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Abstract. In this short note we establish global stability results for a four-
dimensional nonlinear system that was developed in modeling a tick-borne
disease by H.D. Gaff and L.J. Gross (Bull. Math. Biol., 69 (2007), 265–288)
where local stability results were obtained. These results provide the parameter

ranges for controlling long-term population and disease dynamics.

1. Introduction. In the United States, ticks are the most common vectors of
vector-borne diseases. Ticks can carry and transmit a remarkable array of pathogens,
such as bacteria, spirochetes, rickettsiae, protozoa, viruses, nematodes, and toxins,
and cause several human diseases including Lyme disease, Rocky Mountain spotted
fever, human babesiosis, ehrlichiosis, tick-borne relapsing fever, Colorado tick fever
and tick paralysis. The spatial and temporal patterns of outbreaks of these diseases
tend to be erratic. Recent increases in reported outbreaks of these diseases have
led to increased interest in understanding and controlling epidemics involving these
transmission vectors. Various mathematical models have been developed to achieve
such goals. See references [1], [3], [5], [6], [7] and [8] for some of these models.

In this paper we study a model that was proposed in [4] for the dynamics of
tick-borne infection in the case of a single host, a single pathogen, and a single
life stage. The model is used to describe the interaction of lone-star ticks and
their hosts, the white-tailed deer, as their populations become infected with the E.
chaffeensis rickettsia. It is assumed in the model that the population sizes for both
hosts and ticks are nonconstant. The governing equations for the model are
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where N and V are the host and tick population densities, Y and X are the den-
sities of individuals in host and tick populations that are infected with the disease

respectively, and β, β̂, b, b̂, K, M , A, Â and ν are nonnegative parameters and their
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physical meanings are as follows: β and β̂ are the growth rates of hosts and ticks

respectively, b and b̂ are the external death rates of hosts and ticks respectively, K
is the carrying capacity for hosts per m2, M is the maximum number of ticks per

host, A is the transmission date from hosts to ticks, Â is the transmission rate from
ticks to hosts, ν is the recovery rate of hosts. Two sets of numerical estimates for
these parameters are given in [4]. For a further description of the model we refer
the interested reader to [4] and the references therein.

In order to understand the long-term population and disease dynamics and help
determine the expected results of different control programs, Gaff and Gross [4]
performed equilibrium analysis for the system (1). Using the scalings
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they first transformed (1) into the following nondimensional system with six pa-
rameters rather than the original nine (after dropping the tilde from t̃):
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where the parameters s0, s1, s2, s3, s4, and s5 are non-negative. Since only the
region P given by

P := {(n, v, x, y) : n > 0, v > 0, x ≥ 0, y ≥ 0}

is biologically relevant to the system (2), they then showed that if s0, s1, s3, and
s5 are positive, then P is positively invariant for the flows of (2). Here is an
alternative way to show this property. Let (n0, v0, x0, y0) be an arbitrary point in P
and (n(t), v(t), x(t), y(t)) be the solution of (2) through this point at t = 0, whose
right maximal interval of existence is [0, β) where 0 < β ≤ ∞. Then, we have
following expressions for t ∈ [0, β):
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(3)

where

a(t) := −s5
y(t)

n(t)
− s1s2 − s1

v(t)

n(t)
, b(t) := −s3

x(t)

n(t)
− s4 − n(t).

It follows from (3) that n(t) > 0, v(t) > 0, x(t) > 0 and y(t) > 0 for all t ∈ (0, β),
i.e., (n(t), v(t), x(t), y(t)) is in the interior of P for all t ∈ (0, β).
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From [4], the system (2) has three equilibria:

E1 = (s0, 0, 0, 0), E2 = (s0, s0(1 − s2), 0, 0), E3 = (s0, s0(1 − s2), x
∗, y∗),

where

x∗ =
s0R0

s3(s1 + s5)
, y∗ =

s0R0

s5[s3(1 − s2) + s4 + s0]
, R0 = s3s5(1−s2)−s1(s0+s4).

By analyzing the eigenvalues of the variational systems of (2) at E1, E2 and E3,
Gaff and Gross proved the following result on the local stability of these equilibria,
in the Appendix of [4]:

Theorem 1.1. Assume that si > 0 for i = 0, · · · , 5.
(i) If s2 > 1, then E1 is a locally asymptotically stable solution of (2).
(ii) If s2 < 1 and R0 ≤ 0, then E2 is a locally asymptotically stable solution of

(2).
(iii) If s2 < 1 and R0 > 0, then E3 is a locally asymptotically stable solution of

(2).

At the end of the reference [4], based on phase plane diagrams in the xy-plane
and numerical results Gaff and Gross conjectured that E3 is globally stable under
the hypotheses of Theorem 1.1 (iii). The purpose of this note is to confirm this
conjecture. Indeed, we prove the following:

Theorem 1.2. Assume that si > 0 for i = 0, · · · , 5. Then under the assumptions
in Theorem 1.1 (i), (ii), (iii), E1, E2, E3 are globally asymptotically stable in P
for the system (2), respectively.

Remark 1. (a) Our proof implies that (i) holds also for s2 = 1.
(b) In case (i), E1 is the only equilibrium point of (2) lying in P̄ (the closure of

P). In case (ii), E1 and E2 are the equilibria in P̄. In case (iii), E1 and E3 are the
equilibria in P̄ .

The proof of Theorem 1.2 is given in the next section.

2. Proof of Theorem 1.2. In order to prove Theorem 1.2 we need the following
lemma.

Lemma 2.1. Assume that si > 0 for i = 0, · · · , 5. Then
(i) The set

Q := P ∩ {(n, v, x, y) : n ≤ 2s0, v ≤ 3s0|1 − s2|, x ≤ 3s0|1 − s2|, y ≤ 2s0}

is positively invariant for (2).
(ii) Every solution of (2) starting in P enters Q eventually.

Proof. Since P is positively invariant, it suffices to show in (i) that the vector
fields of (2) point inside of Q on its boundaries: n = 2s0, or v = 3s0|1 − s2|, or
x = 3s0|1−s2|, or y = 2s0. This assertion follows from easy and direct verifications.

It remains to show (ii). We just prove the case that s2 < 1 since the case
s2 > 1 can be prove similarly. To this end, let (n0, v0, x0, y0) be an arbitrary
point in (P\Q), and φ(t) = (n(t), v(t), x(t), y(t)) be the solution of (2) through
this point at t = 0 with t ∈ [0, β) where [0, β) is the right maximal interval of
existence of φ(t). We first show that β = ∞. The first equation of (2) for n
is a logistic equation and can be solved explicitly, in particular n is increasing if
n0 ∈ (0, s0), n ≡ s0 if n0 = s0 and decreasing if n > s0. We thus have n(t) ≤
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N0 := max{s0, n0} for t ∈ [0, β). Inserting this estimate into the second equation
of (2) yields v′(t) < s1v(t)(1 − s2 − v(t)/N0) for t ∈ [0, β), which implies that
v(t) ≤ V0 := max{v0, N0(1 − s2)} for t ∈ [0, β). Then, from the third and fourth
equations of (2) we get x′(t) < s5(V0−x(t))y(t)/n(t) and y′(t) < s3(1−y(t)/N0)x(t)
for t ∈ [0, β), which together with x(t) > 0 and y(t) > 0 for t ∈ (0, β) yield
x(t) < X0 := max{x0, V0} and y(t) < Y0 := max{y0, N0} for t ∈ [0, β), respectively.
From these estimates we conclude that β = ∞.

In the rest of the proof we show that φ enters Q after a certain time. It follows
from the first equation that limt→∞ n(t) = s0, and hence there is a t0 > 0 such
that n(t) < 2s0 for t ≥ t0. Then from the second equation of (2) we get v′(t) <
s1v(t)[1 − s2 − v(t)/(2s0)] for t ∈ [t0,∞) which yield that there is a t1 ≥ t0 such
that v(t1) < 3s0(1 − s2) for if such a t1 did not exist we would have v′(t) <
s1[1 − s2 − (3/2)(1 − s2)]v(t) = (3/2)s1(1 − s2)

2v(t) for t ≥ t0 so that v(t) → −∞
as t → ∞. Since s1v[1 − s2 − v/(2s0)] < 0 whenever v = 3s0(1 − s2), it follows
that v(t) < 3s0(1 − s2) for t ≥ t1. Now, for t ≥ t1, we have x′(t) < s5[3s0(1 −
s2) − x(t))]y(t)/n(t) − s1s2x(t). This implies that there is a t2 ≥ t1 such that
x(t2) ≤ 3s0(1 − s2) for if such a t2 did not exist we would have x(t) > 3s0(1 − s2)
for all t ≥ t1 so that x′(t) < −s1s2x(t) and so x(t) → 0 as t → ∞, a contradiction.
Since s5[3s0(1−s2)−x)](y/n)−s1s2x < 0 whenever x = 3s0(1−s2), it follows that
x(t) < 3s0(1−s2) for t ≥ t2. Finally, noting that y′(t) < [1−y(t)/(2s0)]x(t)−s4y(t)
for t ≥ t2, in a similar manner to that for x we have that there is a t3 > t2 such that
y(t) ≤ 2s0 for t ≥ t3. Thus, we conclude that φ(t) ∈ Q for t ≥ t3. This completes
the proof of Lemma 2.1.

Proof of Theorem 1.2. Let P0 = (n0, v0, x0, y0) be an arbitrary point in P and
φ(t) = (n(t), v(t), x(t), y(t)) be the solution of (2) through this point at t = 0. We
have from Lemma 2.1 and the general structure of an ω-limit set (cf. [2]) that
φ(t) is defined for t ∈ [0,∞) and its ω-limit set, denoted by ω(P0), is nonempty,
compact, connected, composed of entire orbits of (2), and ω(P0) ⊆ Q. We need to
show that ω(P0) = {Ei} (i = 1, 2, 3) in cases (i), (ii), (iii), respectively. The first
two equations of (2) are both Bernouli’s equations so that we have, for t > 0,

1

n(t)
=

1

n0
e−s0t +

1

s0
(1 − e−s0t),

1

v(t)
=

1

v0
e−s1(1−s2)t + s1

∫ t

0

e−s1(1−s2)(t−τ) 1

n(τ)
dτ,

from which we get directly limt→∞(n(t), v(t)) = (s0, v∞) where v∞ = max{0, s0(1−
s2)}. This implies that ω(P0) lies on the invariant plane n = s0 and v = v∞ in
the four-dimensional phase space of (2). Let (s0, v∞, X0(t), Y0(t)) be an arbitrary
solution of (2) in ω(P0) defined on (−∞,∞). Then, (X0(t), Y0(t)) is a solution of
the planar system

dX

dt
= f1(X, Y ) :=

s5

s0
Y (v∞ − X) − s1s2X −

s1v∞
s0

X,

dY

dt
= f2(X, Y ) := s3(1 −

Y

s0
)X − (s4 + s0)Y.

(4)

Note that
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∂X
+
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∂Y
= [−s1s2 −
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−
s5

s0
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It follows from Bendixson’s Criterion that (4) does not have any periodic solutions
and homoclinic loops in the first quadrant. This rules out (X0(t), Y0(t)) as a periodic
or homoclinic solution. Therefore, (X0(t), Y0(t)) is either an equilibrium solution
or a heteroclinic solution.

Under the assumptions in cases (i) and (ii), we have that (0, 0) is the only equi-
librium point of (4) in the first quadrant in the xy-plane. This implies that (4)
does not have any heterolinic solutions. We thus have (X0(t), Y0(t)) = (0, 0) for all
t ∈ R. Therefore, we conclude ω(P0) = {E1} and ω(P0) = {E2} in (i) and (ii),
respectively.

Under the assumptions in (iii), we have that (4) has only two equilibria (0, 0),
(x∗, y∗) in the first quadrant of the XY -plane. We claim that (4) has a unique
heteroclinic orbit from (0, 0) to (x∗, y∗) lying in the first quadrant. To see this,
we need to study the local property of (4) near (0, 0). It is easy to find that the
linearized system of (4) at (0, 0) is:

dX

dt
= −s1X + s5(1 − s2)Y,

dY

dt
= s3X − (s0 + s4)Y,

(5)

with two eigenvalues given by

λ± =
1

2

[

− (s0 + s1 + s4) ±
√

(s0 + s1 + s4)2 + 4R0

]

.

Since R0 > 1 by assumption, we see that (0, 0) is a saddle equilibrium point of
(5). A simple computation shows that the eigenvectors of (5) associated to λ± are
(1, b±)⊤ where

b± =
s1 + λ±

s5(1 − s2)
.

It is clear that b+ > 0. Since

s1 + λ− =
1

2

[

(s1 − s0 − s4) −
√

(s1 − s0 − s4)2 + 4s3s5(1 − s2)
]

,

it follows that b− < 0. By the stable manifold theorem, the system (4) has a one-
dimensional stable manifold at (0, 0) that lies in the second and fourth quadrants
and one-dimensional unstable manifold that lies in first and third quadrants. Using
the Poincare-Bendixson theorem and the fact established above (i.e., (4) has neither
periodic orbit nor homoclinic loops in the first quadrant) we conclude that the
branch of this unstable manifold in the first quadrant approaches (x∗, y∗) as t → ∞,
which gives a heteroclinic orbit of (4). The dimension of the unstable manifold of
(4) at (0, 0) implies that this is the only heteroclinic orbit of (4).

Now we claim that (X0(t), Y0(t)) cannot be this heteroclinic orbit. Suppose
that this is false. Since E3 is a locally asymptotically stable solution of (2), for a

given sufficiently small ε with 0 < ε < (1/2)
√

(x∗)2 + (y∗)2 there is a δ > 0 such
that any solution of (2) starting in B(E3, δ) stays in B(E3, ε) for all t ≥ 0. Since
(X0(t), Y0(t)) → (x∗, y∗) as t → ∞, it follows that there is a t0 > 0 sufficiently
large such that (s0, v∞, X0(t0), Y0(t0)) ∈ B(E3, δ). Here B(E3, δ) and B(E3, ε)
denote the open balls in the phase space of (2) centered at E3 with radii of δ
and ε, respectively. Then, by virtue of (s0, v∞, X0(t0), Y0(t0)) ∈ ω(P0), there is a
t1 > t0 sufficiently large such that φ(t1) ∈ B(E3, δ), and thus φ(t) ∈ B(E3, ε) for
any t ≥ t1. This together with (X0(−∞), Y0(−∞)) = (0, 0) implies that the points
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(s0, v∞, X0(t), Y0(t)) cannot be in ω(P0) for sufficiently negative t, a contradiction.
This shows the above claim.

Therefore, we conclude that either (X0(t), Y0(t)) ≡ (0, 0) or (X0(t), Y0(t)) ≡
(x∗, y∗). This yields that ω(P0) ⊆ {E2, E3}. Then using the fact that ω(P0)
is connected, we obtain that either ω(P0) = {E2} or ω(P0) = {E3}. The first
alternative is impossible since for otherwise we would have from the stable manifold
theorem

(

x(t)
y(t)

)

= c

[(

1
b−

)

+ o(1)

]

eλ
−

t as t → ∞

for some constant c 6= 0, which yields x(t)y(t) < 0 for sufficiently large t, contra-
dicting that x(t) > 0 and y(t) > 0 for all t > 0. Hence, it must be the case that
ω(P0) = {E3}, thereby completing the proof of Theorem 1.2.
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