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1. Introduction to fractal geometry

Let X = {X(t), t ∈ RN} be a random field with values in
Rd. It generates many random sets, for example,

Range X
(
[0, 1]N

)
=
{

X(t) : t ∈ [0, 1]N
}

Graph GrX
(
[0, 1]N

)
=
{

(t,X(t)) : t ∈ [0, 1]N
}

Level set X−1(x) =
{

t ∈ RN : X(t) = x
}

Excursion set X−1(F) =
{

t ∈ RN : X(t) ∈ F
}
, ∀F ⊆

Rd,

The set of self-intersections, . . ..

In order to study them, we need some tools such as Haus-
dorff dimension and packing dimension from fractal ge-
ometry.
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1.1 Definitions of Hausdorff measure and
dimension

Let Φ be the class of functions ϕ : (0, δ) → (0,∞) which
are right continuous, monotone increasing with ϕ(0+) = 0
and such that there exists a finite constant K > 0 such that

ϕ(2s)
ϕ(s)

≤ K for 0 < s <
1
2
δ.

A function ϕ in Φ is often called a measure function or
gauge function.
For example, ϕ(s) = sα (α > 0) andϕ(s) = sα log log(1/s)
are measure functions.

Yimin Xiao (Michigan State University) Small Ball Properties and Fractal Properties of Gaussian Random FieldsJune 4–8, 2012 4 / 27



1.1 Definitions of Hausdorff measure and
dimension

Let Φ be the class of functions ϕ : (0, δ) → (0,∞) which
are right continuous, monotone increasing with ϕ(0+) = 0
and such that there exists a finite constant K > 0 such that

ϕ(2s)
ϕ(s)

≤ K for 0 < s <
1
2
δ.

A function ϕ in Φ is often called a measure function or
gauge function.
For example, ϕ(s) = sα (α > 0) andϕ(s) = sα log log(1/s)
are measure functions.

Yimin Xiao (Michigan State University) Small Ball Properties and Fractal Properties of Gaussian Random FieldsJune 4–8, 2012 4 / 27



1.1 Definitions of Hausdorff measure and
dimension

Let Φ be the class of functions ϕ : (0, δ) → (0,∞) which
are right continuous, monotone increasing with ϕ(0+) = 0
and such that there exists a finite constant K > 0 such that

ϕ(2s)
ϕ(s)

≤ K for 0 < s <
1
2
δ.

A function ϕ in Φ is often called a measure function or
gauge function.
For example, ϕ(s) = sα (α > 0) andϕ(s) = sα log log(1/s)
are measure functions.

Yimin Xiao (Michigan State University) Small Ball Properties and Fractal Properties of Gaussian Random FieldsJune 4–8, 2012 4 / 27



Given ϕ ∈ Φ, the ϕ-Hausdorff measure of E ⊆ Rd is
defined by

ϕ-m(E) = lim
ε→0

inf
{∑

i

ϕ(2ri) : E ⊆
∞⋃

i=1

B(xi, ri), ri < ε

}
,

(1)
where B(x, r) denotes the open ball of radius r centered at
x. The sequence of balls satisfying the two conditions on
the right-hand side of (1) is called an ε-covering of E.

It can be shown that ϕ-m is a metric outer measure and all
Borel sets in Rd is ϕ-m measurable.

A function ϕ ∈ Φ is called an exact Hausdorff measure
function for E if 0 < ϕ-m(E) <∞.
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If ϕ(s) = sα, we write ϕ-m(E) asHα(E).
The Hausdorff dimension of E is defined by

dimHE = inf
{
α > 0 : Hα(E) = 0

}
= sup

{
α > 0 : Hα(E) =∞},

Convention: sup∅ := 0.

Lemma 1.1
1 E ⊆ F ⊆ Rd ⇒ dimHE ≤ dimHF ≤ d.
2 (σ-stability):

dimH

( ∞⋃
j=1

Ej

)
= sup

j≥1
dimHEj.
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An upper density theorem
For any Borel measure µ on Rd and ϕ ∈ Φ, the upper ϕ-
density of µ at x ∈ Rd is defined as

Dϕ
µ(x) = lim sup

r→0

µ(B(x, r))

ϕ(2r)
.

Theorem 1.2 (Rogers and Taylor, 1961)
Given ϕ ∈ Φ, ∃K > 0 such that for any Borel measure
µ on Rd with 0 < ‖µ‖=̂µ(Rd) < ∞ and every Borel set
E ⊆ Rd, we have

K−1µ(E) inf
x∈E

{
Dϕ
µ(x)

}−1 ≤ ϕ-m(E) ≤ K‖µ‖ sup
x∈E

{
Dϕ
µ(x)

}−1
.
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1.2 Packing measure and packing dimension
They were introduced by Tricot (1982), Taylor and Tricot
(1985). For any ϕ ∈ Φ and E ⊆ Rd, define

ϕ-P(E) = lim
ε→0

sup
{∑

i

ϕ(2ri) : {B(xi, ri)} is an ε-packing
}
.

Here ε-packing means that the balls are disjoint, xi ∈ E
and ri ≤ ε.
The packing measure ϕ-p of E is defined as:

ϕ-p(E) = inf
{∑

n

ϕ-P(En) : E ⊆
⋃

n

En

}
.

A function ϕ ∈ Φ is called an exact packing measure func-
tion for E for E if 0 < ϕ-p(E) <∞.
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If ϕ(s) = sα, we write ϕ-p(E) as Pα(E). The packing
dimension of E is defined as:

dimPE = inf{α > 0 : Pα(E) = 0}.

Comparison between dimH and dimP:
For any ϕ ∈ Φ and E ⊆ Rd,

ϕ-m(E) ≤ ϕ-p(E), dimHE ≤ dimPE.
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A lower density theorem
For any Borel measure µ on Rd and ϕ ∈ Φ, the lower ϕ-
density of µ at x ∈ Rd is defined as

Dϕ
µ(x) = lim inf

r→0

µ(B(x, r))

ϕ(2r)
.

Theorem 1.3 (Taylor and Tricot, 1985)
Given ϕ ∈ Φ, ∃K > 0 such that for any Borel measure
µ on Rd with 0 < ‖µ‖=̂µ(Rd) < ∞ and every Borel set
E ⊆ Rd, we have

K−1µ(E) inf
x∈E

{
Dϕ
µ(x)

}−1 ≤ ϕ-p(E) ≤ K‖µ‖ sup
x∈E

{
Dϕ
µ(x)

}−1
.
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Example: Cantor’s set

Let C denote the standard ternary Cantor set in [0 , 1]. At
the nth stage of its construction, C is covered by 2n inter-
vals of length/diameter 3−n each.
It can be proved that

dimHC = dimPC = log3 2.

By using the upper and lower density theorems, one can
prove that

0 < Hlog3 2(C) ≤ Plog3 2(C) <∞.
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Example: the range of Brownian motion
Let B([0, 1]) be the image of Brownian motion in Rd. Lévy
(1948) and Taylor (1953) proved that

dimHB([0, 1]) = min{d, 2} a.s.

Ciesielski and Taylor (1962), Ray and Taylor (1964) proved
that

0 < ϕd-m
(
B([0, 1])

)
<∞ a.s.,

where
ϕ1(r) = r,

ϕ2(r) = r2 log(1/r) log log log(1/r),

ϕd(r) = r2 log log(1/r), if d ≥ 3.
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Taylor and Tricot (1985) proved that

dimPB([0, 1]) = min{d, 2}

and, if d ≥ 3, then

0 < ψ-p
(
B([0, 1])

)
<∞ a.s.,

where ψ(r) = r2/ log log(1/r).

LeGall and Taylor (1986) proved that, if d = 2, then for
any measure function ϕ, either ϕ-p

(
B([0, 1])

)
= 0 or∞.

Question: How to extend the above results to Gaussian
random fields? (Consider fractional Brownian motion only.)
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2. Fractional Brownian motion
For H ∈ (0, 1), the fBm BH = {BH(t), t ∈ RN} with in-
dex H is a centered (N, d)-Gaussian field whose covariance
function is

E
[
BH

i (s)BH
j (t)

]
=

1
2
δij
(
|s|2H + |t|2H − |s− t|2H) ,

where δij = 1 if i = j and 0 otherwise.
When N = 1 and H = 1/2, BH is Brownian motion.
BH is H-self-similar and has stationary increments.

Kahane (1985) proved that

dimHBH([0, 1]N) = min
{

d,
N
H

}
a.s.
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2.1 Exact Hausdorff measure function for
BH([0, 1]N)

Theorem 2.1 (Talagrand, 1995, 1998)
Let BH = {BH(t), t ∈ RN} be a fBm with values in Rd.

(i). If N < Hd, then

K−1 ≤ ϕ1-m
(
BH([0, 1]N)

)
≤ K, a.s.

where ϕ1(r) = r
N
H log log(1/r).

(ii). If N = Hd, then ϕ2-m
(
BH([0, 1]N)

)
is σ-finite, where

ϕ2(r) = rd log(1/r) log log log(1/r).
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Proof of the upper bound

An economic covering of BH([0, 1]N) must reflect the local
oscillation behavior of the sample paths of BH. Talagrand
(1995) classified the points in [0, 1]N into “good” points
and “bad” points according to the local asymptotic behav-
ior of fBm at these points.
Typically, t0 ∈ [0, 1]N is “good” if the oscillation of BH

around BH(t0) is small on a sequence of balls U(t0, rn),
where rn ↓ 0, so that BH(U(t0, rn)) can be covered by
balls with small radius. This is precisely characterized by
Chung’s LIL for fBm at t0.
At “bad” points, the the oscillation can be as large as given
by the uniform modulus of continuity. Fortunately, there
are not many such points.
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Here is Talagrand’s key estimate.

Proposition 2.2 (Talagrand, 1995)
There exists a constant δ1 > 0 such that for any 0 < r0 ≤
δ1, we have

P
{
∃r ∈ [r2

0, r0] such that

max
|t|≤r
|BH(t)| ≤ K rH( log log(1/r)

)−H/N
}

≥ 1− exp
(
−
(

log
1
r0

) 1
2

)
.
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For k ≥ 1, consider the set

Rk =

{
t ∈ [0, 1]N : ∃r ∈ [2−2k, 2−k] such that

sup
|s−t|≤r

|BH(s)− BH(t)| ≤ KrH( log log(1/r)
)−H/N

}
.

Since BH has stationary increments, Proposition 2.2 and
Fubini’s theorem imply that almost surely

LN(Rk) ≥ 1− exp(−
√

k/4) infinitely often.

This leads to an upper bound for ϕ1-m
(
BH([0, 1]N)

)
.

The proof of the lower bound makes use of the upper den-
sity theorem and strong local nondeterminism. This part is
omitted.
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Further results

The problems on the exact Hausdorff measure functions
for the graph set and level set of BH were studied by Xiao
(1997, 1998).

Extensions of Talagrand (1995) to anisotropic Gaussian
random fields with stationary increments are done in Luan
and Xiao (2012).

Research problems:
For fBm, the problem for the exact Hausdorff measure
function in the critical case of N = Hd is open.
All problems for fractional Brownian sheets are open.

Yimin Xiao (Michigan State University) Small Ball Properties and Fractal Properties of Gaussian Random FieldsJune 4–8, 2012 19 / 27



2.2. Exact packing measure function for
BH([0, 1]N)

Theorem 2.3 (Xiao, 1996, 2003)
Let BH = {BH(t), t ∈ RN} be a fBm with values in Rd. If
N < Hd, then there exists a finite constant K ≥ 1 such that

K−1 ≤ ϕ3-p(BH([0, 1]N)) ≤ K, a.s.

where ϕ3(r) = r
N
H
(

log log(1/r)
)−N/(2H).
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For proving Theorem 2.3, we consider the sojourn measure

T(r) =

∫
RN
I{BH(t)|≤r}dt.

This is a nonnegative, non-decreasing and self-similar pro-
cess.
A key ingredient is the following small ball probability es-
timate for T(1).

Proposition 2.4 (Xiao, 1996, 2003)
Assume that N < Hd. Then there exists a positive and
finite constant K ≥ 1, depending only on H, N and d such
that for any 0 < ε < 1,

exp
(
− K
ε2H/N

)
≤ P{T(1) < ε} ≤ exp

(
− 1

Kε2H/N

)
.
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This leads to the following Chung’s LIL for T(r).

Theorem 2.4 (Xiao, 1996, 2003)
If N < Hd, then with probability one,

lim inf
r→0

T(r)

ϕ3(r)
= K, (2)

where 0 < K <∞ is a constant depending on H, N and d
only.

By the stationarity of increments of BH and the lower den-
sity theorem, we derive the lower bound in Theorem 2.3.

The proof of upper bound in Theorem 2.3 requires a dif-
ferent argument.
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Research problems

In light of Proposition 2.4, we conjecture that

lim
ε→0

ε2H/N logP{T(1) < ε} exists.

For fBm, the problems for the exact packing measure
functions for the graph, level sets and other sets are
all open.
All problems for the Brownian sheet, fractional Brow-
nian sheets and other anisotropic Gaussian random
fields are all open.
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2.3. Chung’s LIL and its exceptional sets
Using small ball probability, one proves the following Chung’s
LIL.
Theorem 2.5 (Monrad and Rootzen, 1995; Li and Shao,
2001; Xiao, 1997)
For any t ∈ RN ,

lim inf
r→0

sup
|s|≤r

|BH(t + s)− BH(t)|
rH/(log log 1/r)H/N = K a.s.,

where K is a positive and finite constant.

When N = 1, K = κ, which is the small ball constant in Li
and Linde (1998).
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In the case of N = 1, we use the SLND to prove the follow-
ing result on the modulus of non-differentiability of BH.

Theorem 2.6 (Hwang, Wang and Xiao, 2012)
With probability 1,

lim inf
r→0

inf
t∈[0,1]

sup|s|≤r |BH(t + s)− BH(t)|(
r/ log 1/r

)H = κ.

Hence, for any constant γ ≥ 1, the random set

S(γ) =

{
t ∈ [0, 1] : lim inf

r→0

sup
|s|≤r
|BH(t + s)− BH(t)|(

r/ log 1/r
)H ≤ γκ

}
has Lebesgue measure 0.
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By applying the general results in Khoshnevisan, Peres and
Xiao (2000) on limsup random fractals and small ball prob-
ability estimates, we prove

Theorem 2.7 (Hwang, Wang and Xiao, 2012)
For any γ ≥ 1,

dimHS(γ) = 1− γ−1/H and dimPS(γ) = 1 a.s.

Moreover, for any fixed set E ⊆ [0, 1],

P
{

S(γ) ∩ E 6= ∅
}

=

{
1, if dimPE > γ−1/H,
0, if dimPE < γ−1/H.
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Thank you
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