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0/10 Advertisement: spin glasses

Sherrington-Kirkpatrick model:

For each N € N, Hy : {+1,—1}" — R is a random function

Jij
Hyn(o) = Z \/2JTVU,-UJ-

where o = (o1,...,0n) and (J)._; areiid., N(0,1).

Two key ideas.
» Gaussian inequalities: Slepian’s lemma.

» Exchangeability.
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1/10 Bernoulli-p thinning

Let 27 % {0,1). Let p € (0,1].

e Suppose
(Xl,XQ,...) N/J,GM(%N)

e Independently,
(B1,Ba,...) ~ i.id.Bernoulli(p)

o let K1 < Kb < ... =indices ks.t. By =1
e O,(1) € M(2ZN) = marginal distribution (Xk;, Xk, - - - )-

X1 X2 X3 Xa X5
Bi: 1 1 0 1 0

Il v

Xk, Xk, Xk
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2/10 Thinning invariance

X1 X2 X3 Xa Xs
By: 1 1 0 1 0

Il 7

Yi. Y2 Y3
Definition: Thinning invariance:
Op(p) = forall p e (0,1].
Example: Let Xi,X5,... bei.id.

Example 2. Let X1, Xo,... be conditionally i.i.d.
E.g. U ~ Unif([0,1]).
Conditional on U: X1, Xa,... ~ i.i.d, Bernoulli(U).
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3/10 Thinning invariant # spreadable/exchangeable

Definition: Spreadability:
» V non-random ki < ko < ...,
» given (X1, X2,...) ~ p,

(Xkl?X/Qv"')N:u'

Ryll-Nardzewski showed that spreadability equals exchangeability.
Definition: Exchangeability

> YV “finite” permutation 7 : N — N,

> given (X1, X2,...) ~ p,

(X7r(1)3X7r(2)3 e ) ~ .

References: for thinning invariant point processes.

Olav Kallenberg, “Random measures.”
Mathes, Kerstan and Mecke, “Infinitely divisible point processes.”
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4/10 Reminder: De Finetti's theorem & random measures

M(Z) = all Borel measures 11 on 2.
M(M(Z)) = all Borel measures Q on M(Z").

For Q € M(M(Z)):
>~ Q
» conditional on u: (X1, X2,...) ~iid., u
> pgo = marginal distribution of (X1, Xa,...)

De Finetti’'s Theorem:
{u e M(ZN) : exchangeable} = {ug : Q € M(M(Z))}
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5/10 Counterexamples to exchangeability

1. Choose 0 < &1 < & < ... ~ Poisson point process.
Independently, choose U ~ Unif([0,2)).

Xn = 1224_[071)(“1 gn -+ U) for n € N,

2. Choose 0 < &1 < & < ... ~ Poisson point process.
Independently, let W : R — [0, 1] ~ reflected Brownian motion.

Up = W(In§&,) €10,1]  for each n € N.
Conditional on (U1, Us,...): X1, Xa,... independent
X, ~ Bernoulli(Y},).

e Note {(In&p, X;) }nen is a mixed Poisson process on R x 2.
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6/10 Characterization theorem

> Let M p(R x Z7) denote the set of all Borel measures p on
R x 2 such that p(- x Z7) = Lebesgue measure.

» Let Mi(Mep(R x Z7)) denote the set of all Borel probability
measures Q@ on M p(R x Z7) such that

QUp : porite}) =Q,
for all t € R, where 7¢(s,x) = (s + t, x).
Theorem [Wei, S] {y € M(2Z™N) : Vp € (0,1],0,(u) = pu} is
isomorphic as a simplex to My(Mep(R x 27)).

» Given Q, let p € M (R x Z7) be chosen according to Q.
> Let p’ be a new measure: p'(dt x dx) = e'p(dt x dx).

» Let = be a Poisson process on R x 2~ with intensity p'.

» As.,, = = Z(;ozl 5(5,17)(") with & < & < ...

> g € M(ZN) = the marginal distribution of (X1, X, ...).
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7/10 Key idea: Hoyle's super-creationist model

In one of his papers, Aldous describes the following as Hoyle's
“steady state model.”

r’/

==

» At any time, standard Poisson point process.

o
L4

0 2
~

t

» Space dilates at a constant rate.

» New points added according to space-time Poisson process.
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8/10 Relation to thinning invariant partition structure

A random partition structure “is” a random sequence (&1,&2, ... ):
» 6 >6>->0

> GGt =1
Thinning here has two steps:
> (§K1’§K27 <o )v

> €k /Z, Eky/Z,...) where Z =&k, + &, + ...

Example. For 0 < m <1, let & > & > ... ~ PPP(mx~""1dx).
let Z=&+&+. ...

(&1/Z, &/Z, ...) ~ Poisson-Dirichlet PD(m, 0)

References:

Pitman and Yor, The two parameter Poisson-Dirichlet process
derived from a stable subordinator.

Pitman, Poisson-Kingman partitions.
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9/10 Ergodic theorem

rl\

=

—t7LIn&(t) = 1/m
= £,(0) ~ nY/m

Idea: still only heuristic. Multiply £,(0) by (e*Na(—t))*/™ and
then claim the result is a thinning invariant sequence.

t>

x This problem arises in the simplest spin glass, Derrida’'s REM.
Aizenman and Ruzmaikina solved the cavity step dynamics.
But N — N + 1 also doubles the configuration, space.
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10/10 Rockets in Huntsville

Thank you!
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