Thinning Invariant Sequences

NSF-CBMS Conference at UAHuntsville Small Deviation Probabilities: Theory and Applications

Shannon Starr

University of Rochester \rightarrow UABirmingham

June 7, 2012

- ▶ Joint work with **Ang Wei** University of Rochester
- previously Brigitta Vermesi: U Washington & DigiPen IT

0/10 Advertisement: spin glasses

Sherrington-Kirkpatrick model:

For each $N \in \mathbb{N}$, $H_N : \{+1, -1\}^N \to \mathbb{R}$ is a random function

$$H_N(\sigma) = \sum_{i,j=1}^N \frac{J_{ij}}{\sqrt{2N}} \, \sigma_i \sigma_j$$

where $\sigma = (\sigma_1, \dots, \sigma_N)$ and $(J_{ij})_{i,j=1}^N$ are i.i.d., $\mathcal{N}(0,1)$.

Two key ideas.

- Gaussian inequalities: Slepian's lemma.
- Exchangeability.

1/10 Bernoulli-p thinning

Let $\mathscr{X} \stackrel{\mathsf{def}}{:=} \{0,1\}$. Let $p \in (0,1]$.

Suppose

$$(X_1, X_2, \dots) \sim \mu \in \mathcal{M}(\mathscr{X}^{\mathbb{N}})$$

Independently,

$$(B_1, B_2, \dots) \sim \text{ i.i.d. Bernoulli}(p)$$

- Let $K_1 < K_2 < \ldots = \text{indices } k \text{ s.t. } B_k = 1$
- $\theta_p(\mu) \in \mathcal{M}(\mathscr{X}^{\mathbb{N}}) = \text{marginal distribution } (X_{K_1}, X_{K_2}, \dots).$

2/10 Thinning invariance

Definition: Thinning invariance:

$$\theta_p(\mu) = \mu$$
 for all $p \in (0,1]$.

Example: Let X_1, X_2, \ldots be i.i.d.

Example 2. Let X_1, X_2, \ldots be conditionally i.i.d.

E.g. $U \sim \text{Unif}([0,1])$.

Conditional on $U: X_1, X_2, \ldots \sim i.i.d$, Bernoulli(U).

$_{3/10}$ Thinning invariant \neq spreadable/exchangeable

Definition: *Spreadability*:

- ▶ \forall non-random $k_1 < k_2 < \dots$,
- given $(X_1, X_2, \dots) \sim \mu$,

$$(X_{k_1},X_{k_2},\dots)\sim\mu$$
.

Ryll-Nardzewski showed that spreadability equals exchangeability.

Definition: Exchangeability

- ightharpoonup "finite" permutation $\pi: \mathbb{N} \to \mathbb{N}$,
- given $(X_1, X_2, \dots) \sim \mu$,

$$(X_{\pi(1)}, X_{\pi(2)}, \dots) \sim \mu$$
.

References: for thinning invariant point processes.

Olav Kallenberg, "Random measures."

Mathes, Kerstan and Mecke, "Infinitely divisible point processes."

4/10 Reminder: De Finetti's theorem & random measures

 $\mathcal{M}(\mathscr{X}) = \text{all Borel measures } \mu \text{ on } \mathscr{X}.$

 $\mathcal{M}(\mathcal{M}(\mathscr{X})) = \text{all Borel measures } Q \text{ on } \mathcal{M}(\mathscr{X}).$

For $Q \in \mathcal{M}(\mathcal{M}(\mathscr{X}))$:

- $\blacktriangleright \mu \sim Q$
- ▶ conditional on μ : $(X_1, X_2, ...) \sim$ i.i.d., μ
- μ_Q = marginal distribution of $(X_1, X_2, ...)$

De Finetti's Theorem:

$$\{\mu \in \mathcal{M}(\mathscr{X}^{\mathbb{N}}) : \mathsf{exchangeable}\} = \{\mu_{Q} : Q \in \mathcal{M}(\mathcal{M}(\mathscr{X}))\}$$

5/10 Counterexamples to exchangeability

1. Choose $0 < \xi_1 < \xi_2 < \ldots \sim \text{Poisson point process.}$ Independently, choose $U \sim \text{Unif}([0,2))$.

$$X_n = \mathbf{1}_{2\mathbb{Z}+[0,1)}(\ln \xi_n + U)$$
 for $n \in \mathbb{N}$,

2. Choose $0 < \xi_1 < \xi_2 < \dots \sim$ Poisson point process. Independently, let $W : \mathbb{R} \to [0,1] \sim$ reflected Brownian motion.

$$U_n = W(\ln \xi_n) \in [0,1]$$
 for each $n \in \mathbb{N}$.

Conditional on $(U_1, U_2, ...)$: $X_1, X_2, ...$ independent

$$X_n \sim \text{Bernoulli}(Y_n)$$
.

• Note $\{(\ln \xi_n, X_n)\}_{n \in \mathbb{N}}$ is a mixed Poisson process on $\mathbb{R} \times \mathscr{X}$.

6/10 Characterization theorem

- Let $\mathcal{M}_{\mathsf{Leb}}(\mathbb{R} \times \mathscr{X})$ denote the set of all Borel measures ρ on $\mathbb{R} \times \mathscr{X}$ such that $\rho(\cdot \times \mathscr{X}) = \mathsf{Lebesgue}$ measure.
- ▶ Let $\mathcal{M}_{\mathrm{I}}(\mathcal{M}_{\mathsf{Leb}}(\mathbb{R} \times \mathscr{X}))$ denote the set of all Borel probability measures Q on $\mathcal{M}_{\mathsf{Leb}}(\mathbb{R} \times \mathscr{X})$ such that

$$Q(\{\rho: \, \rho \circ \tau_t^{-1} \in \cdot\}) = Q,$$

for all $t \in \mathbb{R}$, where $\tau_t(s,x) = (s+t,x)$.

Theorem [Wei, S] $\{\mu \in \mathcal{M}(\mathscr{X}^{\mathbb{N}}) : \forall p \in (0,1], \theta_p(\mu) = \mu\}$ is isomorphic as a simplex to $\mathcal{M}_{\mathrm{I}}(\mathcal{M}_{\mathsf{Leb}}(\mathbb{R} \times \mathscr{X}))$.

- ▶ Given Q, let $\rho \in \mathcal{M}_{\mathsf{Leb}}(\mathbb{R} \times \mathscr{X})$ be chosen according to Q.
- ▶ Let ρ' be a new measure: $\rho'(dt \times dx) = e^t \rho(dt \times dx)$.
- ▶ Let Ξ be a Poisson process on $\mathbb{R} \times \mathscr{X}$ with intensity ρ' .
- ▶ A.s., $\Xi = \sum_{n=1}^{\infty} \delta_{(\xi_n, X_n)}$ with $\xi_1 < \xi_2 < \dots$
- $\mu_Q \in \mathcal{M}(\mathscr{X}^{\mathbb{N}})$ = the marginal distribution of (X_1, X_2, \dots) .

7/10 Key idea: Hoyle's super-creationist model

In one of his papers, Aldous describes the following as Hoyle's "steady state model."

- ▶ At any time, standard Poisson point process.
- Space dilates at a constant rate.
- ▶ New points added according to space-time Poisson process.

8/10 Relation to thinning invariant partition structure

A random partition structure "is" a random sequence $(\xi_1, \xi_2, ...)$:

- $\xi_1 > \xi_2 > \cdots > 0$
- $\xi_1 + \xi_2 + \cdots = 1$

Thinning here has two steps:

- $\blacktriangleright (\xi_{K_1}, \xi_{K_2}, \dots),$
- $(\xi_{K_1}/Z, \xi_{K_2}/Z,...)$ where $Z = \xi_{K_1} + \xi_{K_2} +$

Example. For 0 < m < 1, let $\xi_1 > \xi_2 > \ldots \sim \mathsf{PPP}(mx^{-m-1}\,dx)$. Let $Z = \xi_1 + \xi_2 + \ldots$ $(\xi_1/Z\,,\,\xi_2/Z\,,\,\ldots) \sim \mathsf{Poisson-Dirichlet}\;\mathsf{PD}(m,0)$

References:

Pitman and Yor, The two parameter Poisson-Dirichlet process derived from a stable subordinator.

Pitman, Poisson-Kingman partitions.

9/10 Ergodic theorem

Idea: <u>still only heuristic</u>. Multiply $\xi_n(0)$ by $(e^t N_n(-t))^{1/m}$ and then claim the result is a thinning invariant sequence.

* This problem arises in the simplest spin glass, Derrida's REM. Aizenman and Ruzmaikina solved the cavity step dynamics. But $N \to N+1$ also *doubles* the configuration space.

10/10 Rockets in Huntsville

Thank you!

