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Dynamics of a Canonical Electrostatic MEMS/NEMS
System
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The mass-spring model of electrostatically actuated microelectromechanical sys-
tems (MEMS) or nanoelectromechanical systems (NEMS) is pervasive in the
MEMS and NEMS literature. Nonetheless a rigorous analysis of this model does
not exist. Here periodic solutions of the canonical mass-spring model in the vis-
cosity dominated time harmonic regime are studied. Ranges of the dimensionless
average applied voltage and dimensionless frequency of voltage variation are delin-
eated such that periodic solutions exist. Parameter ranges where such solutions fail
to exist are identified; this provides a dynamic analog to the static “pull-in” insta-
bility well known to MEMS/NEMS researchers.
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1. INTRODUCTION

As the characteristic length of engineering systems approaches the micro
or nanometer scale the role of electrostatics grows correspondingly. Often
perceived as a nuisance in the macro-world, such as in the case of the
destruction of sensitive electronic circuits due to electrostatic discharge
(ESD),4 electrostatic forces are increasingly being used to provide accurate,
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4ESD is no laughing matter. Before the advent of nonflammable anesthetics an errant
spark from a doctor’s scalpel would sometimes ignite the ether in a patient’s lungs,
rendering the operation a failure.

609

1040-7294/08/0900-0609/0 © 2007 Springer Science+Business Media, LLC



610 Ai and Pelesko

controlled, stable locomotion for micro and nanoelectromechancical
systems (MEMS or NEMS). In this approach, voltage differences are
applied between mechanical components of the system. This induces a
Coulomb force between components which is varied in strength by vary-
ing the applied voltage. This technique is already employed in devices such
as accelerometers [4], optical switches [5], microgrippers [7], micro force
gauges [19], transducers [3], micro pumps [16] and nanotweezers [12].

In order to understand the operation of such devices researchers in the
MEMS and NEMS communities have relied upon idealized mathematical
models. The typical approach, first introduced into the literature by Nathan-
son in 1967 [14], is to create a “lumped” mass-spring model. Here, the elastic
behavior of the system is represented by a linear spring while electrostatic
forces are computed using a simple parallel plate capacitor approximation.
This mass-spring model has persisted in the MEMS/NEMS literature and
has been rediscovered and discussed by numerous authors, [6, 8, 10, 12, 13,
15, 17, 18]. Nevertheless, the mathematical analysis of this canonical model
has remained primitive. Typically, authors have restricted their attention to
steady-state solutions [12], relied upon numerical simulation for dynamical
information [6], or have utilized perturbation methods to study approximate
dynamics in some region of parameter space [18].

In this paper, we begin to remedy this situation by providing a rig-
orous analysis of the viscosity dominated time harmonically forced mass-
spring MEMS/NEMS model. While this analysis does not capture the
dynamics of every possible MEMS or NEMS device, it is relevant for the
study of devices, such as micropumps [16], microgrippers [7], or nano-
tweezers [12], which operate in the viscosity dominated regime. In Sec-
tion 2, for the convenience of the reader we provide a brief derivation of
the model. In Section 3, we consider the situation where inertial forces
are completely negligible. In this case, the model is reduced to a nonlin-
ear first order non-autonomous ordinary differential equation. We study
the existence of periodic solutions to this equation. We determine ranges
of the dimensionless applied voltage and dimensionless forcing frequency
for which such solutions exist. We show that outside of these ranges the
model has no solution. This is the dynamic analog of the static instability
well known to MEMS/NEMS researchers as the “pull-in” or “snap-down”
instability. In this instability, when a constant applied voltage is increased
beyond a certain critical voltage there is no longer a steady-state config-
uration of the device where mechanical members remain separate. Here
in the dynamic situation, the device cannot be operated in an oscillatory
mode if the mean applied voltage is too large or the forcing frequency
is too small. In Section 4, we consider a situation where inertial forces
are small, but non-negligible. In this case, the model becomes a nonlinear
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Figure 1. Sketch of the damped mass-spring system.

second order non-autonomous ordinary differential equation. Again we
investigate periodic solutions of this equation and determine criteria neces-
sary for such solutions to exist. Finally, in Section 5, we discuss the impli-
cations of our analysis for MEMS/NEMS device behavior.

2. FORMULATION OF THE CANONICAL MODEL

The system sketched in Fig. 1 represents a “lumped” approximation
of a typical electrostatically actuated MEMS/NEMS device. The governing
equation for this system is

m
d2x

dt ′2
= Fs + Fd + Fe. (2.1)

Here, x is the displacement of the top plate from the top wall and m is
the top plate’s mass. We assume that the bottom plate is held in place. The
forces acting on our system are the spring force, Fs, a damping force rep-
resented by the dashpot in Fig. 1, Fd, and the electrostatic force, Fe, due
to the applied voltage difference between the plates. We assume that the
spring is a linear spring and follows Hooke’s law

Fs =−k(x − l) (2.2)

where l is the rest length of the spring and k is the spring constant. We
assume that damping is linearly proportional to the velocity, that is

Fd =−a
dx

dt ′
(2.3)
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and compute the electrostatic force by treating the plates in Fig. 1 as infi-
nite parallel plates. This yields

Fe = 1
2

ε0 AV 2

(L − x)2
cos2(Ωt ′). (2.4)

Here, ε0 is the permittivity of free space, A is the area of the plates, V is
the average applied voltage, and Ω is the frequency at which the applied
voltage is varied. Inserting equations (2.2), (2.3) and (2.4) into equation
(2.1) yields

m
d2x

dt ′2
+a

dx

dt ′
+ k(x − l)= 1

2
ε0 AV 2

(L − x)2
cos2(Ωt ′). (2.5)

We recast this equation in dimensionless form by introducing a dimension-
less length scale

y = x − l

L − l
(2.6)

and dimensionless time scale

t = k

a
t ′. (2.7)

Introducing equations (2.6) and (2.7) into equation (2.5) yields

1
α2

d2 y

dt2
+ dy

dt
+ y = λ

(1− y)2
cos2(γt), (2.8)

where

α2 = a2

mk
, γ= Ωa

k
, λ= ε0 AV 2

2k(L − l)3
.

The dimensionless parameter α may be interpreted as a damping coeffi-
cient which measures the relative strength of the viscous damping force
as compared to the spring force. The dimensionless parameter λ measures
the relative strength of electrostatic and elastic forces in our system. The
dimensionless parameter γ is the ratio of damping and forcing time scales.

When damping effects dominate over inertial effects, we expect the
parameter α to be large. If inertial effects are completely negligible, we
send α →∞ and study the reduced model

dy

dt
+ y = λ

(1− y)2
cos2(γt). (2.9)

This situation is studied in the next section. In Section 4, we return to the
case where α is large, but inertial effects are not completely negligible in
(2.5).
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3. THE VISCOSITY DOMINATED CASE

In this section we study the 2π/γ-periodic solutions of equation (2.9).
We restrict our attention to solutions where y <1 as y >1 implies that the
top plate in Fig. 1 has passed through the bottom plate. It is convenient
to introduce the following scalings:

u(t) := [1− y(t/3ω)]3, ω :=2γ/3,

and hence the problem reduces to finding solutions u, 0 < u < 1, of the
periodic boundary value problem

ωu′(t) = u2/3(t)−u(t)−λ cos2(t/2), (3.1)

u(0) = u(2π). (3.2)

Since any solution u of (3.1)–(3.2) satisfies u(t)< 1 for t ∈ R (see Lemma
3.1 (i)), it suffices to study the positive solutions of (3.1)–(3.2). We note
that, due to the non-differentiable term u2/3 at u = 0, the initial value
problem of (3.1) at t = π with u(π) = 0 loses uniqueness on the side
t � π for sufficiently small λ > 0, and results in the existence of non-
negative solutions of (3.1)–(3.2) which become 0 at t = π in [0,2π ].
Although these solutions are not physically meaningful for (2.9), for com-
pleteness we include them in the following main result:

Theorem 3.1. For any ω > ω0 := 2/3, there exist a unique number
λ0(ω) ∈ ( 16

6561ω2 , 16
243ω2 ) and a unique number λb(ω) ∈ (4/27,8/27) with

limω→∞ λb(ω)=8/27 such that

(i) If λ0 <λ<λb, or λ=λb, or λ>λb, then (3.1)–(3.2) has exactly
two, one, no positive solutions, respectively, and does not have any
other non-negative solutions.

(ii) If 0<λ�λ0, then (3.1)–(3.2) has exactly two nonnegative solu-
tions: one is strictly positive, the other reaches zero only at t =π

in [0,2π ].
Remark 3.1. ω0 = 2/3 is not optimal. Note that 16

243ω2 < 4/27 if ω >

2/3. For each ω>ω0, λb(ω) is the bifurcation value resulting from the sad-
dle-node bifurcation of periodic solutions of (3.1). It can be shown that
λb(ω) is a smooth function for ω∈ (ω0,∞). For each ω>ω0, the existence
of λ0(ω) is due to the fact that the smaller of nonnegative solutions of
(3.1)–(3.2) reaches 0 at t =π if λ< 16

6561ω2 . It is important to note that this
does not occur if the function u3/2 is changed into uσ with 2/3 < σ < 1.
Indeed, we can prove the following:
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Theorem 3.2. Let 2/3<σ <1 and ω>0, and consider the equation

ωu′ =uσ −u −λ cos2(t/2). (3.3)

There is a smooth and positive function λσ (ω) for ω∈ (0,∞) with
limω→∞ λσ (ω) = (1 − σ)(1/σ)σ/σ−1 such that (3.3) has precisely two, one,
no 2π -periodic and positive solution(s) respectively if 0<λ<λσ (ω), or λ=
λσ (ω), or λ>λσ (ω).

Below we prove Theorem 3.1 by a set of lemmas. In Lemma 3.1 we
prove the nonexistence of nonnegative solutions of (3.1)–(3.2) if λ>8/27.
In Lemma 3.3, we show that (3.1)–(3.2) can have at most two nonnegative
solutions. In Lemma 3.4, we establish sufficient conditions on λ and ω for
the existence and nonexistence of nonnegative solutions that reach zero at
t =π . In Lemmas 3.5 and 3.6, we show the existence of nonnegative solu-
tions for (3.1)–(3.2) within certain ranges of values of λ and ω. Then using
these lemmas and the properties of the Poincare map of (3.1) we complete
the proof of Theorem 3.1. Roughly speaking, this Poincare map with any
fixed λ and ω is concave down, and the corresponding graph moves down
as the value of λ is increased, resulting in a saddle-node bifurcation at λ=
λb(ω). See an example in Chapter one of [11]. After proving Theorem 3.1,
we present Theorems 3.3 and 3.4 that describe the asymptotic behavior of
the solutions of (3.1)–(3.2) as ω→0 and ω→∞, respectively.

Lemma 3.1. Let λ>0 and ω>0.

(i) If u is a nonnegative solution of (3.1)–(3.2), then u(t)< 1 for all
t ∈[0,2π ]; furthermore, if u is not strictly positive on [0,2π ], then
u reaches 0 only at t =π in [0,2π ].

(ii) If (a) λ� 8
27 and ω>0, or (b) λ> 4

27 and

ω� 4

3
√

λ

(
λ− 4

27

)3/2

, (3.4)

then (3.1)–(3.2) does not have any non-negative solution.

Proof. We first show (i). We note that if u is a solution of (3.1) with
u(t0)=1 for some t0 ∈[0,2π ], then ωu′(t0)=−λ cos2(t0/2). It follows that if
t0 �=π , then u′(t0)<0 and, otherwise, if t0 =π , then u′(t0)=0, and differen-
tiating (3.1) two times yields u′′(t0)=0 and ωu′′′(t0)=−λ<0, which implies
that u′(t)<0 for |t − t0|>0 sufficiently small. Therefore, either case yields
that u′(t)< 0 for |t − t0|> 0 sufficiently small. Consequently, any solution
of (3.1) can assume the value one at most one time.

Now let u be a solution of (3.1)–(3.2). Since ωu′(t)�u2/3(t)−u(t)<0
whenever u(t)> 1, it follows either that u(t)< 1 for all t or that u(t0)= 1
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for some t0 ∈ [0,2π). However, the above assertion and the periodicity of
u implies that the latter cannot happen. This shows the first part of (i).

The second part of (i) directly follows from the facts that u is peri-
odic, non-negative, and ωu′(t) = −λ cos2(t/2) < 0 whenever u(t) = 0 for
t ∈[0,2π ] \ {π}.

We use contradiction arguments to show (ii). Assume that (3.1)–(3.2)
has a non-negative solution u. It follows from (i) that 0�u(t)<1 for t ∈R

and so u3/2(t) − u(t) � 4/27 for all t ∈ R, where the equality holds only
when u(t) = 8/27. Clearly, u(·) �≡ 8/27. Hence, if λ � 8/27 and ω > 0 as
assumed in (ii) (a), then integrating (3.1) yields

0=ω[u(2π)−u(0)]=
∫ 2π

0
[u2/3(t)−u(t)−λ cos2(t/2)]dt <2π

(
4
27

− λ

2

)
�0,

a contradiction. Here we have used the property of the function F(u) :=
u2/3 − u for u ∈ [0,1]; namely, F is increasing on [0,8/27] and decreasing
on [8/27,1], F(0)= F(1)= 0 and 0 � F(u)� F(8/27)= 4/27 for u ∈ [0,1].
Assume that (ii) (b) holds. Since ωu′(t)�4/27−λ cos2(t/2) and sin t > t −
t3/6 for t >0 and u(0)<1, it follows that, for t >0,

ωu(t)<ω+ 4
27

t − λ

2
(t + sin t )<ω−

(
λ− 4

27

)
t + 1

12
λt3. (3.5)

Let f (t) be the right-hand side of the last inequality. We find that f

reaches its global minimum on [0,∞) at t̄ = 2√
λ

√
λ− 4

27 and f (t̄) = ω −
4

3
√

λ
(λ − 4

27 )3/2 � 0 by virtue of (3.4). (3.5) then yields ωu(t̄) < f (t̄) � 0,
which contradicts the non-negativeness of u(·). This shows (ii), thereby
completing the proof of Lemma 3.1.

Lemma 3.2. Let ω>0. Let u(t, α, λ) denote the solution of (3.1) with
u(0, α, λ)=α, whose dependence on ω is suppressed. Assume that u(t, α, λ)

exists and is positive for any (t, α, λ)∈[0,2π ]×Pαλ where Pαλ is a open set
in the αλ-plane. Let h(α, λ)=u(2π,α,λ)−α. Then, h is smooth on Pαλ and,
for (α, λ)∈Pαλ,

hαα(α, λ)<0, hλ(α, λ)<0, (3.6)

where hαα = ∂2h
∂α2 and hλ = ∂h

∂λ
.

Proof. We denote the right-hand side of (3.1) by f (t,u, λ) whose
dependence on ω is suppressed. Let p(α, λ) :=u(2π,α,λ) denote the Poin-
care map of (3.1) for (α, λ) ∈ Pαλ. By means of variational equations we
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get, for (α, λ)∈Pαλ,⎧⎪⎨
⎪⎩

pα(α, λ) = exp
∫ 2π

0
1
ω

fu(s,u(s, α, λ), λ)ds >0,

pαα(α, λ) = pα(α, λ) ·∫ 2π

0
1
ω

fuu(s,u(s, α, λ), λ) ·uα(s, α, λ)ds,

pλ(α, λ) = ∫ 2π

0
1
ω

fλ(s,u(s, α, λ), λ) ·uα(s, α, λ)ds,

(3.7)

where, for s ∈[0,2π ], uα(s, α, λ)= exp
∫ s

0 fu(τ,u(τ, α, λ), λ)dτ , and⎧⎨
⎩

fu(s,u(s, α, λ), λ) = 2
3 [u(s, α, λ)]−1/3 −1,

fuu(s,u(s, α, λ), λ) = − 2
9 [u(s, α, λ)]−4/3 <0,

fλ(s,u(s, α, λ), λ) = − cos2(s/2).

(3.8)

Then (3.6) follows immediately from (3.7) and (3.8).

Lemma 3.3. For any λ>0 and ω>0, (3.1)–(3.2) can have at most two
non-negative solutions; and if (3.1)–(3.2) does have two nonnegative solu-
tions, then one of them must be strictly positive.

Proof. We first show the second assertion of the lemma. Assume on
a contrary that u1 and u2 are two solutions of (3.1)–(3.2) for some λ> 0
and ω>0 such that 0<u2 <u1 on [0,2π ] \ {π} and u1(π)=0 and u2(π)=
0. Note that ω(u1 −u2)

′ =a(t)(u1 −u2) where a(t)= (2/3)
∫ 1

0 [θu1(t)+ (1−
θ)u2(t)]−1/3 dθ − 1 > 0 if t ∈ [t0, π) and t0 is sufficiently close to π so
that 0 < ui (t)< 8/27 for t ∈ [t0, π). It follows that u1 − u2 is increasing on
[t0, π ] and thus 0=u1(π)−u2(π)>u1(t0)−u2(t0)>0, a contradiction. This
confirms the second assertion.

We next show the first part of the lemma. Assume on a contrary that
(3.1)–(3.2) has more than two nonnegative solutions for some λ > 0 and
ω>0. Let ui (i =1,2,3) be three of such solutions. From the above asser-
tion, we can assume that u3 < u2 < u1 for all t ∈ [0,2π ]. We proceed the
proof in two cases.

Case 1. Assume that u3(t) > 0 for t ∈ [0,2π ]. Then we have 0 <

u3 < u2 < u1 on [0,2π ] and we can take δ > 0 sufficiently small such
that u(t, α, λ) exists and is positive on [0,2π ] for any α ∈ Iα := (u3(0) −
δ,u1(0) + δ). Thus, h(α) := h(α, λ) is defined for α ∈ Iα and, from (3.6),
hαα(α)<0 for α∈ Iα . This implies that h is concave down on Iα and there-
fore cannot have three zeros ui (0) (i =1,2,3) in Iα.

Case 2. Assume that u3(π) = 0. Note that, letting Θi = u2/3
1 +

u1/3
1 u1/3

i + u2/3
i for i = 2,3, ω(u1 − ui )

′ =
{

1
Θi

[u1/3
1 +u1/3

i ]−1
}

(u1 − ui ) and
so, after a little algebra,

ω
d

dt

(
ln

u1 −u2

u1 −u3

)
= 1

Θ2Θ3

[
u1/3

1 u1/3
2 +u1/3

1 u1/3
3 +u1/3

2 u1/3
3

] [
u1/3

3 −u1/3
2

]
.



Dynamics of Canonical MEMS/NEMS Model 617

Since the right-hand side of the above equation is negative on [0,2π ], it
implies that ln[(u1 −u2)/(u1 −u3)] cannot be 2π -periodic, a contradiction.
We note that this proof also works for case 1. This completes the proof of
Lemma 3.3.

Lemma 3.4. Let 0<λ<8/27 and ω>0.

(i) If λ < 16
6561ω2 and u is a nonnegative solution of (3.1)–(3.2) with

u <8/27, then u(π)=0.
(ii) If λ > 16

243ω2 and u is a nonnegative solution of (3.1)–(3.2), then
u(t)>0 for all t ∈R.

Proof. We first show (i). Assume that u >0 on [0,2π ]. Then 0<u <

8/27 and u2/3 − u = u2/3(1 − u1/3)> u2/3/3. It then follows from (3.1) and
the inequality cos2 t/2 � (t − π)2/4 that ωu′ > 1

3 u2/3 − λ(t−π)2

4 on [0,2π ].
We note that the equation

ωu′ = 1
3

u2/3 − λ(t −π)2

4

has a solution ū = d(t −π)3 for some d >( 2
27ω

)3. Hence, since u(π)> 0 =
ū(π), by a simple comparison argument we have u(t)>d(t −π)3 for t >π ,
which contradicts the boundedness of u. Therefore, we must have u(π)=0,
showing (i).

We now show (ii). From Lemma 3.1 (i) it suffices to show that u(π)>

0. Assume on the contrary that u(π) = 0. Since u(t) > 0 for t ∈ (π,2π ],
it follows that ωu′(t) = u2/3(t) − u(t) − λ cos2(t/2) < u2/3(t) for t ∈ (π,2π ].
Integrating over [t0, t] where π < t0 < t � 2π and then sending t0 → π+
yields u(t)<(t −π)3/(27ω3) and so u2/3(t)<(t −π)2/(9ω2). Note that, for
any given sufficiently small δ>0, there exists a tδ ∈ (π,2π) sufficiently close
to π such that cos2(t/2)= sin2[(t −π)/2]>(1 − δ)(t −π)2/4 for t ∈ (π, tδ].
It follows from the equation (3.1)

ωu′(t)�u2/3(t)−λ cos2(t/2)<

[
1

9ω2
− (1− δ)λ

4

]
(t −π)2. (3.9)

Take an integration over [π, t] for t ∈ (π, tδ] to get

u(t)<
1

3ω

[
1

9ω2
− (1− δ)λ

4

]
(t −π)3 =:a1(t −π)3. (3.10)

Hence, if ω � 2/(3
√

(1− δ)λ), then a1 � 0 so that u(t) < 0 for t ∈
[π, tδ) which is a contradiction. Otherwise, if a1 > 0, we replace u in
the right-hand side of the first inequality in (3.9) by a1(t − π)3 to get
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ωu′<[a2/3
1 −(1−δ)λ/4](t −π)2 for t ∈ (π, tδ] and then an integration yields,

for t ∈ (π, tδ],

u(t)<
1

3ω

[
a2/3

1 − (1− δ)λ

4

]
(t −π)3 =:a2(t −π)3.

Note that a2 <a1. If a2 �0, then the above inequality implies u(t)<0 for
t ∈ (π, tδ], a contradiction again. Otherwise, we repeat the above argument
to get, as long as ak−1 >0 (k �1) and t ∈ (π, tδ],

u(t)<ak(t −π)3, ak =
{ 1

27ω3 if k =0,

1
3ω

[
a2/3

k−1 − (1− δ)λ/4
]

if k >0.
(3.11)

We claim that there is a finite k such that ak � 0. Assume that the claim
is false. Then, ak > 0 and (3.11) hold for all k = 0,1, . . .. Since a0 > a1,
a simple induction shows that ak is (strictly) monotonically decreasing
with zero as their lower bound and thus ak → â for some â ∈ [0,a0) such
that â2/3 − 3ωâ − (1 − δ)λ/4 = 0. However, for any fixed ω > 4/(9

√
3λ),

we can choose a δ > 0 sufficiently small at the beginning such that ω >

4/(9
√

3(1− δ)λ) and then it can be easily verified that the equation a2/3 −
3ωa − (1− δ)λ/4=0 does not have any nonnegative solution. This contra-
diction shows the above claim. Using this claim and (3.11) we get u(t)<0
for t ∈ (π, tδ], again a contradiction. Therefore, we conclude that u(π)= 0
does not hold, thereby completing the proof of (ii).

Remark 3.2. Lemma 3.4 (i) was proved by Professor Stuart P. Has-
tings at the University of Pittsburgh. The authors thank him for providing
this important result.

Lemma 3.5. If 0 < λ < 4/27 and ω > 0, then (3.1)–(3.2) has two non-
negative solutions u1 and u2 that satisfy u2 < κ2 < κ1 < u1 < 1 on [0,2π ],
where κ1 and κ2 are the two roots of κ2/3 − κ − λ = 0 such that 0 < κ2 <

8/27<κ1 <1.

Proof. We first note that, since 0 <λ< 4/27, the algebraic equation
κ2/3 −κ −λ=0 has exactly two roots κi =κi (λ) (i =1,2) in [0,∞) such that
0<κ2 <8/27<κ1 <1 (see Fig. 2). We fix a λ∈ (0,4/27) and an ω>0 and
let u(t, α) denote the solution of the equation (3.1) with u(0, α)=α. Note
that if u(t, α) = κ1 for some t ∈ [0,2π ], then ωu′(t, α) = λ(1 − cos2 t/2) =
λ sin2 t/2>0 except for t =0,2π . It follows that, for any κ1 �α �1, u(t, α)

exists for t ∈[0,2π ] and satisfies κ1 <u(t, α)<1 for t ∈ (0,2π ]. This implies
that the Poincare map u(2π, ·) is well-defined on [κ1,1] and maps [κ1,1]
into (κ1,1). Thus, the intermediate value theorem yields that u(2π, ·) has



Dynamics of Canonical MEMS/NEMS Model 619

w

0.8

0

1

0.6

t
641

0.2

0.4

w

0.8

0

1

0.6

0.2

0.4

w

0.8

0

1

0.6

0.2

0.4

20
t

2 4.531.5 3.52.53 5
t

641 20 3 5 4

Figure 2. The curves of u2/3 −u −λ cos2(t/2)=0 with λ=0.1, 4/27, 0.25, respectively.

at least one fixed point α1 ∈ (κ1,1). Letting u1(t) :=u(t, α1) gives a desired
solution.

In order to show the existence of u2, we consider the equation

ωu′ =u3/2 −u −λ cos2(t/2)−η, (3.12)

where 0 < η < 4/27 − λ. Let u(t, α, η) be the solution of (3.12) with
u(0, α, η)=α. Let κη be the root of κ2/3 − κ −λ−η = 0 lying in (0,8/27).
Then one verifies easily that, for each α ∈ [η3/2, κη], u(t, α, η) exists for
t ∈ [−2π,0] and satisfies η3/2 < u(t, α, η) < κη for t ∈ [−2π,0). Thus, the
Poincare map u(−2π, ·, η) has a fixed point αη ∈ (η3/2, κη) and u(t, η) :=
u(t, αη, η) is a 2π -periodic and positive solution of (3.12).

We now apply the Arzela-Ascoli theorem to conclude that there is a
sequence {ηn} with ηn → 0 as n →∞ such that the sequence {u(·, ηn)}∞n=1
converge to a 2π -periodic function, which is denoted by u2(·). An easy
exercise shows that u2 is a solution of (3.1)–(3.2). Since κηn → κ2 and
η3/2 <u(·, η)<κη, it follows that 0�u2 �κ2. An slope field analysis yields
that u2(t)<κ2 for t ∈[0,2π ]. This completes the proof of Lemma 3.5.

The next lemma concerns the existence of solutions of (3.1)–(3.2) as
well but allows λ in a larger interval, namely, 0 <λ< 8/27. The result of
this lemma implies that limω→∞ λb(ω)=8/27.
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Lemma 3.6. Assume that 0 <λ< 8/27. Let γ1 =γ1(λ) and γ2 =γ2(λ)

be the solutions of the equation γ2/3 −γ−λ/2=0. Define

δ = 1
2

min
{
γ2,

8
27

−γ2, γ1 − 8
27

, 1−γ1

}
,

γi j =γi + (−1) jδ, (i =1,2, j =1,2)

�21 =− 27
8π

(
2

3γ
1/3
21

−1

)−1 (
γ

2/3
21 −γ21 − 1

2
λ

)
,

�22 = 27
8π

(
2

3(γ22 − 1
2δ)1/3

−1

)−1 (
γ

2/3
22 −γ22 − 1

2
λ

)
,

�11 = 27
8π

(
γ

2/3
11 −γ11 − 1

2
λ

)
,

�12 =− 27
8π

(
γ

2/3
12 −γ12 − 1

2
λ

)
,

�=min{�11, �12, �21, �22}.
If ω>max{16π/(27δ), 1/� }, then (3.1)–(3.2) has exactly two positive solu-
tions u1 and u2 such that

|ui (t)−γi |�
3
2
δ for t ∈[0,2π ]. (3.13)

Proof. We first fix a λ and an ω that satisfy the assumptions of the
lemma, and then let ε=1/ω and then write the equation (3.1) in the form

u′ = ε[u2/3 −u −λ cos2(t/2)]. (3.14)

We use u(t, α) to denote the solution of the equation (3.14) with u(0, α)=α.
We first show the existence of u2. For any α ∈[γ21,γ22]=[γ2 − δ,γ2 +

δ], we define t̂ = sup{t ∈ (0,2π): 0<u(·, α)<1 on (0, t)}. Then for t ∈ (0, t̂),
0<u2/3(t, α)−u(t, α)�4/27 so that

∣∣∣
∫ t

0
(u2/3(s, α)−u(s, α)−λ cos2(s/2))ds

∣∣∣�max

{
8π

27
, λ

∫ 2π

0
cos2(s/2)ds

}

=max
{

8π

27
, λπ

}
� 8π

27
,

and

|u(t, α)−α|� ε

∣∣∣
∫ t

0
(u2/3(s, α)−u(s, α)−λ cos2 s)ds

∣∣∣� 8π

27
ε, (3.15)
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which together with ε <27δ/16π yields

0<γ2 − 3
2
δ <α − 8π

27
ε <u(t, α)<α + 8π

27
ε <γ2 + 3

2
δ <

8
27

. (3.16)

Consequently, t̂ =2π and (3.16) holds for t ∈[0,2π ].
Therefore, if α =γ21, using (3.16), the monotonicity of F(u)= u2/3 −

u for u ∈ [0,8/27], the inequality (1 + b)2/3 < 1 + 2b/3 with b > 0 and the
assumption on ω we obtain

u(2π,γ21)−γ21 <ε

∫ 2π

0

[(
γ21 + 8π

27
ε

)2/3

−
(

γ21 + 8π

27
ε

)
−λ cos2(s/2)

]
ds

<ε

∫ 2π

0

[
γ

2/3
21 + 16π

81γ
1/3
21

ε −
(

γ21 + 8π

27
ε

)
−λ cos2(s/2)

]
ds

=2πε

[(
γ

2/3
21 −γ21 − λ

2

)
+ 8π

27

(
2
3
γ

−1/3
21 −1

)
ε

]

= 16π2ε

27

(
2
3
γ

−1/3
21 −1

)
(−�21 + ε)<0. (3.17)

Similarly, using the inequality (1−b)2/3 >1−2b/[3(1−b)1/3] for 0<b <1
which is equivalent to (1−b)1/3 <1−b/3 for 0<b <1 and ε <27δ/(16π),
we obtain

u(2π,γ22)−γ22 >ε

∫ 2π

0

[(
γ22 − 8π

27
ε

)2/3

−
(

γ22 − 8π

27
ε

)
−λ cos2(s/2)

]
ds

>ε

∫ 2π

0

[
γ

2/3
22 − 16πε

81γ
1/3
22

(
1− 8πε

27γ22

)−1/3

−
(

γ22 − 8π

27
ε

)

−λ cos2(s/2)

]
ds

=2πε

{[
γ

2/3
22 −γ22 − λ

2

]
− 8πε

27

[
2
3

(
γ22 −8πε/27

)−1/3 −1
]}

>2πε

{[
γ

2/3
22 −γ22 − λ

2

]
− 8πε

27

[
2
3

(
γ22 − δ/2

)−1/3 −1
]}

= 16π2ε

27

[
2
3

(
γ22 − δ/2

)−1/3 −1
]

(�22 − ε)>0. (3.18)

Then, applying the intermediate value theorem to the continuous function
h(α) := u(2π,α) − α for α ∈ [γ21,γ22] yields that there is a α̂ ∈ (γ21,γ22)
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such that h(α̂)= 0 and thus u2(t) := u(t, α̂) is a positive 2π -periodic solu-
tion of (3.14). Finally, using (3.15) and ε<27δ/16π we get, for t ∈[0,2π ],

|u2(t)−γ2|� |α̂ −γ2|+ |u2(t)− α̂|� δ + 8π

27
ε <

3
2
δ, (3.19)

which gives the estimate (3.13) for i =2.
To show the existence of u1, we first note that for any α ∈ [γ12,γ12],

u(t, α) satisfies (3.15) as long as 0 < u(t, α) < 1. This yields that u(·, α)

exists on [0,2π ] and satisfies, for t ∈[0,2π ],
8

27
<γ1 − 3δ

2
�α − 8π

27
ε <u(t, α)<α + 8π

27
ε �γ1 + 3δ

2
<1. (3.20)

Then applying (3.20) with α = γ11 and α = γ12, respectively, the monoto-
nicity of F(u) for u ∈[8/27,1] and the assumption on ω we obtain

u(2π,γ11)−γ11 >ε

∫ 2π

0

[(
γ11 + 8π

27
ε

)2/3

−
(

γ11 + 8π

27
ε

)
−λ cos2(s/2)

]
ds

>ε

∫ 2π

0

[
γ

2/3
11 −

(
γ11 + 8π

27
ε

)
−λ cos2(s/2)

]
ds

=2πε

[(
γ

2/3
11 −γ11 − λ

2

)
− 8π

27
ε

]

= 16π2ε

27
(�11 − ε)>0, (3.21)

and

u(2π,γ12)−γ12 <ε

∫ 2π

0

[(
γ12 − 8π

27
ε

)2/3

−
(

γ12 − 8π

27
ε

)
−λ cos2(s/2)

]
ds

<ε

∫ 2π

0

[
γ

2/3
12 −

(
γ12 − 8π

27
ε

)
−λ cos2(s/2)

]
ds

=2πε

[(
γ

2/3
12 −γ12 − λ

2

)
+ 8π

27
ε

]

= 16π2ε

27
(−�12 + ε)<0. (3.22)

Thus we conclude in the same manner as above that there exists a ᾱ ∈
(γ11,γ12) such that u1(t) := u(t, ᾱ) gives the desired solution u1. The esti-
mate in (3.13) for i =1 follows in the same way as in (3.19).

Proof of Theorem 3.1. For ω>ω0 =2/3, we define the set

Λ(ω)={λ>λ0: (3.1)–(3.2) has two positive solutions}
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which contains the interval
(

16
243ω2 ,4/27

)
from Lemmas 3.4 (ii) and 3.5,

and therefore

λ0(ω) := inf Λ(ω), λb(ω)= supΛ(ω)

are well-defined and satisfy 16
6561ω2 < λ0(ω) < 16

243ω2 < 4/27 < λb(ω) < 8/27
from Lemma 3.4 (i) and Lemma 3.1 (ii). From now on, we fix an ω>ω0
and suppress the dependence of ω in λ0(ω) and λb(ω). We want to show
that Λ(ω)= (λ0, λb). To this end, we first establish several claims.

Claim A. Assume that there is a λ̄>λ0 such that (a) for λ= λ̄, (3.1)–
(3.2) has a unique positive solution denoted by ū, and (b) there is an
increasing sequence {λn} with limn→∞ λn = λ̄ such that (3.1)–(3.2) has two
positive solutions ui (·, λn) (i = 1,2) that satisfy ui (t, λn)→ ū(t) as n →∞
uniformly for t ∈ [0,2π ]. Then, there is a δ > 0 such that (i) (3.1)–(3.2)
has two positive solutions ui (·, λ) (i = 1,2) for λ ∈ (λ̄ − δ, λ̄) that satisfy
ui (t, λ)→ ū(t) as λ→ λ̄− uniformly for t ∈[0,2π ]; (ii) (3.1)–(3.2) does not
have any positive solution that lies in a neighborhood of ū(·) for λ∈(λ̄, λ̄+
δ). That is, a saddle-node bifurcation of periodic solutions of (3.1)–(3.2)
occurs at λ= λ̄ and u = ū.

Proof of Claim A. First, we take a δ0 >0 sufficiently small such that,
for α ∈ Iα := (ū(0) − δ0, ū(0) + δ0) and λ ∈ Iλ := (λ̄ − δ0, λ̄ + δ0), u(t, α, λ) is
defined and positive for all t ∈ [0,2π ]. Applying Lemma 3.2 yields that
h(α, λ) := u(2π,α,λ)−α is smooth and satisfies (3.6) on Pαλ := Iα × Iλ. It
follows that h(·, λ̄) is concave down on Iα and has a unique zero ū(0)∈ Iα
by the assumption (a). Then the assumption (b) yields ∂h

∂α
(ū(0), λ̄)=0. By

Taylor’s theorem we have, as (α, λ)→ (ū(0), λ̄),

h(α, λ)= [hλ(ū(0), λ̄)+o(1)
] [λ− λ̄]+

[
1
2

hαα(ū(0), λ̄)+o(1)

]
[α − ū(0)]2.

Since hλ(ū(0), λ̄) �=0 from (3.6), applying the implicit function theorem
yields that there is a δ1 ∈ (0, δ0) and a smooth function λ=λ(α) defined for
α ∈ (ū(0)− δ1, ū(0)+ δ1) such that h(α, λ(α))=0, λ(ū(0))= λ̄, and

λ(α)= λ̄− hαα(ū(0), λ̄)

2hλ(ū(0), λ̄)
[1+o(1)][α − ū(0)]2,

from which we get there there is a δ >0 such that, for λ∈ (λ̄− δ, λ̄],

α±(λ)= ū(0)±
√

2hλ(ū(0), λ̄)

hαα(ū(0), λ̄)
[1+o(1)]

√
λ̄−λ

which is smooth on (λ̄ − δ, λ̄). It is clear that u1(·, λ) := u(·, α+(λ), λ)

and u2(·, λ) := u(·, α−(λ), λ) are two positive solutions of (3.1)–(3.2) for
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λ∈(λ̄− δ, λ̄). From Lemma 3.2, u1 and u2 are the only positive solutions
of (3.1)–(3.2). The above formula also shows that (3.1)–(3.2) does not
have any solutions near ū for λ ∈ (λ̄, λ̄ + δ). This completes the proof of
Claim A.

Claim B. Λ(ω) is an open set in (−∞,∞).

Proof of Claim B. Let λ̂∈Λ(ω) and ui (·, λ̂) (i = 1,2) be two positive
solutions of (3.1)–(3.2). Then by the continuous dependence of solutions
with initial conditions there is a δ0 > 0 such that h(α, λ) := u(2π,α,λ)−α

is defined on Pαλ := (u2(0, λ̂)−δ0,1)× (λ̂−δ0, λ̂+δ0) and h(ui (0, λ̂), λ̂)=0.
Since h(·, λ̂) is concave down from (3.6), it follows that hα(ui (0, λ̂), λ̂) �=0.
Then applying the implicit function theorem yields that h(α, λ)=0 has two
solutions αi (λ) ∈ (u2(0, λ̂) − δ0,1) for λ ∈ (λ̂ − δ, λ̂ + δ) for some small δ ∈
(0, δ0) with αi (λ̂) = ui (0, λ̂). Clearly, ui (·, λ) := ui (·, αi (λ), λ) (i = 1,2) pro-
vide two positive solutions of (3.1)–(3.2) for λ ∈ (λ̂ − δ, λ̂ + δ). Since λ̂ is
taken arbitrarily in Λ(ω), it follows that Λ(ω) is open.

Claim C. Assume that [a,b]∈Λ(ω). Let u2(·, λ)<u1(·, λ) be the pos-
itive solutions of (3.1)–(3.2) for λ∈[a,b]. Then for each t ∈[0,2π ], u2(t, ·)
is increasing and u1(t, ·) is decreasing with respect to λ∈[a,b].

Proof of Claim C. Let αi (λ) := ui (0, λ) for i = 1,2. By the continu-
ity of solutions with initial data there is a δ > 0 sufficiently small such
that u(t, α, λ) is defined and positive for all t ∈ [0,2π ] and (α, λ)∈Pαλ :=
{(α, λ) :α ∈ (α2(λ)− δ,1), λ∈ (a − δ,b + δ)}. Hence, h(α, λ)= u(2π,α,λ)−α

is well-defined and smooth on Pαλ and satisfies h(αi (λ), λ)=0 for λ∈ (a −
δ,b + δ). Applying Lemma 3.2 yields that h(·, λ) is concave down so that
hα(α1(λ), λ)<0<hα(α2(λ), λ). Then by the implicit differentiations we get

α′
1(λ)=− hλ(α1(λ), λ)

hα(α1(λ), λ)
<0, α′

2(λ)=− hλ(α2(λ), λ)

hα(α2(λ), λ)
>0. (3.23)

This implies that the assertions in Claim C hold for t = 0. To complete
the proof, given arbitrary λ̃, λ̂ ∈ (a − δ,b + δ) with λ̃ < λ̂, let ũi (t) :=
ui (t, λ̃) and ûi (t) =: ui (t, λ̂) for i = 1,2. Since ũ2(0) = α2(λ̃) < α2(λ̂2) =
û2(0), it follows that ũ2(2π) < û2(2π) and thus ũ2(t) < û2(t) for suffi-
ciently small t − 2π < 0. Assume that there is a largest t0 ∈ (0,2π) such
that ũ2(t0) − û2(t0) = 0. Using (3.1) we have ω(ũ′

2(t) − û′
2(t)) = −(λ̃ −

λ̂) cos2(t/2), which together with ũ′
2(t0)− û′

2(t0)�0 implies that t0 =π and
ũ′

2(π)− û′
2(π)=0. Then differentiating this equation two times successively

yields that ũ′′
2(π)− û′′

2(π)=0 and ũ′′′
2 (π)−u′′′

2 (π, λ2)=−(λ̃− λ̂)/2>0. Con-
sequently, ũ′

2(t) − û′
2(t) > 0 and ũ2(t) − û2(t) > 0 for t − π > 0 sufficiently

small. This contradicts the definition of t0, whence ũ(t) < û(t) for all t ∈
[0,2π ] as expected. In a similar fashion we show that ũ1(t) > û1(t) for
t ∈[0,2π ]. This completes the proof of Claim C.
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Claim D. u1(·, λ) exists for all λ∈ (0, λb).

Proof of Claim D. From the definition of λb we can apply Claim A
with λ̄ := λb to get that u1(·, λ) exists for λ ∈ (λb − δ, λb) for some δ > 0
with the property that u1(·, λ) is decreasing with respect to λ and α′

1(λ)<0
from (3.23) where α1(λ)=u1(0, λ). We define

λ̄0= inf{λ̄∈ (0, λb):
u1(·, λ) exists on (λ̄, λb) and is decreasing with respect to λ}.

It follows that 0� λ̄0 <λb. Suppose that λ̄0 >0. Then by Arzela-Ascoli
theorem we have that u1(·, λ̄0) exists and u1(·, λ̄0) � u(·, λ) > 0 for λ ∈
(λ̄0, λb) and limλ→λ̄+

0
u(t, λ) = u(t, λ̄0) uniformly for t ∈ [0,2π ]. Note that

h(α, λ) :=u(2π,α,λ)−α is defined for Pαλ := (α, λ)∈ (α(λ̄0)− δ0,1)× (λ̄0 −
δ0, λ̄0 + δ0) for some sufficiently small δ0 > 0. Clearly h(α(λ̄0), λ̄0)= 0. We
must have hα(α(λ̄0), λ̄0) �=0 for otherwise we would apply (3.6) to conclude
that, for each λ in a right neighborhood of λ̄0, h(α, λ)= 0 does not have
any positive solution that is close to u1(·, λ̄0) (i.e., a saddle-node bifur-
cation occurs for h(·, λ)), a contradiction. Consequently, by the implicit
function theorem we can extend α1(λ) for λ ∈ (λ̄0 − δ, λ̄0 + δ) such that
h(α1(λ), λ)=0 and α′

1(λ)<0 given in (3.23). This shows that u1(·, λ) exists
for all (λ̄0 − δ, λb) and is decreasing with respect to λ by the same argu-
ment used in the proof of Claim C. This contradicts the definition of λ̄0.
Hence we must have λ̄0 =0, showing Claim D.

We are ready to show that Λ(ω) = (λ0, λb). First, the openness of
Λ(ω) and Claim A (i) imply that there is a λ̄0 ∈ [λ0, λb) such that the
open interval (λ̄0, λb) is contained in Λ(ω) and λ̄0 �∈Λ(ω). We claim that
λ̄0 =λ0. Suppose that this is false. Since Λ(ω) is open, there exists at least
another open interval (λ̂0, λ̂)⊂Λ(ω) contained in Λ(ω) with λ̂ /∈Λ(ω) and
λ̂ > λ̄0. This implies by the monotonicities of u1(·, λ) and u2(·, λ) from
Claim C that u1(·, λ) and u2(·, λ) for λ ∈ (λ̂0, λ̂) merges into u1(·, λ̂) at
λ= λ̂ (whose existence follows from Claim D) so that u1(·, λ̂) is the unique
positive solution of (3.1)–(3.2). This is impossible since, by Claim A (ii)
with λ̄ := λ̂, (3.1)–(3.2) does not have any positive solution close to u1(·, λ̂)

for λ in a right neighborhood of λ̂, contradicting that u1(·, λ) exists for all
λ ∈ (0, λb) from Claim D. This contradiction shows that λ̄0 = λ0, whence
Λ(ω)= (λ0, λb).

We now show that if λ > λb, then (3.1)–(3.2) does not have any
nonnegative solution. Since λb > 16

243ω2 , it follows from Lemmas 3.4 (ii)
that any nonnegative solution of (3.1)–(3.2) for λ � λb is strictly posi-
tive. Therefore, it suffices to show that if λ>λb, then (3.1)–(3.2) does not
have any positive solution. Assume that this is false. This implies that
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λ̃ := inf{λ > λb : (3.1)–(3.2) has a unique positive solution} is well defined
with λ̃ � λb, and there are a sequence of {λn} with λn > λ̃ and λn → λ̃

as n → ∞ and a sequence {u(·, λn)} of positive solutions of (3.1)–(3.2).
Applying the Arzela-Ascoli theorem yields a convergent subsequence
{unk (·, λnk )} whose limit, denoted by ũ, gives the unique positive solution
of (3.1)–(3.2) with λ= λ̃. Note that h(α, λ) :=u(2π,α,λ)−α is well defined
for (α, λ) ∈ (ũ(0) − δ, ũ(0) + δ) × (λ̃ − δ, λ̃ + δ) for some sufficiently small
δ > 0. We must have hα(ũ(0), λ̃) = 0, for otherwise the implicit function
theorem yields that h(α, λ) = 0 has a solution for λ in a neighborhood
of λ̃ so that (3.1)–(3.2) has a unique positive solution for λ− λ̃ < 0 suffi-
ciently small, contradicting the definition of λ̃. But then applying Lemma
3.2 yields that (3.1)–(3.2) cannot have solution lying in a neighborhood of
ũ for all λ− λ̃ > 0 sufficiently small, again contradicting the definition of
λ̃. This shows the above assertion.

Since λb > 16
243ω2 , it follows from Lemma 3.4 (ii) and the definition of

λb that (3.1)–(3.2) has a unique positive position and no other nonnega-
tive solution. Finally, Lemma 3.6 implies that limω→∞ λb(ω)= 8/27. This
completes the proof of Theorem 3.1 (i). Since λ0(ω) < 4/27 for ω > 2/3,
Theorem 3.1 (ii) follows directly from Lemma 3.5 and Lemma 3.3. This
completes the proof of Theorem 3.1.

Theorem 3.3 below gives the leading order approximations for the solu-
tions of (3.1)–(3.2) obtained in Theorem 3.1 as ω → 0, while Theorem 3.4
gives the first order approximations for these solutions as ω→∞.

Theorem 3.3. Assume that 0<λ< 4
27 and ω>0. Let u1 and u2 be two

nonnegative solutions of (3.1)–(3.2) obtained in Theorem 3.1 with u2 < u1.
Let U1 and U2 be the 2π -periodic functions defined by the equation U 2/3 −
U − λ cos2(t/2) = 0 with 0 � U2(t) < 8/27 < U1(t) � 1 for t ∈ R. Then there
are constants Mi := Mi (λ)>0 (i =1,2) independent of ω such that

|ui (t)−Ui (t)|� Miω for t ∈[0,2π ]. (3.24)

Proof. Let ρ1(t)=u1(t)−U1(t). Then

ωρ′
1 =u2/3

1 −u1 −λ cos2(t/2)−ωU ′
1 =a1(t)ρ1 −ωU ′

1,

where

U ′
1(t)= −λ

2
sin t

[
2
3

U−1/3
1 (t)−1

]−1

, a1(t) := 2
3

∫ 1

0
[θu1(t)

+(1− θ)U1(t)]−1/3 dθ −1.

which are continuous for all t . Note that κ1 �U1(t)�1, κ1 <u1(t)<1 from
Lemma 3.5 and κ1 >8/27 where κ1 is defined in Lemma 3.5. It follows that
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a1(t) � (2/3)κ
−1/3
1 − 1 =: −ν1. Applying the variation of constant formula

yields

ρ1(t)= e
∫ t

0 a1(s)ds/ωρ1(0)−
∫ t

0
e
∫ t
η a1(s)ds/ωU ′

1(η)dη,

and then using |ρ1(0)|=|u1(0)−U1(0)|<1−κ1<1 we have, for t �ω| ln ω|/ν1,

|ρ1(t)|� |ρ1(0)|e−ν1t/ω +|U ′
1|0
∫ t

0
e−ν1(t−η)/ω dη

�ω+ |U ′
1|0

ν1
ω=

(
1+ |U ′

1|0
ν1

)
ω

where |U ′
1|0 = supt∈R |U ′

1(t)| = maxt∈[0,2π ] |U ′
1(t)|. Since ρ1 is 2π -periodic,

this implies that |ρ1(t)| � (1 + |U ′
1|0/ν1)ω for all t ∈ R. This shows (3.24)

for i =1 with M1 :=1+|U ′
1|0/ν1.

In remains show (3.24) with i = 2, In order to apply the above argu-
ment, we first need to verify the differentiability of U2 at t = π (since
U2(π)= 0). For t ∈ [0, π)∪ (π,2π ], U ′

2(t) is given by the same formula as
that of U ′

1(t) except in which U1(t) is replaced by U2(t). To obtain the
differentiability of U2 at π , we need the following asymptotic formulas as
t →π :

{
U2(t)=λ3/2| cos(t/2)|3[1+ O(cos(t/2))],
U ′

2(t)=− 3λ
√

λ
4 sin t | cos(t/2)|[1+ O(cos(t/2))].

From these asymptotic formulas and the L’Hospital’s rule, it follows

U ′
2(π)= lim

t→π

U2(t)−U2(π)

t −π
= lim

t→π

U ′
2(t)

1
=0.

This also shows that U ′
2 is continuous at π so that U ′

2 is continuous for
all t . We now let ρ2(t) :=u2(t)−U2(t). In order to complete the proof, we
distinguish two cases based on whether u2(π)>0 or u2(π)=0.

Case 1. Assume that u2(π) > 0. Then u2(t) > 0 for all t ∈ R. Note
that ωρ′

2(t) = a2(t)ρ2(t) − ωU ′
2(t) for all t ∈ R, where a2(t) is given by

the same formula as that for a1(t) except in which u1(t) and U1(t) are
replaced by u2(t) and U2(t) respectively. Since 0 < u2(t) < κ2 and 0 �
U2(t) � κ2, it follows that a2(t) is continuous for t ∈ R and, furthermore,
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a2(t) � (2/3)κ
−1/3
2 − 1 := ν2 > 0. Then using the variation of constant for-

mula together with |ρ2(0)|<1 yields, for t �−ω| ln ω|/ν2,

|ρ2(t)|� |ρ2(0)|eν2t/ω +|U ′
2|0
∫ 0

t
eν2(t−η)/ω dη

�ω+ |U ′
2|0

ν2
ω=

(
1+ |U ′

2|0
ν2

)
ω.

Since ρ2 is 2π -periodic, this implies that |ρ2(t)|� M2ω for all t ∈R where
M2 :=1+|U ′

2|0/ν2. This shows (3.24) for i =2 in this case.

Case 2. Assume that u2(π) = 0. Then ρ2(π) = 0. It follows that,
for any fixed ω > 0, there is a t0 < π but sufficiently close to π such
that |ρ2(t)| � ω for t ∈ [t0, π ]. We now consider the equation ωρ′

2(t) =
a2(t)ρ2(t) − ωU ′

2(t) for t ∈ (−π, t0] where, since u2(t) > 0, a2(t) is well-
defined and a2(t) � ν2. Again by the variation of constant formula and
|ρ2(t0)|�ω we get, for t ∈ (−π, t0)

|ρ2(t)|�ρ2(t0)e
ν2(t−t0)/ω +|U ′

2|0
∫ t0

t
eν2(t−η)/ω dη�ω+ |U ′

2|0
ν2

ω= M2ω,

where M2 is the same as in Case 1. By letting t → −π+, we have
|ρ2(−π)| � M2ω. Since M2 > 1, it follows that |ρ2(t)| � M2ω for all t ∈
[−π,π ]. This shows (3.24) for i = 2 in Case 2, thereby completing the
proof of Theorem 3.3.

Theorem 3.4. Assume that 0<λ<8/27. Let ω be sufficiently large and
ui (i =1,2) be solutions of (3.1)–(3.2) obtained in Theorem 3.1 with u2 <u1.
Then there are constants Mi := Mi (λ)>0 independent of ω such that

∣∣∣ui (t)−
(

γi − λ sin t

2ω

)∣∣∣� Mi

ω2
for t ∈[0,2π ]. (3.25)

Proof. Since the proofs of (3.25) for i =1,2 are almost the same, we
only show (3.25) for i =1. We let ε :=1/ω as we did in Lemma 3.6 so that
u1 satisfies (3.14). Hence, it suffices to show that, as ε →0,

u1(t)=γ1 − λ sin t

2
ε + O(ε2) uniformly for t ∈[0,2π ]. (3.26)

Let α1 := u1(0). Since |u1(t)−α1|� (8π/27)ε for t ∈ [0,2π ], it follows
that u1(t)=α1 + O(ε) as ε → 0 uniformly for t ∈ [0,2π ]. Then integrating
(3.14) on [0,2π ] yields, as ε →0, 0=u1(2π)−α1 =2π(α

2/3
1 −α1 −λ/2)ε +

O(ε2), and so

α
2/3
1 −α1 − λ

2
= O(ε). (3.27)
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Now, letting e1(t)=u1(t)−α1 + λ sin t
2 ε yields

e′
1(t)= ε

[
u2/3

1 (t)−u1(t)− λ

2

]
= ε

[
(α

2/3
1 −α1 − 1

2
λ)+ O(ε)

]
(ε →0)

uniformly for t ∈[0,2π ]. It follows from (3.27) that e′
1(t)= O(ε2) uniformly

for t ∈[0,2π ], which together with e1(0)=0 yields e1(t)= O(ε2) uniformly
for t ∈[0,2π ] and so

u1(t)=α1 − λ sin t

2
ε + O(ε2) uniformly for t ∈[0,2π ]. (3.28)

To complete the proof, it remains to show that α1=γ1+O(ε2) as
ε → 0. First, it follows from (3.28) and

∫ 2π

0 sin t dt =0 that

0=u1(2π)−α1

= ε

∫ 2π

0

[(
α1−λ sin 2t

4
ε+O(ε2)

)2/3

−
(

α1−λ sin 2t

4
ε+O(ε2)

)
−λ cos2 t

2

]
dt

= ε

[(
α

2/3
1 −α1 − 1

2
λ

)
π + O(ε2)

]
,

and thus

α
2/3
1 −α1 − 1

2
λ= O(ε2) (ε →0), (3.29)

from which and the fact that α1 ∈ (8/27,1) we conclude that α1 → γ1 as
ε→0 (for otherwise, the limit of left-hand side of (3.29) would not be zero
as ε→0). Hence, u11 :=α1 −γ1 =o(1) as ε→0 and so α

2/3
1 = (γ1 +u11)

2/3 =
γ1 +2u11/3γ

1/3
1 + O(u2

11). Inserting this into (3.29) yields

O(ε2) =γ
2/3
1 −γ1 − 1

2
λ+
(

2

3γ
1/3
1

−1

)
u11 + O(u2

11)

=
(

2

3γ
1/3
1

−1

)
u11 + O(u2

11).

Since 2/3γ
1/3
1 − 1 < 0, we get u11 = O(ε2). Thus, α1 = γ1 + O(ε2). Finally,

substituting this into (3.28) leads to (3.26), thereby completing the proof
of Theorem 3.4.
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4. NON-NEGLIGIBLE INERTIAL EFFECTS

In this section we return to our basic model, equation (2.5), ignore
the damping term and scale the time variable with respect to the forcing
frequency. That is, we introduce the scalings

t

2
=Ωt ′, v = L − x

L − l
. (4.1)

This yields

ε2v′′ =1−v − λ cos2(t/2)

v2
, v >0, (4.2)

where λ is as before and ε :=
√

m/(4kΩ2) is the ratio of the forcing fre-
quency to the natural frequency of the oscillator. Throughout the remain-
der of the paper, we use vα to denote the solution of (4.2) satisfying

v(0)=α >0, v′(0)=0, (4.3)

whose dependence on λ and ε is suppressed. It is easy to check that if
v′
α(π) = 0, then vα is symmetric about t = π and so vα is a 2π -periodic

solution of (4.2). In this section, under the assumption that 0 < λ < 1/8
and ε is sufficiently small, we prove there exist an order of 1/ε many such
solutions for (4.2).

Before stating the main result of this section, we define, for 0 < λ <

4/27, 2π -periodic functions V− = V−(t) and V+ = V+(t) by the right-hand
side of (4.2) such that 0 < V−(t)< 2/3 < V+(t)< 1 for t ∈ [0, π), V−(π)= 0
and V+(π)=1. It is easy to see that V− and V+ are monotonically decreas-
ing and increasing on [0, π ], respectively, and both are symmetric about
kπ for any integer k. See their graphs in Fig. 3. Let b be the maximum
value of V of the homoclinic orbit of V̈ = 1 − V − λ/V 2. It follows that
b > V+(0) > 2/3 and satisfies b − b2/2 + λ/b = V−(0) − V 2−(0)/2 + λ/V−(0),
which together with the equation V 2−(0)− V 3−(0)=λ yields b =2[1− V−(0)]
and thus 1 < b < 2, or b = 1, or 2/3 < b < 1 if 0 < λ < 1/8, or λ = 1/8, or
1/8<λ<4/27, respectively.

The main result of this section is as follows.

Theorem 4.1. Let 0 < λ < 1/8 and ε > 0 be sufficiently small. Then
there exists an integer N := N (ε, λ) > K0/ε with K0 > 0 independent of ε

such that for each integer n with 2�n � N , there exists a 2π -periodic solu-
tion vn,ε of (4.2) such that vn,ε has exactly n + 1 critical points 0 =: t0 <

t1 < . . . , tn−1 < tn = π in [0, π ], where vn,ε has local maxima and minima
alternately.



Dynamics of Canonical MEMS/NEMS Model 631
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Figure 3. The top and bottom curves are the graphs of V− and V+ on [0,2π ] respectively
with λ=0.1.

Remark 4.1. (i) Theorem 4.1 assures that the number of the 2π -peri-
odic solutions of (4.2) goes to infinity as ε→0. We note that the assump-
tion 0 < λ < 1/8 is a technical assumption and is used only in Lemma
4.1 (ii) to guarantee that all critical points of vα with α > 1 are non-
degenerate. (ii) The following asymptotic formulas for vn,ε as ε→0 can be
obtained:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ti →π, 1� i �n,

vn,ε(0)→b,

vn,ε(ti )→π if i �1 is odd,
vn,ε(ti )→2 if i �2 is even,
vn,ε(t)=V−(t)+O(ε2) uniformly for t on any compact subsets of (0, π),

which assert that, as ε →0, vn,ε exhibits one spike near t = (2k +1)π and
the rest spikes near t =2kπ , and vn,ε(t) approaches V−(t) uniformly for t
on any compact subsets of (kπ, (k +1)π) (k =0,±1,±2, . . .). The proof of
these formulas are similar to those in [1, 2] and is omitted.

The proof of Theorem 4.1 is based on several lemmas and shooting
arguments that have been used in [1, 2, 9]. Lemma 4.1 shows that there
is an α0 ∈ (V+(0),b) such that, for sufficiently small ε>0, vα has order of
1/ε many critical points in (0, π); Lemma 4.2 shows that for any α � 1 +√

1+2λ, vα does not have any critical point in (0, π ]; Lemma 4.3 shows
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that no critical points of vα in [0, π ] are degenerate with α >1. By virtue
of these lemmas and the implicit function theorem we will be able to prove
Theorem 4.1. Since the equation (4.2) is singular when v=0, we note that,
before applying the implicit function theorem in the proof of Theorem 4.1,
we have to prove a technical claim ensuring that the interested solutions
are positive on [0, π ].

Lemma 4.1. Let 0 < λ < 4/27 and α0 ∈ (V+(0),b). Then there exist
K0 > 0 and ε0 > 0 such that if 0 < ε < ε0, then vα0 has at least N :=
N (ε, λ,α0) � K0/ε critical points in [0, π), which are local maximum and
minimum points of vα0 alternately.

Since the proof of Lemma 4.1 is long and tedious, we leave it in the
Appendix. See Fig. 4 for two solution curves of (4.2)–(4.3).

Lemma 4.2. Assume that 0<λ<4/27 and ε>0. Then for any α�1+√
1+2λ, v′

α <0 as long as vα >0 in [0, π ].
Proof. We fix an α �1+√

1+2λ and let v =vα. Since α >1> V+(0),
it follows that v′(t)< 0 for sufficiently small t > 0. Assume that there is a
t0 ∈ (0, π ] such that v(t)>0 for t ∈[0, t0], v′(t)<0 for t ∈[0, t0) and v′(t0)=
0. Then, v′′(t0)�0 which yields V−(t0)�v(t0)� V+(t0)�1. Multiply v′ on
both sides of (4.2) and integrate over [0, t0] to obtain

α − 1
2
α2 + λ

α
=v(t0)− 1

2
v2(t0)+ λ cos2(t0/2)

v(t0)
+ λ

2

∫ t0

0

sin t

v(t)
dt

�v(t0)− 1
2
v2(t0)�v(t0)[1− V+(t0)/2]>0. (4.4)

But our assumption for α implies that α − α2/2 + λ/α < −(α − 1)2/2 +
1/2 +λ< 0. This yields a contradiction and thus the assertion of Lemma
4.3 holds.

Lemma 4.3. Assume that 0<λ<4/27 and ε >0.

(i) If t0 ∈ (0, π) is a minimum (resp. maximum) point of vα and t1 and
t2 are critical points of vα in [0, π ] that are preceding and succeed-
ing to t0 respectively, then vα(t1)<vα(t2).

(ii) Assume further that 0 < λ < 1/8 and α ∈ (1,b). If v′
α(t̃) = 0 and

t̃ ∈[0, π ], then v′′
α(t̃) �=0. Consequently, any critical point of vα in

[0, π ] is either a local maximum or minimum point.

Proof. We first show (i). Assume that t0 is a minimum point of vα.
Then, by the definition of t1 and t2, v′

α <0 on (t1, t0) and v′
α >0 on (t0, t2)
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Figure 4. Two solution curves (4.2)–(4.3) with ε = 0.05, λ = 0.1, α = 1.1 and 1.1552,
respectively.

so that v = vα(t) has an inverse on each of these two intervals, which are
denoted by t− = t−(v) and t+ = t+(v), respectively. Multiplying (4.2) by v′
and integrating over [t−(v), t+(v)] for vα(t0)�v�min{vα(t1), vα(t2)} we get

1
2
ε2(v′

α)2(t+(v))− 1
2
ε2(v′

α)2(t−(v)) = −λ

∫ vα(t+(v))

vα(t0)

(
cos2 t+(η)

2

− cos2 t−(η)

2

)
dη

η2
.

Since cos2(t/2) is decreasing on [0, π ], it follows that the integral in the
above formula is negative, which implies that v′

α(t−(v)) vanishes before
v′
α(t+(v)) and thus vα(t1)<vα(t2). The other case can be proved similarly.

This shows (i).
We now show (ii). First we note that since 0<λ<1/8, we have b >1

and thus the interval (1,b) is not empty. Assume by a contradiction that
t̃ ∈ [0, π ] is the first degenerate critical point of vα, i.e., v′′

α(t̃) = 0. Since
v′′
α(0) = −λ/α2 < 0, we see that t̃ > 0. Then, differentiating (4.2) yields

v′′′
α (t̃)=λ sin t̃/2v2

α(t̃)>0 if t̃ �=π and v′′′
α (t̃)=0 and v′′′′

α (t̃)=λ cos t̃/2v2
α(t̃)=

−λ/2v2
α(t̃)<0 if t̃ =π . Either case implies v′

α >0 on (t0, t̃) where t0 ∈ (0, t̃)
is the preceding critical point of vα whose existence follows from the fact
that v′

α < 0 for sufficiently small t > 0. Since we assume that t̃ is the first
degenerate critical point of vα, it follows that t0 is a local minimum point
of vα, which together with Lemma 4.3 (i) yields vα(t̃) > vα(0) = α > 1 �
V+(t̃) and thus v′′

α(t̃) < 0. This contradicts the assumption that v′′
α(t̃) = 0,

whence proving (ii).

Proof of Theorem 4.1. Since 0<λ<1/8, it follows that b >1. Take an
α0 ∈ (V+(0),b) with α0 > 1 and ᾱ := 1 + √

1+2λ > b (recall b < 2). Fix an
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ε ∈ (0, ε0) and an integer 2 � n � N (ε, λ,α0), where ε0 > 0 and N (ε, λ,α0)

are given in Lemma 4.1 associated with α0 chosen above. Define α̂ =
α̂n,ε := sup An,ε where

An,ε ={α ∈[α0, ᾱ] :vα has at least n +1 distinct critical points in [0, π)}.
Lemma 4.1 implies α0 ∈ An,ε and thus An,ε �= ∅. Hence, α̂ is well-

defined and there is a sequence (αk)
∞
k=1 with αk ∈ An,ε and αk → α̂ as k →

∞. Let 0 =: tk,0 < tk,1 < tk,2 < · · ·< tk,n <π be the first n + 1 critical points
of vαk in (0, π), which are all non-degenerate from Lemma 4.3 (ii) (since
αk �α0 >1). By the Bolzano-Weierstrass theorem we can assume, without
loss of generality, that there exist 0 =: t0 � t1 � t2 � · · · � tn � π such that
tk,i → ti as k →∞ for i =0,1, . . . ,n. Next, we claim:

Claim A. vα̂ >0 on [0, π ].
We shall prove Claim A at the end of this proof. From Claim A,

we know that vα(t) is continuously differentiable for t ∈ [0, π ] and α in a
neighborhood of α̂. It follows that v′

α̂
(ti )=0 and, by virtue of Lemma 4.3

(ii) and α̂ >1, v′′
α̂
(ti ) �=0. We assert that ti �= t j for 0� i < j �n. Assume on

a contrary that ti = ti+1 for some 0� i �n −1, then tk,i → ti and tk,i+1 → ti
as k → ∞. However, since v′

α̂
(ti ) = 0 and v′′

α̂
(ti ) �= 0, the implicit function

implies that there is a neighborhood of ti such that v′
αk

has a unique zero
in this neighborhood for all sufficiently large k. This yields a contradic-
tion. Therefore, 0= t0 < t1 < · · ·< tn �π .

We note that An,ε is an open set in R, which again follows from the
non-degeneracy of critical points of vα with α∈ An,ε and the implicit func-
tion theorem. We thus concludes α̂ /∈ An,ε and tn = π . Letting vn,ε = vα̂

yields the desired solution as stated in Theorem 4.1. Therefore, to com-
plete the proof of Theorem 4.1, it remains to prove Claim A.

Proof of Claim A. We start with some preliminary work. First, since
0 < λ < 4/27 and 0 < V− < 2/3 on (0, π), the implicit function theorem
applies to the equation V 2−(t)−V 3−(t)−λ cos2(t/2)=0 for t ∈ (0, π) yielding
that V−(t) is differentiable for t ∈ (0, π) and

V ′−(t)= λ sin t

2V−(t)[3V−(t)−2] <0

and thus V− is monotonically decreasing on [0, π ]. Furthermore, it is easy
to derive that

V−(t)=√
λ cos

t

2

(
1+ O

(
cos

t

2

))
as t →π−. (4.5)

Second, we assert that if α > 1 and vα has its first minimum at t̄ ∈ (0, π ],
then vα(t) is defined for t ∈ [0, π ] with vα(t) > V−(t̄) for t ∈ [0, t̄) and
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vα(t)> V−(t) for all t ∈[t̄, π ]. To see this, since t̄ is a minimum point and
v′′
α(t̄) �= 0, it follows that v′′

α(t̄)> 0 and so V−(t̄)< vα(t̄)< V+(t̄). Since the
consecutive minimum values of vα occurring in [0, π ] are increasing from
Lemma 4.3 (i) and V− is decreasing, the above assertion follows.

Now we are ready to prove Claim A. Below we use v :=vα̂ and vk :=
vαk for simplicity. Assume that Claim A is false. Then, using the above
assertion we conclude that there must exist a t̂ ∈ (0, π ] such that v′(t)< 0
for t ∈ (0, t̂) and v(t) → 0 as t → t̂−. Then, for any η > 0, there is a tη ∈
(0, t̂) such that 0 <v(t)<η/2 for t ∈ [tη, t̂). Hence, for sufficiently large k,
vk(tη)<η and v′

k <0 on (0, tη]. Recall that tk,1 is the first minimum of vk

in (0, π). It follows that tη < tk,1 and vk(tk,1)<vk(tη)<η. Since n �2 (note
that this is only place where we need n �2), we see that tk,2 ∈ (tk,1, π) exists
and vk(tk,2) > vk(0) = αk > 1 by Lemma 4.3 (i). Let t̄k,1 ∈ (tk,1, tk,2) such
that vk(t̄k,1)=1. Then, v′

k(t)>0 for t ∈ (tk,1, t̄k,1]. This together with vk(t)>
V−(t) for t ∈[tk,1, π ] (from the above assertion), (4.2) and (4.5) yields that,
for t ∈ (tk,1, t̄k,1],

ε|v′′
k (t)|�1+ λ cos2(t/2)

V 2−(t)
�1+ sup

t∈[0,π)

λ cos2(t/2)

V 2−(t)
=: L ,

and

v′
k(t)� 1

ε

∫ t

tk,1

|v′′
k (t)|dt � Lπ

ε
=: K ,

and

1−η�vk(t̄k,1)−vk(tk,1)� K (t̄k,1 − tk,1). (4.6)

Note that K does not depends on k and η.
Next we let Tη ∈ (0, π) be defined by V−(Tη) = η. Clearly, Tη → π

as η → 0+. Let’s fix an η ∈ (0,1/2) sufficiently small such that π − Tη <

1/(2K ). Then for sufficiently large k, since V−(tk,1)<vk(tk,1)<vk(tη)<η=
V−(Tη) and V− is decreasing on [0, π ], it follows that Tη < tk,1 and hence,
by (4.6), 1 − η � K (t̄k,1 − tk,1)< K (π − Tη)< 1/2 so that 1 < 1/2 + η < 1, a
contradiction. This proves Claim A.

5. DISCUSSION

We began by presenting the canonical model of electrostatically actu-
ated MEMS/NEMS devices. We studied the model in two limits. First, in
Section 3, we considered the case where inertial terms were negligible rel-
ative to damping terms in this system. This led to the study of a non-
autonomous nonlinear first-order differential equation. For this system, in
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the unforced case, it is well known that there are no steady-state solutions
to the problem if λ > 4/27. That is, if the applied voltage is too large,
the “pull-in” phenomena occurs. The principle result of Section 3 is the
dynamic analog to the static pull-in phenomena. That is, we have shown
that in the forced case, if the forcing frequency satisfies ω > 2/3, then
there are exactly one, two, and zero periodic solutions for 0 < λ � λ0(ω),
λ0(ω) < λ < λb(ω), and λ > λb(ω) where 16

6561ω2 < λ0(ω) < 16
243ω2 < 4/27 <

λb(ω) < 8/27. Furthermore, limω→∞ λb(ω) = 8/27, and there is a saddle-
node bifurcation at λ=λb(ω). Physically, we have shown that if the system
is forced with the correct frequency solutions can exist beyond the static
pull-in voltage. Next, in Section 4, we considered the case where inertial
terms were small but non-negligible and damping terms could be ignored.
This led to the study of a non-autonomous nonlinear second order dif-
ferential equation. A small parameter, ε, appeared in front of the iner-
tial terms. The surprising result of this section was that as ε −→ 0 the
number of periodic solutions tended to infinity. This indicated that in the
presence of inertial terms, the canonical MEMS/NEMS model has much
richer dynamics than in the viscosity dominated case.

6. APPENDIX

In this Appendix, we shall give the proof of Lemma 4.1 with some
preliminary work prior to it.

We consider a family of autonomous equations with a parameter µ∈
(0,1]

V̈ =1− V − λµ

V 2
, where V̈ = d2V

dτ 2
. (6.1)

In the phase plane (V, V̇ ), the equivalent first order system of (6.1) for
each fixed µ has a unique homoclinic orbit that lies in the right half plane
and connects the equilibrium point (V−(2 arccos

√
µ),0) of (6.1) at τ =

±∞, whose interior is filled with closed orbits around the other equilib-
rium point (V+(2 arccos

√
µ),0) of (6.1) (see Fig. 5). Each of these closed

orbits satisfies the equation

V̇ 2 =2(V −α)− (V 2 −α2)+2λµ

(
1
V

− 1
α

)
,

for some α ∈ (V+(2 arccos
√

µ), V−(2 arccos
√

µ)) which is the maximum
of V and is symmetric about the V -axis with V̇ having a unique mini-
mum (resp. maximum) value at V = V+(2 arccos

√
µ) in the lower (resp.

upper) half (V, V̇ )-plane. We use (Vα,µ(τ ), V̇α,µ(τ )) to denote a solution
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Figure 5. The phase plane diagrams of (6.1) with λ=0.1, µ=1 and µ=0.9, respectively.

of (6.1) lying on such a orbit with V (0)=α and V̇ (0)=0. Thus, Vα,µ and
V̇α,µ are periodic functions of τ , whose least positive period is denoted by
2Tα,µ; For any integer k, the graph of Vα,µ in the (τ, V ) plane is symmet-
ric about τ = kTα,µ, and reaches its minimum value at (2k + 1)Tα,µ and
its maximum value α at 2kTα,µ; V̇α,µ is negative (resp. positive) having
a unique minimum (resp. maximum) value in (2kTα,µ, (2k + 1)Tα,µ) (resp.
((2k +1)Tα,µ, (2k +2)Tα,µ)).

Proof of Lemma 4.1. Let τ := t/ε, v̇ = dv/dτ and v̈ = d2v/dτ 2. Then
vα satisfies

v̈ =1−v − λ cos2(ετ/2)

v2
, v >0, (6.2)

v =α, v̇ =0 at τ =0. (6.3)

We shall compare vα0 with Vα,µ of (6.1). To this end, we shall prove two
claims.

Claim 1. Let (V0, V̇0) := (Vα0,1, V̇α0,1) and T0 :=Tα0,1. There exist δ0 >0
and δ1 >0 sufficiently small and µ0 ∈ (0,1) sufficiently close to 1 such that
for µ∈[µ0,1] and α ∈[α0 − δ0, α0 + δ0], the following (i) (ii) and (iii) hold:

(i) Vα,µ(Tα,µ)∈[V0(T0)− δ1, V0(T0)+ δ1];
(ii) |1 − v − λµ/v2| � κ for some κ > 0 as long as v ∈ [α0 − 3δ0, α0 +

3δ0] or v ∈[V0(T0)−3δ1, V0(T0)+3δ1];
(iii) There is an η>0 sufficiently small such that

⎧⎪⎪⎨
⎪⎪⎩

|V̈α,µ(τ)|�κ, if τ∈[0, η]∪ [Tα,µ−η, Tα,µ+η],
Vα,µ(τ)∈[α0−2δ0, α0+2δ0], if τ∈[0, η]∪ [2Tα,µ −η,2Tα,µ],
Vα,µ(τ)∈[V0(T0)−2δ1, V0(T0)+2δ1], if τ∈[Tα,µ −η, Tα,µ +η],
|V̇α,µ(τ)|�κη, if τ∈[η, Tα,µ −η].
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Proof of Claim 1. (i) follows from the continuity of Vα,µ with respect
to (α,µ) at (α0,1) uniformly for τ in compact intervals and the conti-
nuity of Tα,µ with respect to (α,µ). (ii) follows from the fact that 1 −
V0 − λ/V 2

0 �= 0 at τ = 0 and τ = T0 and the continuity of the function
1 − v −λ/v2 at v �= 0. Thus, (i) and (ii) are proved and δ0, δ1 and µ0 are
determined. To show (iii) we let δ01 =min{δ0, δ1} and

T̃ =min{Tα,µ : (α,µ)∈[α0 − δ0, α0 + δ0]× [µ0,1] },
T̄ =max{Tα,µ : (α,µ)∈[α0 − δ0, α0 + δ0]× [µ0,1] },
M0 =max{|V̇α,µ(τ )| : (α,µ)∈[α0 − δ0, α0 + δ0]× [µ0,1], τ ∈[0, Tα,µ] },

and pick an η > 0 such that η < min{T̃ /2, δ01/M0}. Let (α,µ) ∈ [α0 −
δ0, α0 + δ0] × [µ0,1]. Then using the mean value theorem we have, for
τ ∈ [0, η], |Vα,µ(τ )−α| = |Vα,µ(τ )− |Vα,µ(0)|� M0η � δ0 and so α0 − 2δ0 �
α − δ0 � Vα,µ(τ ) � α + δ0 � α0 + 2δ0. Therefore, it follows from (ii) that
V̈α,µ(τ )= 1 − Vα,µ(τ )−λµ/V 2

α,µ(τ )�−κ for τ ∈ [0, η], and thus V̇α,µ(η)=∫ η

0 V̈α,µ(s)ds � −κη. Similarly, for τ ∈ [Tα,µ − η, Tα,µ + η], |Vα,µ(τ ) −
Vα,µ(Tα,µ)|� M0η� δ1 and so

V0(T0)−2δ1 � Vα,µ(Tα,µ)− δ1 � Vα,µ(τ )� Vα,µ(Tα,µ)+ δ1 � V0(T0)+2δ1.

Then, from (ii) we obtain V̈α,µ(τ )�κ for τ ∈[Tα,µ −η, Tα,µ] and so

V̇α,µ(Tα,µ −η)= V̇α,µ(Tα,µ)+
∫ Tα,µ−η

Tα,µ

V̈α,µ(s)ds �−κη.

Since |V̈α,µ|�κ for τ ∈[0, η] or τ ∈[Tα,µ −η, Tα,µ +η], we conclude that the
unique minimum value of V̇α,µ in [0, Tα,µ] must occur in (η, Tα,µ −η) and
|V̇α,µ(τ )| � min{|V̇α,µ(η)|, |V̇α,µ(Tα,µ − η)|} � κη for τ ∈ [η, Tα,µ − η]. This
together with the symmetry of Vα,µ and V̇α,µ shows (iii).

Claim 2. Let µ0 and δ0 be given in Claim 1. There exist M1 > 0 and
ε0 > 0 such that if 0 < ε < ε0 and there is a σn � 0 such that v̇α0(σn) = 0,
and

µn := cos2(εσn/2)>µ0, vα0(σn)∈ (α0 − δ0, α0 + δ0) , (6.4)

then there exist two successive critical points τn+1 and σn+1 of vα0 after σn

with σn <τn+1 <σn+1 such that

2T̃ −η<σn+1 −σn �2T̄ +η, |vα0(σn+1)−vα0(σn)|� M1ε. (6.5)
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Proof of Claim 2. To show this claim, we need to compare vα0(τ ) with
the solution Vn(τ ) := Vαn ,µn (τ −σn) of

V̈ =1− V − λµn

2
, V (σn)=vα0(σn)=:αn, V̇ (σn)=0.

By virtue of (6.4) we see that Vn has the properties (i)–(iii) listed in
Claim 1 with a translation in τ . In order to show the existence of τn+1
and σn+1, we first show

|vα0(τ )− Vn(τ )|+ |v̇α0(τ )− V̇n(τ )|� M2ε, τ ∈[σn, σn +2Tn +η], (6.6)

where Tn :=Tαn ,µn , η is given in Claim 1, and M2 >0 is a constant depend-
ing only on δ0, δ1, µ0 and η given in Claim 1. To this end, we let wn =
vα0 − Vn . Then wn satisfies wn(σn)= ẇn(σn)=0 and

ẅn =−
[

1− λ (2Vn +wn) cos2(ετ/2)

(wn + Vn)2V 2
n

]
wn + λ

[
cos2(ετn/2)− cos2(ετ/2)

]
(wn + Vn)2

=:an(τ )wn +bn(τ ).

Define T ′
n = sup{τ ∈ (σn, σn + 2Tn + η] : |wn| + |ẇn| � δ01 on [σn, τ ]}. Since

| cos2(εσn/2) − cos2(ετ/2)| � 1
4ε(τ − σn) and V0(T0) − δ1 � Vn(τ ) � α0 + δ0,

it follows that, for τ ∈ (σn, T ′
n],

|an(τ )|�1+ λ[2(α0 + δ0)+ δ01]
[V0(T0)−2δ1]2 [V0(T0)− δ1]2

, |b(τ )|� λ

[V0(T0)−2δ1]2
.

Letting M3 be the sum of the right-hand sides of the above inequalities
yields |an(τ )| � M3 and |bn(τ )| � M3 for τ [σn, T ′

n]. Using the equivalent
integral equations for wn and ẇn we get, for τ ∈ (σn, T ′

n],

|wn(τ )|+ |ẇn(τ )|�
∫ τ

σn

(|an(s)|+1)(|wn(s)|+ |ẇn(s)|)ds +
∫ τ

σ

|bn(s)|ds

� (M3 +1)

∫ τ

σn

(|wn(s)|+ |ẇn(s)|)ds + M3T̄ ε,

and then the Gronwall’s inequality and the estimate τ −σn �2T̄ +η yields

|w0(τ )|+ |ẇ0(τ )|� M3T̄ e(M3+1)(2T̄ +η)ε =: M2ε < M2ε0. (6.7)

Hence if ε0 < δ01/M2, then |w0| + |ẇ0| < δ01 which yields by definition of
T ′

n that T ′
n =σn + 2Tn + η which in turn says that (6.7) holds on [σn, σn +

2Tn +η]. This yields (6.6) exactly.
We next use (6.6) to show the existence of τn+1 and σn+1. It fol-

lows from (6.6) and Claim 1 (iii) that, for τ ∈ (σn, σn + η), |vα0(τ )−α0|�
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M2ε + |Vn(τ ) − α0| � δ0 + 2δ0 = 3δ0 and thus, from Claim 1 (ii), v̈α0(τ ) �
−κ and thus v̇α0(τ ) < 0. For τ ∈ (σn + η, σn + Tn − η), we have v̇α0(τ ) �
V̇n(τ ) + M2ε � −κη + M2ε0 � −κη/2 provided ε0 � κη/2M2. For τ ∈ (σn +
Tn − η, σn + Tn + η), we have |vα0(τ )− V0(T0)|� |vα0(τ )− Vn(τ )| + |Vn(τ )−
V0(T0)| � M2ε + 2δ1 < 3δ1 and so v̈α0(τ ) � κ from Claim 1 (ii). Hence,
|v̇α0(σn +Tn ±η)|�κη− M2ε�κη/2. Therefore, there exists a unique τn+1 ∈
(σn + Tn − η, σn + Tn + η) such that v̇α0(τn+1) = 0. Similarly, we have for
τ ∈ (σn +Tn +η, σn +2Tn −η), |v̇α0(τ )|�κη− M2ε�κη/2; for τ ∈[σn +2Tn −
η, σn +2Tn +η], |vα0(τ )−α0|� |Vn(τ )−α0|+ M2ε�2δ0 + M2ε�3δ0, and so
v̈α0(τ )�−κ. Since v̇α0(σn + 2Tn + η)� V̇n(η)+ M2ε �−κη + M2ε �−κη/2,
and v̇α0(σn + 2Tn − η) � −V̇n(η) − M2ε � κη − M2ε � κη/2, it follows that
there is a unique σn+1 ∈ (σn +2Tn −η, σn +2Tn +η) such that v̇α0(σn+1)=0.

We now show (6.5). On one hand, we have |vα0(σn+1) − vα0(σn)| =
|vα0(σn+1) − Vn(σn)| = |vα0(σn+1) − Vn(σn + 2Tn)| � |vα0(σn+1) − Vn(σn+1)| +
|Vn(σn+1) − Vn(σn + 2Tn)| � M2ε + M0|σn+1 − (σn + 2Tn)|. On the other
hand, we have

0= v̇α0(σn+1)− V̇n(σn +2Tn) = [v̇α0(σn+1)− V̇n(σn+1)]
+[V̇n(σn+1)− V̇n(σn +2Tn)]

and so M2ε � |V̇n(σn+1) − V̇n(σn + 2Tn)| � κ|σn+1 − (σn + 2Tn)| and so
|σn+1 − (σn + 2Tn)| � M2ε/κ. Therefore, we have |vα0(σn+1) − vα0(σn)| �
M2(1 + M0/k)ε =: M1ε and 2T̃ − η � 2Tn − M2ε0/κ � σn+1 − σn � 2Tn +
M2ε0/κ � 2T̄ + η provided that M2ε0/k � η. This shows (6.5) as well as
Claim 2.

Now we start proving Lemma 4.1. Given an arbitrary ε∈ (0, ε0) where
ε0 > 0 is determined in Claim 2. Since σ = 0 and vα0(σ0) = α0, it fol-
lows that (6.4) is satisfied with n =0. Then Claim 2 and the mathematical
induction yields that there exist 0=:σ0 <τ1 <σ1 <τ2 < · · ·<τN <σN with

N = N (λ, ε) := sup
{

n �1 : cos2(εσn/2)>µ0, vα0(σn)∈ (α0 − δ0, α0 + δ0)
}

.

such that, for n =0,1, . . . , N , vα0 has local maxima and minima at σn and
τn respectively and (6.5) holds. Note that from (6.5) and the definition
of N we have σn+1 − σn � 2T̃ − η and σn � δ̄/ε for 0 � n < N where δ̄ :=
2 arccos

√
µ0. It follows that N < ∞. Therefore, we have (6.4) for n = N .

Then Claim 2 implies that τN+1 and σN+1 exist and satisfy (6.5). On the
other hand, by the definition of N , we must have either cos2(εσN+1/2)�
µ0 or |vα0(σN+1)−α0|� δ0. If the former occurs, then, from (6.5),

δ̄

ε
�σN+1 = (σN+1 −σN )+· · ·+ (σ1 −σ0)� (N +1)(2T̄ +η);

while if the latter occurs, then, by 6.5) and the triangle inequality,
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δ0 � |vα0(σN+1)−vα0(σN )|+ · · ·+ |vα0(σ1)−α0|� (N +1)M1ε.

Thus, N � K0 := min{δ0/(M1ε), δ̄/[(2T̄ +η)ε]}− 1. Finally, letting t2k = εσn

and t2k+1 = ετn for nonnegative integer k with 2k + 2 � N completes the
proof of Lemma 4.1.
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