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Abstract. A scalar non-autonomous periodic differential equation with delays

arising from a delay host macroparasite model is studied. Two results are
presented for the equation to have at least two positive periodic solutions: the

hypotheses of the first result involve delays, while the second result holds for

arbitrary delays.

1. Introduction. In recent years, periodic population dynamics with delays has
become a very popular subject, and various models have been studied (See [1, 6,
8, 9, 10, 12, 13] and the references therein). One of the important mathematical
problems for such models is to show the existence of positive periodic solutions. For
example, the scalar equation with a delay r

x′(t) = a(t)x(t)
[ 1
(1 + κx(t− r))n

− 1
(1 + κ1x(t− r))n

− c(t)
]

(1.1)

arises from a delay host macroparasite model (See [10, 12] and the references
therein), where κ < κ1 and r are positive numbers, n is a positive integer, a and
c are continuous and positive ω-periodic functions on (−∞,∞), c is not identically
constant, and x is the number of sexually mature worms in the human community
of some fixed size. Let

f(x) =
1

(1 + κx)n
− 1

(1 + κ1x)n
, and x∗ =

κ
1

n+1
1 − κ

1
n+1

κ1κ
1

n+1 − κκ
1

n+1
1

.

We see that f > 0 on (0,∞), f(0) = limx→∞ f(x) = 0 and f has a unique maximum
at x∗. Lemma 2.3 shows that if max0≤t≤ω c(t) < f(x∗) and r = 0, then (1.1) has two
(and only two) positive ω-periodic solutions, one lying in (0, x∗) and the other lying
in (x∗,∞). The goal of the paper is to show that, under some further conditions,
(1.1) has (at least) two positive ω-periodic solutions for r 6= 0. Roughly speaking,
we present two such results: Theorems 2.1 and 3.1. Theorem 2.1 holds for “small”
r, while Theorem 3.1 holds for all r.

In fact, we study a more general equation:

x′(t) = a(t)g(t, x(t− r0(t)))[f(x(t− r(t)))− c(t)], (1.2)
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where a and c are the same as in (1.1), r0 and r are continuous ω-periodic functions
on (−∞,∞), g is positive and continuous on (−∞,∞)× (0, γ) and ω-periodic with
respect to t, f is continuous on (0,∞) and increasing on (0, x∗) and decreasing on
(x∗, γ) for some x∗ ∈ (0, γ); and limx→0+ f(x) = limx→γ− f(x) = 0, where γ is a
positive number that could be infinity. In Section 2 we study (1.2) with r not too
large. We regard (1.2) as a perturbation to the r = 0 case and use a result, Lemma
2.3, for an ode and Schauder’s fixed point theorem to show Theorem 2.1 whose
hypotheses involve r. In Section 3, we restrict ourself, for simplicity, to the case
g(t, x) = x, r0 ≡ 0 in (1.2) and obtain a simple sufficient condition in Theorem 3.1
that is independent of r. The proof of this result, which is motivated from that of
[6], is based on Krasnosel’skii’s fixed point theorem on a cone in [7]. We point out in
Remark 3.2 that these two results are independent of each other. Some extensions
of these results are given. A short summary is given in Section 4, and the proofs
that the operators used in the proofs of Theorems 2.1 and 3.3 are continuous and
compact are given in the appendix.

In the rest of the paper, we use Cω to denote the Banach space of continuous
ω-periodic function on (−∞,∞) with the supremum norm ‖ ·‖0. Let 0 < d1 < d̄1 <
x∗ < d2 < d̄2 < γ be real numbers such that f(d1) = f(d̄2) = c1 := min0≤t≤ω c(t),
and f(d̄1) = f(d2) = ‖c‖0 whenever they are defined. We remark that a necessary
condition for (1.2) to have a positive solution x in Cω is c1 < f(x∗) and any such a
solution x satisfies ‖x‖0 ≥ d1 and min0≤t≤ω x(t) ≤ d̄2.

2. The r “Small” Case. We start this section with the main result and a corollary.

Theorem 2.1. Assume that ‖c‖0 < f(x∗) and f is differentiable on (0, γ). Given
a number 0 < η < min{c1, f(x∗)− ‖c‖0}, let 0 < D1 < D̄1 < x∗ < D2 < D̄2 < γ be
real numbers such that f(D1) = f(D̄2) = c1 − η and f(D̄1) = f(D2) = ‖c‖0 + η.

(i) Let M0 = max{g(t, x) : t ∈ [0, ω], x ∈ [D1, D̄1]}, M1 = M0(‖c‖0 − c1 + 2η),
and M2 = max{f ′(x) : x ∈ [D1, D̄1]}. If max0≤t≤ω

∣∣∣ ∫ t

t−r(t)
a(s) ds

∣∣∣ ≤ η/M1M2,

then (1.2) has a solution x1 in Cω satisfying D1 ≤ x1 ≤ D̄1 on (−∞,∞).
(ii) Let M3 = max{g(t, x) : t ∈ [0, ω], x ∈ [D2, D̄2]}, M4 = M3(‖c‖0 − c1 + 2η),

and M5 = max{|f ′(x)| : x ∈ [D2, D̄2]}. If max0≤t≤ω

∣∣∣ ∫ t

t−r(t)
a(s) ds

∣∣∣ ≤ η/M4M5,

then (1.2) has a solution x2 in Cω satisfying D2 ≤ x2 ≤ D̄2 on (−∞,∞).

Corollary 2.2. Use the same notations as in Theorem 2.1. If ‖c‖0 < f(x∗) and
‖a‖0 · ‖r‖0 ≤ η/ max{M1M2,M4M5}, then (1.2) (with any r0 ∈ Cω) has at least
two solutions x1 and x2 in Cω satisfying D1 ≤ x1 ≤ D̄1 and D2 ≤ x2 ≤ D̄2 on
(−∞,∞). In particular, if ‖c‖0 < f(x∗) and ω‖a‖0 ≤ η/ max{M1M2,M4M5},
then the same conclusion holds for (1.2) with any r0 ∈ Cω and r replaced by any
constant.

Proof. The first part of the corollary directly follows from Theorem 2.1. In the
second part, assume that r ≡ r̄ for some real number r̄. If |r̄| ≤ ω, then the
required conclusion follows directly from that in the first part of the corollary. If
|r̄| > ω, we write r̄ = kω + r̃ where k is an integer and |r̃| ≤ ω, and then we have
that the equation (1.2) with r(t) replaced by r̃ has two solutions in Cω, and it is
easy to check that these solutions are also solutions to (1.2) with r(t) replaced by
r̄. This shows the corollary.

We need the following lemma to show Theorem 2.1.
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Lemma 2.3. Let f , c, η, D1, D̄1, D2 and D̄2 be the same as in Theorem 2.1. Then,
the ode

y′(t) = A(t)B(y(t))[f(y(t))− (c(t) + δ(t))], (2.1)
where B is continuous and positive on (0,∞), A and δ are in Cω, A is positive, and
‖δ‖0 ≤ η, has two and only two positive solutions y1 and y2 in Cω; furthermore,
D1 ≤ y1 ≤ D̄1 and D2 ≤ y2 ≤ D̄2 on (−∞,∞).

Proof. Observe that if y is a solution of (2.1), then y′(t) < 0 whenever 0 < y(t) < D1

or y(t) > D̄2, and y′(t) > 0 when D̄1 < y(t) < D2. It follows that if y is a positive
solution of (2.1) in Cω, then either D1 ≤ y ≤ D̄1 or D2 ≤ y ≤ D̄2 on (−∞,∞).
Therefore, it suffices to show that (2.1) has only two solutions y1 and y2 such that
D1 ≤ y1 ≤ D̄1 and D2 ≤ y2 ≤ D̄2 on (−∞,∞).

We first show the existence of y1. Let yα denote the solution of (2.1) with
y(0) = α and h(α) = yα(ω)−α. Then, for sufficiently small ε > 0, yD1−ε(t) < D1−ε
and yD̄1+ε(t) > D̄1 + ε for all t > 0, and so h(D1 − ε) < 0 and h(D̄1 + ε) > 0. Since
h is continuous on [D1− ε, D̄1 + ε], the intermediate value theorem yields that there
exists α̃ ∈ (D1 − ε, D̄1 + ε) such that h(α̃) = 0 and hence yα̃(ω) = α̃. Therefore,
yα̃ is in Cω, and D1 ≤ yα̃ ≤ D̄1 on (−∞,∞). We now show that y1 := yα̃ is the
unique solution of (2.1) lying in [D1, D̄1] on (−∞,∞). Assume that it is false and
let ȳ be another such a solution of (2.1). Without loss of generality we assume that
y1(t) > ȳ(t) for all t. Then, for all t,

d

dt

[
L(y1(t))− L(ȳ(t))

]
= A(t)[f(y1(t))− f(ȳ(t))] > 0,

where L(y) :=
∫ y

d1
(1/B(u)) du, and so L(y1) − L(ȳ) is increasing on (−∞,∞),

contradicting that L(y1)− L(ȳ) is ω-periodic. This shows the uniqueness of y1.
In a similar manner we show that (2.1) has a unique solution y2 ∈ Cω such that

D2 ≤ y2 ≤ D̄2 on (−∞,∞). This completes the proof of Lemma 2.3.

Proof of Theorem 2.1. Since the proofs for (i) and (ii) are similar, we only show
(i). Let S be a convex and closed subset of Cω consisting of x ∈ Cω such that
D1 ≤ x(t) ≤ D̄1 and |x(t) − x(t − r(t))| ≤ η/M2 for t ∈ (−∞,∞). For each given
x ∈ S, we consider the ode

y′(t) = a(t)g(t, x(t− r0(t)))
[
f(y(t))−

(
c(t) + f(x(t))− f(x(t− r(t)))

)]
. (2.2)

By the mean value theorem, we have f(x(t))−f(x(t−r(t))) = f ′(ξ)(x(t)−x(t−r(t)))
for some ξ ∈ (D1, D̄1), and so |f(x(t))−f(x(t− r(t)))| ≤ M2|x(t)−x(t− r(t))| ≤ η,
and so

c1 − η ≤ c(t) + f(x(t))− f(x(t− r(t))) ≤ ‖c‖0 + η. (2.3)
Therefore, an application of Lemma 2.3 with A(t) = a(t)g(t, x(t − r0(t))), B ≡ 1
and δ(t) = f(x(t)) − f(x(t − r(t))) yields that (2.2) has a unique solution y ∈ Cω

satisfying D1 ≤ y ≤ D̄1. From (2.2) and (2.3) it follows that

|y(t)− y(t− r(t))| =
∣∣∣ ∫ t

t−r(t)

y′(s) ds
∣∣∣ ≤ M0(‖c‖0 − c1 + 2η)

∣∣∣ ∫ t

t−r(t)

a(s) ds
∣∣∣ ≤ η/M2.

(The first inequality above follows because both f(y(t)) and c(t)+f(x(t))−f(x(t−
r(t)) lie in [c1 − η, ‖c‖0 + η].) Hence, we have y ∈ S.

We now define a mapping T from S into S by Tx = y, where y is the solution of
(2.2) obtained in the above paragraph. Since, for a given x ∈ S, such y is unique, T
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is well defined on S. Note that (Tx)′ is uniformly bounded for x ∈ S. Then, an easy
exercise shows that T is continuous and compact on S (see Appendix). Therefore,
by Schauder’s fixed point theorem T has at least one fixed point in S. Let x1 be
such a fixed point, which gives a solution of (1.2) as described in (i) of Theorem
2.1, thereby completing the proof of Theorem 2.1.

Corollary 2.4. In addition to the assumptions in Theorem 2.1, assume further
that c is a constant function. Then x1 ≡ x10 and x2 ≡ x20 where x10 and x20 are
the roots of f(x)− c = 0 lying in (0, x∗) and (x∗, γ) respectively.

Proof. In the proof of Theorem 2.1, we have in this special situation Tx ≡ c for any
x ∈ S due to the uniqueness of the solution of (2.2) in S for each given x ∈ S. This
shows that x1 ≡ x10. A similar argument gives x2 ≡ x20.

With a slight modification of its proof, Theorem 2.1 can be generalized to the
equation

x′(t) =a(t)g(t, x(t− r0(t, x(t)))

·
[
F

(
x(t− r1(t, x(t), x′(t))), · · · , x(t− rm(t, x(t), x′(t)))

)
− c(t)

]
, (2.4)

where ri (i = 0, 1, · · · ,m) are continuous and ri(t+ω, x, y) = ri(t, x, y), and f(x) :=
F (x, · · · , x) for x ∈ (0, γ) allows to have more oscillations in (0, γ). In particular,
the following theorem can be proved similarly:

Theorem 2.5. Let m = 1 and f(x) := F (x) in (2.4). Assume that f has n local
maxima on (0, γ) at β1 < · · · < β2n−1 and n− 1 local minima at β2 < · · · < β2(n−1)

satisfying β2i−1 < β2i (i = 1, · · · , n − 1). Let β0 = 0 and β2n = γ. Assume
that ‖c‖0 < min{f(β2i−1) : i = 1, · · · , n}. Let η be a positive number such that
η < c1 and η < min{f(β2i−1) : i = 1, · · · , n} − ‖c‖0. For i = 1, · · · , 2n, let
βi−1 < Di < D̄i < βi such that f(Di) = c1 − η and f(D̄i) = ‖c‖0 + η if i is odd,
and f(D̄i) = ‖c‖0 + η and f(Di) = c1 − η if i is even. Let

M0 = max
{

g(t, x) : t ∈ [0, ω], x ∈ ∪2n
i=1[Di, D̄i]

}
,

M1 = M0(‖c‖0 − c1 + 2η),

M2 = max
{
|f ′(x)| : x ∈ ∪2n

i=1[Di, D̄i]
}

,

r̄ = max
{
|r1(t, x, y)| : t ∈ [0, ω], x ∈ ∪2n

i=1[Di, D̄i], |y| ≤ ‖a‖0M1

}
.

If r̄‖a‖0 ≤ η/M1M2, then (2.4) has at least 2n solutions x1, · · · , x2n in Cω such
that Di ≤ xi ≤ D̄i on (−∞,∞) for i = 1, 2, · · · , 2n.

3. The r Arbitrary Case. For simplicity of the statement of the main result in
this section, we consider the equation (1.2) with g(t, x) = x and r0 ≡ 0. The main
result is as follows.

Theorem 3.1. Let g(t, x) = x, r0 ≡ 0 and γ = ∞. Let ā =
∫ ω

0
a(s) ds and

b̄ =
∫ ω

0
b(s) ds where b(t) = a(t)c(t). Let σ = e−b̄ and p = σ

1−σ .
If σpf(σx∗)ā ≥ 1, then (1.2) has at least two solutions x1 and x2 in Cω satisfying

0 < x1 < x∗, σx∗ < x2 < ∞ on (−∞,∞), ‖x1‖0 ≥ d1 and ‖x2‖0 > x∗.
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Remark 3.2. We note that Theorem 3.1 does not imply Theorem 2.1. To see this,
let us consider the case where ‖c‖0 < f(x∗) (with such c and f fixed) and a is
sufficiently large so that b = ac is sufficiently large. Then p ≈ σ = e−b̄ ≈ 0 and
f(σx∗) ≈ f ′(0)σx∗, and so (note that ā ≤ b̄/c1)

σpf(σx∗)ā ≤ σpf(σx∗)b̄
c1

≈ b̄

e3b̄
· f ′(0)x∗

c1
≈ 0.

Hence, if b is sufficiently large, then the assumption in Theorem 3.1 cannot be
satisfied and no existence result can be obtained for (1.2) from Theorem 3.1 . How-
ever, since ‖c‖0 < f(x∗), Theorem 2.1 yields that (1.2) has at least two positive
ω-periodic solutions for sufficiently small r.

Theorem 3.1 will be derived from Theorem 3.3, whose proof is based on Theorem
3.4 ([7]).

Theorem 3.3. Let g, r0, b, ā, b̄, σ and p be the same as in Theorem 3.1, and
q = p/σ. Let 0 < R1 < R2 < x∗ < R3 < R4 < γ be real numbers.

(i) If qf(R1)ā ≤ 1 and σpf(σR2)ā ≥ 1, then the equation (1.2) has a solution
x1 ∈ Cω with σR1 ≤ x1 ≤ R2.

(ii) Let R̃3 ∈ (0, x∗) such that f(R̃3) = f(R3). Let

L1 :=
{

f(R3), if σR3 ≥ R̃3,

f(σR3), if σR3 < R̃3,
L2 =

{
f(σR4), if σR4 ≥ x∗,
f(x∗), if σR4 < x∗.

If σpL1ā ≥ 1 and qL2ā ≤ 1, then (1.2) has a solution x2 ∈ Cω with σR3 ≤ x2 ≤ R4.

Theorem 3.4. Let (X, ‖ · ‖) be a Banach space, K be a cone in X, and Ω1 and Ω2

are open subsets of X with 0 ∈ Ω1 ⊂ Ω̄1 ⊂ Ω2. Let Φ : K ∩ (Ω̄2 \ Ω1) → K be a
completely continuous operator such that either

(i) ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1 and ‖Φx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω2; or
(ii) ‖Φx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω1 and ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω2.

Then Φ has a fixed point in K ∩ (Ω̄2 \ Ω1).

Recall that K is a cone in X if K is a convex and closed nonempty subset of X
satisfying: (i) x = 0 if x and −x are both in K, and (ii) β1x1 + β2x2 ∈ K if x1 and
x2 are in K and β1 ≥ 0 and β2 ≥ 0.

Proof of Theorem 3.3. We first note that x ∈ Cω is a solutions of (1.2) if and
only if it is a solution in Cω of the integral equation

x(t) =
∫ t+ω

t

G(t, s)a(s)x(s)f(x(s− r(s))) ds,

where G is the Green function given by

G(t, s) =
e
∫ s

t
b(τ) dτ

e
∫ ω
0 b(τ) dτ − 1

.

Since
∫ t+ω

t
b(s) ds =

∫ ω

0
b(s) ds, it follows that, for 0 ≤ t ≤ ω and t ≤ s ≤ t + ω,

p =
1

e
∫ ω
0 b(τ) dτ − 1

≤ G(t, s) ≤ e
∫ ω
0 b(τ) dτ

e
∫ ω
0 b(τ) dτ − 1

= q.

We define a cone K = {x ∈ Cω : mint∈[0,ω] x(t) ≥ σ‖x‖0}, and an operator
Φ : K → Cω by

(Φx)(t) =
∫ t+ω

t

G(t, s)a(s)x(s)f(x(s− r(s))) ds.
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Then, we have, for x ∈ K,

|(Φx)(t)| ≤ q

∫ t+ω

t

a(s)x(s)f(x(s− r(s))) ds = q

∫ ω

0

a(s)x(s)f(x(s− r(s))) ds,

and so,

(Φx)(t) ≥ p

∫ t+ω

t

a(s)x(s)f(x(s− r(s))) ds = σq

∫ ω

0

a(s)x(s)f(x(s− r(s))) ds

≥ σ‖Φx‖0.

This shows that Φ maps K into K. It is easily shown that Φ is completely continuous
on K (see Appendix).

By the property of f and the assumption in (i) of Theorem 3.3, we have that if
x is in K and ‖x‖0 = R1 then |(Φx)(t)| ≤ qR1f(R1)ā ≤ R1, and so ‖Φx‖0 ≤ R1; if
x is in K and ‖x‖0 = R2 then |(Φx)(t)| ≥ σpR2f(σR2)ā > R2 and so ‖Φx‖0 ≥ R2.
Similarly, we have ‖Φx‖0 ≥ σpR3L1ā ≥ R3 for x ∈ K and ‖x‖0 = R3, and ‖Φx‖0 ≤
qR4L2ā ≤ R4 for x ∈ K and ‖x‖0 = R4. Therefore, the conclusions for x1 and x2 in
Theorem 3.3 follow from Theorem 3.4 directly with Ω1 = B(R1) and Ω2 = B(R2),
and Ω1 = B(R3) and Ω2 = B(R4) respectively, where B(Ri) (i = 1, 2, 3, 4) are the
open balls of the center 0 and the radius Ri in Cω.

Proof of Theorem 3.1. In Theorem 3.3, if we take R2 and R3 are sufficiently close
to x∗ and R1 and R4 sufficiently close to 0 and γ = ∞ respectively, then we have
R̃3 ∼ R3 and σR4 ∼ ∞ and so σR3 < R̃3 and σR4 ≥ x∗ and so L1 = f(σR3) ∼
f(σx∗) and L2 = f(σR4) ∼ 0. Thus, if σpf(σx∗)ā ≥ 1, then the conditions in
Theorem 3.3 are satisfied with the above choice of Ri (i = 1, 2, 3, 4), yielding the
existence of x1 and x2 with 0 < σR1 ≤ x1 ≤ R2 < x∗, σx∗ < σR3 ≤ x2 ≤ R4 < ∞,
and ‖x‖0 ≥ R3 > x∗. It follows from the remark at the end of Section 1 that
‖x1‖0 ≥ d1. This shows Theorem 3.1.

Remark 3.5. (i) Theorem 3.1 and Theorem 3.3 hold (without any changes) for the
equation

x′ = a(t)x
[
f
(
x
(
t− r(t, x(t))

))
− c(t)

]
, (3.1)

where r is continuous and ω-periodic about its first argument t.
(ii) For the general situation where g(t, x) 6= x and r0 6= 0 in (1.2), we can write

(1.2) as

x′ = −
[
a(t)c(t)

g(t, x(t− r0(t)))
x

]
x +

[
a(t)f(x(t− r(t)))

g(t, x(t− r0(t)))
x

]
x.

A modification of the proof of Theorem 3.3 will yield a sufficient condition for (1.2)
to have at least two positive ω-periodic solutions. However, the definitions for σ, p
and q are more involved and thus the statement of the result is omitted.

4. Summary. We have obtained two sets of sufficient conditions for (1.2) to have
at least two periodic solutions x1 and x2. Those conditions are easily verified. We
also give the estimates for the locations of x1 and x2 in our theorems. Generally
speaking, it is more difficult to discuss the stability and local uniqueness of these
solutions due to the appearance of delays in (1.2) (see [2, 3, 8, 11, 12]). If r0 ≡ 0
and r ≡ 0, then the directional field analysis for (1.2) shows that x1 is unstable and
x2 is stable. We expect that this conclusion still holds for sufficiently small r0 and
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r. Corollary 2.4 implies that x1 and x2 are locally unique in the case where c is a
constant function. We shall explore those topics further in future work.

When applying our existence results to the model equation (1.1), it yields that,
under the certain parameter regions of the model, the number x(t) of sexually
mature worms may change periodically. Such periodic behavior is certainly expected
biologically due to the periodicity of the environment of the model (e. g., seasonal
effects of weather, food supplies, mating habits, etc.). The stable periodic solution
may provide a global attractor for (1.1) which is important for the study of the
dynamics of the model problem. We hope that the parameter regions obtained
from our results are biologically realistic.

Appendix. In this appendix, we shall show that the mapping T defined in the
proof of Theorem 2.1 is continuous and compact on S, so is Φ defined in the proof
of Theorem 3.3.

We first show that T : S → S is continuous. Given x0 ∈ S, let {xn}∞n=1 ⊂ S
be a sequence such that ‖xn − x0‖0 → 0 as n → ∞. Let y0 = Tx0 and yn = Txn.
We have y0, yn ∈ S. By the right-hand side of the equation (2.2), we see that
(yn)′ (n = 1, 2, · · · ) are uniformly bounded and so yn are equicontinuous. Note
that T (S) ⊂ S is bounded in Cω. Hence, by Arzela-Ascoli’s theorem there exists
a subsequence {ynk

}∞k=1 such that ynk
is uniformly convergent to y∗ ∈ S on [0, ω]

as k → ∞ (i.e., ‖ynk
− y∗‖0 → 0 as k → ∞). Since ‖xn − x0‖0 → 0 as n → ∞, it

follows that y∗ satisfies:

y′(t) = a(t)g(t, x0(t− r0(t)))
[
f(y(t))−

(
c(t) + f(x0(t))− f(x0(t− r(t)))

)]
. (4.1)

Note that y0 is also a solution of (4.1) in S. Thus, the uniqueness of the solution
of (4.1) in S (from Lemma 2.3) implies that y∗ = y0. This uniqueness also implies
that the whole sequence yn goes to y0 uniformly. This shows that T is continuous
at x0, thereby on S.

Since S is bounded, (T (S))′ is bounded in Cω from the right-hand side of (2.2)
and so T (S) is equicontinuous. Therefore, by Arzela-Ascoli’s lemma T (S) is com-
pact, and so T is compact. This shows that T is continuous and compact on S.

We next show that Φ is continuous and compact on Ω := K ∩ (B(R2) \B(R1)).
Given x0 ∈ Ω, let {xn}∞n=1 ⊂ Ω such that ‖xn − x0‖0 → 0 as n →∞. Since xf(x)
is uniformly continuous on [−R2, R2] and G(t, s)a(s) is bounded for t, s ∈ [0, ω], it
follows from the definition of Φ that ‖Φxn − Φx0‖0 → 0 as n → ∞. This shows
that Φ is continuous at x0, thereby continuous on Ω. Note that, for x ∈ Ω,

(Φx)′ = a(t)x(t)[f(x(t− r(t))− c(t)].

It follows that ‖(Φx)′‖0 is uniformly bounded on Ω . Note that Φ(Ω) ⊂ Ω. It follows
from Arzela-Ascoli’s lemma that Φ(Ω) is a compact set and so Φ is a compact
operator on Ω. The similar conclusion holds for Φ on K ∩ (B(R4) \B(R3)).
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