.1. Let v0=n0/(1+n) and e be sufficiently small. Then the
following holds for (2.1)–(2.3).

(i) There exists a unique solution (ve, ne) which satisfies ne(0)=1
2 and

: d j

dz j (ve(z) − v0(z)): [ Cje, : d j

dz j (ne(z) − n0(z)): [ Cje, (2.4)

for all z ¥ (−., .) and j=0, 1,..., where, for each j, Cj > 0 is a
constant independent of e. Moreover, n −

e > 0, ve > 0, v −

e > 0 on
(−., .), and

ve(z)=
ne(z)
1+n

+O(e), ne(z)=
e (1+O(e)) z

1+e(1+O(e)) z , − . < z < ..
(2.5)

(ii) If n=0, then the solution (ve, ne) is globally unique within the class
of physical solutions in the sense that whenever (ve, ne) and (ṽe, ñe)
are two solutions of (2.1)–(2.3) with 0 < ne < 1, 0 < ñe < 1, and
ñe(0)=n(0), then (ṽe, ñe)=(ve, ne).

Theorem 2.1 does imply our main result except the formulas (1.12) and
(1.13). We note that a solution (ve, ne) of (2.1)–(2.3) given in part (i) of
Theorem 2.1 clearly yields a solution (he, ne) :=(v'

e , ne) of (1.6)–(1.8) which
satisfies (1.11). Conversely, if (h, n) is a solutions to (1.6)–(1.8), then
(v, n), where v=>z

−. >t
−. h(g) dg dt, is a solution to (2.1)–(2.3). This

assertion follows from the fact that limz Q . v=1/(1+n), which follows
from Lemma 5.1 with f= rn

1+n(1 − eyr1h). Thus, the uniqueness results in
both parts of our main result follows from the corresponding parts in
Theorem 2.1.

The formulas (1.12) and (1.13) follow from a local analysis at the equi-
libria of (1.6)–(1.7) similar to [1]. The fact c1+ < 0 simply follows from the
property that ne < 1.

3. EXISTENCE

In order to apply the geometric theory of singular perturbations, we
first write (2.1)–(2.2) into the following first order system:
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˛
dv −

1=v2,
dv −

2=v3,
dv −

3=v4,

d3v −

4=−rv1+dv3+mv4+
rn

1+n(1 − dy r1v3)
,

nŒ=m,
d3mŒ=G(v1, v2, v3, v4, n, m, d),

(3.1)

where d :=e1/3,

G(v1, v2, v3, v4, n, m, d)

:=
1

(1+G1(v3, n, d))
3 − n(1 − n)+m −

d3ayr1mv4

1+cn
−

d3acm2(1 − yr1 dv3)
(1+cn)2

+
2ayr1cmn d3v4

(1+cn)2 +
2ac2 d3m2n(1 − yr1 dv3)

(1+cn)3 −
ayr1n
1+cn

×5− rv1+dv3+mv4+
rn

1+n(1 − dy r1v3)
64 ,

G1(v3, n, d) :=
acn(1 − dy r1v3)

(1+cn)2 .

Let x=(v4, m), y=(v1, v2, v3). The above system becomes

˛d3xŒ=f(x, y, n, d),

dyŒ=g(x, y, n, d),

nŒ=h(x, y, n, d),

(3.2)

where f, g, h are defined by the right-hand sides of (3.1) respectively. We
note that z is the slow variable and x and y are fast variables, however, of
different scales with respect to small d, that is, x is faster than y.

One important component of the geometric theory of singular pertur-
bations is the Fenichel’s invariant manifold theorem which requires the
normal hyperbolicity of the critical manifold in a singularly perturbed
system ([6]). Due to the appearance of two time scales, the critical mani-
fold associated to (3.2) fails to be normally hyperbolic. To resolve this
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problem, we first introduce the new independent variable z1 :=z/d2 to
reduce (3.2) to

˛d
dx
dz1

=f(x, y, n, d),

dy
dz1

=dg(x, y, n, d),

dn
dz1

=d2h(x, y, n, d),

(3.3)

in which x becomes the only fast variable and (y, n) is the slow variable. Let
d=0 in (3.3). The associated critical manifold can be solved from
f(x, y, n, 0)=0 which yields

x=x0(y, n)=1r

m
1v1 −

n
1+n

2 , n(1 − n)2 .

Consider the following bounded portion of this manifold:

X0=3(x, y, n) : x=x0(y, n), :v1 −
n

1+n
: [ 1, |v2 | [ 1, |v3 | [ 1, −g [ n [ 24 ,

where g is chosen to be a small (but fixed) positive number that satisfies
1+cn > 1/2 and 1+ cn

(1+cn)2 > 1/2 when n > − g. Such choice of g ensures
the smoothness of G in (3.1) in the vicinity of X0. Since

Dx f(x, y, n, 0)=Rm 0

f
1

1+ acn

(1+cn)2

S ,

X0 satisfies the normal hyperbolic condition required by the Fenichel’s
theorem, and hence there exists a normally hyperbolic invariant manifold Xd

of (3.3), called slow manifold, such that

Xd=3(x, y, n): x=xd(y, n), :v1 −
n

1+n
: [ 1,|v2 | [ 1, |v3 | [ 1, −g [ n [ 24,

where xd(y, n) :=(v4(y, n, d), m(y, n, d))=x0(y, n)+O(d). In order to
obtain (2.5) we need a more accurate formula for xd. By the (local)
invariance of flows of (3.3) on Xd, we have
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˛v4(y, n, d)=
r

m
1v1 −

n
1+n

2−
1
m
51+

nyn
(1+n)2

6 v3d

+
1
m
5rv2

m
−

n2y2r1v2
3n

(1+n)3
6 d2+O(d3),

m(y, n, d)=n(1 − n)+
ayv2n

m(1+cn)
d2+O(d3).

(3.4)

Since the equilibria (0, 0, 0, 0, 0, 0) and (1/(1+n), 0, 0, 0, 1, 0) of (3.3) have
to lie on the slow manifold Xd, v4(0, 0, 0, 0, d)=m(0, 0, 0, 0, d)=
v4( 1

1+n , 0, 0, 1, d)=m( 1
1+n , 0, 0, 1, d)=0 for all small d.

Next, we restrict (3.3) to Xd with |v1 − n
1+n | [ 1, |v2 | [ 1, |v3 | [ 1,

− g [ n [ 2. This yields the slow flow

˛ dy
dz1

=dg(xd(y, n), y, n, d),

dn
dz1

=d2h(xd(y, n), y, n, d),

which, in term of the original independent variable z, reads

˛d
dy
dz

=g(xd(y, n), y, n, d),

dn
dz

=h(xd(y, n), y, n, d).
(3.5)

The system (3.5) is again a singularly perturbed system with the fast variable
y and the slow variable n, whose critical manifold Y0 is determined by
g(x0(y, n), y, n, 0)=0. Since

g(x0(y, n), y, n, 0)=R v2

v3

r

m
1v1 −

n
1+n

2
S ,

Dy g(x0(y, n), y, n, 0)=R 0 1 0
0 0 1
r

m
0 0

S ,
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we have that

Y0=3(y, n): y=y0(n)=1 n
1+n

, 0, 02 , −g [ n [ 24 ,

which is also normally hyperbolic. An application of the Fenichel’s theorem
again yields a slow manifold Yd for (3.5) near Y0 having the form

Yd=3(y, n): y=yd(n)=1 n
1+n

+O(d), O(d), O(d)2 , −g [ n [ 24 .

Using the local invariance of Yd to (3.5) we obtain a more accurate formula
for yd(n)=(v1(n, d), v2(n, d), v3(n, d)):

˛v1(n, d)=
n

1+n
+O(d3),

v2(n, d)=
n(1 − n)

1+n
d+O(d3),

v3(n, d)=
n(1 − n)(1 − 2n)

1+n
d2+O(d3).

(3.6)

Since (0, 0, 0, 0) and (1/(1+n), 0, 0, 1) are equilibria of (3.5), it follows that
v1(0, d)=0, v1(1, d)=1/(1+n), and vi(0, d)=vi(1, d)=0 (i=2, 3) for d

sufficiently small.
Now, using (3.4) and (3.6), the restriction of (3.5) on Yd reads

dn
dz

=n(1 − n)+N(n, d), (3.7)

where N(n, d)=O(d3) for sufficiently small d. Since n=0 and n=1 are
equilibria of (3.7), N(0, d)=N(1, d)=0 for all sufficiently small d. It follows
from the smoothness of N with respect to both n and d that
N(n, d)=O(d3) |n(1 − n)| for − g [ n [ 2 and sufficiently small d. Hence, for
0 [ n [ 1, (3.7) can be written as

dn
dz

=n(1 − n)[1+O(d3)]. (3.8)

Now any solution n of (3.8) with 0 < n(0) < 1 exists on (−., .) and satisfies
the properties that 0 < n < 1, nŒ > 0, on (−., .), limz Q − . n(z)=0, and
limz Q . n(z)=1. In particular, the one with n(0)=1/2 is given by

nd(z)=
e (1+O(d

3)) z

1+e(1+O(d
3)) z

, − . < z < .. (3.9)

526 Ai, Chow, and Yi



Thus, (x, y, n) :=(xd(yd(nd), nd), yd(nd), nd) is a heteroclinic orbit of (3.1)
connecting the equilibrium points (0, 0, 0, 0, 0, 0) and ( 1

1+n , 0, 0, 0, 1, 0) at
z=−. and z=. respectively.

Next, we show that v1, d, v −

1, d > 0 on (−., .). We note by (3.6) that, on
the manifold Y0,

v1(n, d)=
n

1+n
+V1(n, d),

where V1(n, d)=O(d3) is a smooth function of (n, d). Since v1(0, d)=0 and
v1(1, d)= 1

1+n for all sufficiently small d, we have V1(0, d)=V1(1, d)=0 for
all sufficiently small d . Clearly, V1(n, 0)=0 and therefore (“V1/“n)(n, 0)
=0 for all 0 [ n [ 1. It follows that

“V1

“n
(n, d)=F

d

0

“
2V1

“d “n
dd=O(d),

from which, we have

V1(n, d)=F
n

0

“V1

“n
dn=O(d) n.

Hence

v1, d=1 1
1+n

+O(d)2 nd,

dv1, d

dz
=11+

“V1

“n
(nd, d)2 dnd

dz
=(1+O(d))

dnd

dz
> 0.

(3.10)

Now let (ve, ne) :=(v1, d, nd). We have by (3.1), (3.4), (3.6), (3.9), (3.10),
and d=e1/3 that

˛
ve=

ne

1+n
+O(e)=1 1

1+n
+O(e1/3)2 ne,

dve

dz
=

ne(1 − ne)
1+n

+O(e2/3)=(1+O(e1/2))
dne

dz
,

d2ve

dz2 =
ne(1 − ne)(1 − 2ne)

1+n
+O(e1/3),

d3ve

dz3 =O(1),

ne(z)=
e (1+O(e)) z

1+e(1+O(e)) z ,

dne

dz
=ne(1 − ne)[1+O(e)].

(3.11)
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Therefore, (ve, ne) is a solution of (2.1)–(2.3) satisfying (2.5) and that
ne(0)=1

2, n −

e > 0, ve > 0, v −

e > 0 on (−., .). The uniqueness of such a solu-
tion follows from the local uniqueness of slow manifolds Xd and Yd and the
uniqueness of nd. A similar argument used in [1] shows the inequalities in
(2.4). This completes the proof of part (i) of Theorem 2.1.

4. GLOBAL UNIQUENESS

In this section we present a global uniqueness result for (2.1)–(2.3)
which is more general than that stated in (ii) of Theorem 2.1. A condition for
such uniqueness is the following a prior uniform boundedness on v with
respect to e.

Assumption A. There is a constant M > 0 such that if e is sufficiently
small and (v, n) is a solution of (2.1)–(2.3) with 0 < n < 1 on (−., .), then

|v(z)|+e1/3 |vŒ(z)|+e2/3 |vœ(z)|+e |v'−(z)| [ M, − . < z < ..

Remark 4.1. Under the Assumption A, we have

|nŒ(z)| [ MŒ, − . < z < .,

for some constant MŒ which depends only on M. To see this, we note that
nŒ( ± .)=0 implies that |nŒ| reaches its maximum at some point in (−., .)
where nœ=mŒ=0. It follows from (3.1) that G=0 at the maximum point,
from which nŒ=m can be solved as e is sufficiently small. The desired asser-
tion now follows from Assumption A.

Remark 4.2. The Assumption A is satisfied when n=0. This follows
from Lemma 5.1 in the Appendix and the fact that the right-hand side of
(2.1) is bounded by r which is independent of any particular solution (v, n)
of (2.1)–(2.3) with 0 < n < 1. This fact together with Theorem 4.1 below
shows part (ii) of Theorem 2.1.

Theorem 4.1. Assume the Assumption A. If e is sufficiently small, then
the solution to (2.1)–(2.3) is globally unique in the sense that if (v, n) and
(ṽ, ñ) are two solutions with 0 < ñ < 1, 0 < n < 1 and ñ(0)=n(0), then
(ṽ, ñ)=(v, n).

Proof. Let (v, n) :=(ve, ne) be a solution to (2.1)–(2.3). Then
(v1, v2, v3, v4, n, m) with v1 :=v satisfies (3.1). Again let x=(v4, m) and
y=(v1, v2, v3). Then (x, y, n) satisfies (3.2) and (3.3).
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Let X0 be the slow manifold defined in Section 3. We claim that for any
given small neighborhood U of X0, if d is sufficiently small, then (x, y, n) lies
in U.

By introducing the new independent variable t1=z1/d, (3.3) becomes

˛
v̇1=d2v2,
v̇2=d2v3,
v̇3=d2v4,
ṅ=d3m,

v̇=−rv1+dv3+mv4+
rn

1+n(1 − dyr1v3)
,

ṁ=G(v1, v2, v3, v4, n, m, d),

(4.1)

where · =d/dt1. Let

˛K1=−rv1+mv4+
rn

1+n
,

K2=m − n(1 − n).

Then the critical manifold X0 is given by K1=K2=0. Thus, in order to
show the above claim, it suffices to show that for any given small neigh-
borhood V of (0, 0), (K1, K2) lies in V provided that d is sufficiently small.

By Assumption A and Remark 4.1 we have |x|+|y|+|n| [ M+MŒ for
sufficiently small d. Hence, |K1 |+|K2 | [ M1 for sufficiently small d, where
M1 > 0 is a constant independent of (x, y, z) and d. It follows from (4.1) that
(K1, K2) satisfies the equations

˛ K̇1=mK1+O(d),

K̇2=
1

1+ acn
(1+cn)2

3 −
ayr1n
1+cn

K1+K2
4+O(d),

(4.2)

where |O(d)| [ M2d, and M2 > 0 is a constant independent of (K1, K2)
and d. By writing out the explicit solution form of (4.2), we see easily that if d

is sufficiently small and (K1, K2) were not in the interior of V, then there
would exist a time y1 at which |K1(y1)|+|K2(y1)|=2M1. This leads to a con-
tradiction, thereby proving the claim.

It follows from the above claim and the Fenichel’s theorem that the
connecting orbit (x, y, z) has to lie on Xd for sufficiently small d, and there-
fore, its (y, n) components satisfy (3.5) on (−., .).
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Similarly, by introducing the new independent variable t=z/d, (3.5)
becomes

˛
dy
dt

=g(xd(y, n), y, n, d),

dn
dt

=dh(xd(y, n), y, n, d).

(4.3)

Let K3=v1 − n
1+n. Clearly, |K3 | [ M3 for some constant M3 > 0. From (4.3)

we have

˛
dK3

dt
=v2+O(d),

dv2

dt
=v3,

dv3

dt
=

r

m
K3+O(d).

(4.4)

Note that the slow manifold Y0 is given by K3=v2=v3=0. A similar
argument as above shows that (K3, v2, v3) has to lie in a small neighborhood
of {K3=v2=v3=0} for all t ¥ (−., .). Namely, (y, n) has to lie in a small
neighborhood of Y0 and hence lie on Yd. This shows that the component n
satisfies (3.8) on (−., .).

We note that all constants Mi (i=1, 2, 3) involved in the above argu-
ments are independent of any particular connecting orbits (v, n) to
(2.1)–(2.3) with 0 < n < 1. Therefore, if (v, n) and (ṽ, ñ) are two different
such solutions with n(0)=ñ(0)=1/2, then their corresponding system
counterparts (x, y, n) and (x̃, ỹ, ñ) lie on Xd, (y, n) and (ỹ, ñ) lie on Yd, with
both n and ñ satisfying (3.8) which is a first order autonomous scalar equa-
tion of n. Since n — ñ, we have y — ỹ and x — x̃ by the local uniqueness of Xd

and Yd. Hence, v — ṽ. This completes the proof of part (ii) of Theorem 2.1. i

5. APPENDIX

Lemma 5.1. There exists a constant M > 0 such that if e is sufficiently
small, then for any f ¥ C(−., .) with supz ¥ (−., .) |f(z)| < . the equation

be2 d4v
dz4 − me

d3v
dz3 − e

d2v
dz2+rv=f(z) (5.1)
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has a unique bounded solution v on (−., .), which satisfies

|v|+e1/3 |vŒ|+e2/3 |vœ|+e |v'−| [ M max
z ¥ (−., .)

|f(z)|. (5.2)

Furthermore, if limz Q . f(z)=f. exists, then

lim
z Q .

(v, vŒ, vœ, v'−)(z)=(f./r, 0, 0, 0). (5.3)

We first proof the following lemma.

Lemma 5.2. For e sufficiently small, the equation p(l) :=be2l4 − mel3 −
el2+r=0 admits two complex conjugate eigenvalues l1=l̄2 and l2=a+ib,
and two real eigenvalues 0 < l3 < l4, satisfying

˛a=−
1
2

3= r

me
(1+O(e1/3)),

b=
`3
2

3= r

me
(1+O(e1/3)),

l3=3= r

me
(1+O(e1/3)),

l4=
m

be
(1+O(e)),

as e Q 0. (5.4)

Proof. Let e be sufficiently small. Then, p(l)=el3[bel − m+O(e)] on
the interval [ m

2be
, 2m

be
] and p(l)=−me[l3 − r

me (1+O(e1/3))] on [1
2

3̀ r

me , 2 3̀ r

me ]
respectively. Hence by the intermediate value theorem, l4 and l3 exist in the
intervals [ m

2be
, 2m

be
] and [1

2
3̀ r

me , 2 3̀ r

me] respectively, and satisfy the asymp-
totic formulas in (5.4). Similarly, for l in the region |l − (−1

2
3̀ r

me +
i `3

2
3̀ r

me )| [ 1
5

3̀ r

me on the complex plane, p(l)=−me[l3 − r

me (1+O(e1/3))].
Hence, by the Rouche’s theorem, l2 exists in this region and satisfies the
asymptotic formula in (5.4). The proof of the lemma is now completed by
letting l1=l̄2. i

Proof of Lemma 5.1. We first write (5.1) as the equivalent system

fŒ=Af+F(z), (5.5)
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where f :=(v, vŒ, vœ, v'−) 2, A is the corresponding 4 × 4 coefficient matrix
whose entries are independent of z, and F(z)=(0, 0, 0, f(z)

be
2 ) 2. The eigen-

values of A are li (i=1, 2, 3, 4) as described in Lemma 5.2 with the asso-
ciated eigenvectors (1, li, l2

i , l3
i ) 2. Therefore,

T−1AT=L :=R
a b 0 0

− b a 0 0
0 0 l3 0
0 0 0 l4

S , where

T=R
1 0 1 1
a b l3 l4

a2 − b2 2ab l2
3 l2

4

a3 − 3ab2 3a2b − b3 l3
3 l3

4

S .

We note that the first two columns of T are the real and the imaginary parts
of the complex eigenvector (1, l2, l2

2, l3
2) 2 respectively.

Let f=Tx and x=(x1, x2, x3, x4) 2. Then (5.5) becomes

˛
x −

1=ax1+bx2+
a1

be2 f(z),

x −

2=−bx1+ax2+
a2

be2 f(z),

x −

3=l3x3+
a3

be2 f(z),

x −

4=l4x4+
a4

be2 f(z),

(5.6)

where (a1, a2, a3, a4) 2 is the last column of T−1 given by

R
a1

a2

a3

a4

S :=T−1e4=R
l4+l3 − 2a

[(l4 − a)2+b2][(l3 − a)2+b2]
(l3 − a) l4 − al3+a2 − b2

b[(l4 − a)2+b2][(l3 − a)2+b2]
1

(l3 − l4)[(l3 − a)2+b2]
1

(l4 − l3)[(l4 − a)2+b2]

S , with e4=R
0
0
0
1

S .

(5.7)

532 Ai, Chow, and Yi



It follows that (5.6) admits a unique bounded solution over (−., .) given by

x1(z)=
1

be2 F
z

−.

aa(z − s)[a1 cos b(z − s)+a2 sin b(z − s)] f(s) ds, (5.8)

x2(z)=
1

be2 F
z

−.

ea(z − s)[ − a1 sin b(z − s)+a2 cos b(z − s)] f(s) ds, (5.9)

x3(z)= −
a3

be2 F
.

z
el3(z − s)f(s) ds, (5.10)

x4(z)= −
a4

be2 F
.

z
el4(z − s)f(s) ds. (5.11)

Furthermore, if limz Q . f(z)=f. exists, then

x(z) Q −
f.

be2 L−1(a1, a2, a3, a4) 2 as z Q .. (5.12)

From (5.4) and (5.7) it follows that, as e Q 0,

a1 ’
1

l4[(l3 − a)2+b2]
, a2 ’

l3 − a
bl4[(l3 − a)2+b2]

,

a3 ’
− 1

l4[(l3 − a)2+b2]
, a4 ’

1
l3

4

,

and hence there is a constant M > 0 independent of e such that if e is suffi-
ciently small, then

|a1 |+|a2 |+|a3 | [ Me
5
3, |a4 | [ Me3.

This together with (5.8)–(5.11) yields that, on (−., .),

|x1 |+|x2 |+|x3 | [ M |f|0, |x4 | [ Me2 |f|0, (5.13)

where |f|0=supz ¥ (−., .) |f(z)| and the constant M might be changed but
still independent of e and f.

Using the transformation between v and x, (5.4) and (5.13), we have,
on (−., .),

|v| [ |x1 |+|x3 |+|x4 | [ M |f|0,
|vŒ| [ M(e−1

3 |x1 |+e−1
3 |x2 |+e−1

3 |x3 |+e−1 |x4 |) [ Me−1
3 |f|0,

|vœ| [ M(e−2
3 |x1 |+e−2

3 |x2 |+e−2
3 |x3 |+e−2 |x4 |) [ Me−2

3 |f|0,
|v'−| [ M(e−1 |x1 |+e−1 |x2 |+e−1 |x3 |+e−3 |x4 |) [ Me−1 |f|0,
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that is, (5.2) holds. Finally, (5.3) follows from (5.12) and the limit that

f(z)=Tx(z) Q −
f.

be2 T L−1(a1, a2, a3, a4) 2=−
f.

be2 (A−1T)(T−1e4)

= −
f.

be2 A−1e4=−
f.

be2
1 −

be2

r
, 0, 0, 02

2

=1f.

r
, 0, 0, 02

2

,

as z Q .. This completes the proof of Lemma 5.1. i
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