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Random matrix models

Let ξ be a real or complex-valued random variable with mean 0 and
variance 1.

Non-symmetric iid model: Mn denotes the random matrix of order
n whose entries are independent and indentically distributed (iid)
copies of ξ.

Examples: Bernoulli, real/complex Gaussian.
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Wigner symmetric model: Msym
n denotes the random symmetric

matrix of order n whose upper diagonal entries are iid copies of ξ.

Examples: symmetric Bernoulli, symmetric Gaussian (GOE).

Wigner Hermitian model: Hn denotes the random Hermitian matrix
of order n whose upper diagonal entries are iid copies of a complex
valued r.v. ξ.

Examples: Hermitian Gaussian (GUE).
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Universality phenomenon

Many facts about the distribution of eigenvalues of random matrices seem
to be universal in the limit n→∞, they do not depend on the precise
matrix model used.

Thus, for instance, discrete and continuous models often have the same
statistics in the limit.
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Empirical spectral distribution

Given a matrix Mn, the empirical spectral distribution (ESD) µMn of Mn is
defined as

µMn =
1

n

n∑
i=1

δλi (Mn),

where λ1(Mn), . . . , λn(Mn) are the eigenvalues of Mn.
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Wigner’s semicircular law

The most well-known example of universality is for the bulk distribution
of eigenvalues of Wigner matrices:

Wigner’s semicircular law: for a Wigner Hermitian random matrix:

µ 1√
n
Hn
→ 1

2π
(4− x2)+

1/2dx

as n tends to ∞.

Established by Wigner for GOE in 1955, and then repeatedly
generalized and refined by many researchers.
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Figure: The ESD of a 100 by 100 random GUE (Picture by Alan Edelman)

Hoi H. Nguyen (Upenn) Littlewood-Offord estimates
NSF/CBMS conference, UAH, 4-8 June 2012 7

/ 20



Marchenko-Pastur quarter-circle law

Quarter-circle law: for an iid non-symmetric random matrix

µ( 1
n
MnM∗n )1/2 →

1

π
(4− x2)

1/2
+ 1[0,2]dx

as n tends to ∞.

Established by Marchenko and Pastur in 1967. Again, many further
refinements and proofs.
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Figure: The ESD of a 100 by 100 random iid Gaussian matrix (Picture by
Antonio Tulino)
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Circular law

Circular law: for an iid non-symmetric random matrix

µ 1√
n
Mn
→ 1x2+y2≤1dxdy

as n tends to ∞.

Established for gaussian matrices by Mehta in 1967. Generalized by
many authors, and in full generality by Tao-Vu-Krishnapur [2008].

Hoi H. Nguyen (Upenn) Littlewood-Offord estimates
NSF/CBMS conference, UAH, 4-8 June 2012 10

/ 20



Circular law

Circular law: for an iid non-symmetric random matrix

µ 1√
n
Mn
→ 1x2+y2≤1dxdy

as n tends to ∞.

Established for gaussian matrices by Mehta in 1967. Generalized by
many authors, and in full generality by Tao-Vu-Krishnapur [2008].

Hoi H. Nguyen (Upenn) Littlewood-Offord estimates
NSF/CBMS conference, UAH, 4-8 June 2012 10

/ 20



Bernoulli Gaussian
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Figure: The ESD of 5000 by 5000 random iid Bernoulli and Gaussian matrices
(Picture by Phillip Woods)
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proof of the circular law: key ideas

Roughly speaking, we need to control (for any fixed z)

1

n
log | det(

1√
n
Mn − zIn)|.

Crucial problem: we need to show that the distances are not too
small with very high probability.

More general: study the least singular value for square matrix
Mn + Fn,

σn(Mn + Fn) = inf
‖x‖=1

‖(Mn + Fn)x‖,

(Recent: Tao-Vu, Rudelson-Vershynin)
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Given a radius β, given a = (a1, . . . , an) ∈ Cn, we define the
concentration probability of a to be

ρβ(a) := sup
a

P(|a1x1 + · · ·+ anxn − a| ≤ β),

where x1, . . . , xn are iid copies of a given random variable ξ of zero
mean and unit variance.

Discrete counterpart (assuming, say, ai are integers and xi are iid
Bernoulli):

ρ(a) := sup
a

P(a1x1 + · · ·+ anxn = a).
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Littlewood and Offord (1940s) raised the question of bounding ρβ(a).
They showed that if all |ai | ≥ 1 and if xi are Bernoulli random
variables, then

ρ1(a) = sup
a

Px(
∑

1≤i≤n

aixi − a| ≤ 1) = O(n−1/2 log n).

Very soon after, Erdős gave a proof for the following refinement.

ρ1(a) ≤
(

n

bn/2c

)
/2n.

Many other generalizations by Erdős-Moser, Füredi-Frankl, Griggs,
Halász, Katona, Kleitman, Sárközy-Szemerédi, Vaughan-Wooley, and
others.
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Halász, Katona, Kleitman, Sárközy-Szemerédi, Vaughan-Wooley, and
others.

Hoi H. Nguyen (Upenn) Littlewood-Offord estimates
NSF/CBMS conference, UAH, 4-8 June 2012 14

/ 20



Littlewood and Offord (1940s) raised the question of bounding ρβ(a).
They showed that if all |ai | ≥ 1 and if xi are Bernoulli random
variables, then

ρ1(a) = sup
a

Px(
∑

1≤i≤n

aixi − a| ≤ 1) = O(n−1/2 log n).
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Tao-Vu: the inverse approach

Question

What is the underlying reason for, say

ρβ(a) = sup
a

Px(|a1x1 + · · ·+ anxn − a| ≤ β) = n−100?
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Definition

A set Q ⊂ R is a generalized arithmetic progression (GAP) of rank r if it
can be expressed as in the form

Q = {g0 + n1g1 + · · ·+ nrgr |Ni ≤ ni ≤ N ′i , ni ∈ Z for all 1 ≤ i ≤ r}

for some g0, . . . , gr ,N1, . . . ,Nr ,N
′
1, . . . ,N

′
r .

It is convenient to think of Q as the image of an integer box
B := {(n1, . . . , nr ) ∈ Zr |Ni ≤ ni ≤ N ′i } under the linear map

Φ : (n1, . . . , nr ) 7→ g0 + n1g1 + · · ·+ nrgr .

If the map is one to one, we say that the GAP is proper.

If g0 = 0 and Ni = −N ′i , we say that the GAP is symmetric.
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Example (discrete setting)

Assume that the ai are elements of a symmetric proper generalized
arithmetic progression Q of rank r and size nO(1).

Then
∑n

i=1 aixi is always an element of nQ. Thus if xi are Bernoulli
random variables, then

ρβ(v) = sup
v

P(a1x1 + · · ·+ anxn = a) ≥ 1/|nQ| = n−O(1).

Hoi H. Nguyen (Upenn) Littlewood-Offord estimates
NSF/CBMS conference, UAH, 4-8 June 2012 17

/ 20



Example (discrete setting)

Assume that the ai are elements of a symmetric proper generalized
arithmetic progression Q of rank r and size nO(1).

Then
∑n

i=1 aixi is always an element of nQ. Thus if xi are Bernoulli
random variables, then

ρβ(v) = sup
v

P(a1x1 + · · ·+ anxn = a) ≥ 1/|nQ| = n−O(1).

Hoi H. Nguyen (Upenn) Littlewood-Offord estimates
NSF/CBMS conference, UAH, 4-8 June 2012 17

/ 20



Inverse results for ρβ(a)

Theorem (Tao-Vu 2007, N.-Vu, 2010)

Assume that

ρβ(a) = sup
a

Px(|a1x1 + · · ·+ anxn − a| ≤ β) = n−O(1).

Then most of the ai can be well-approximated by elements of a
generalized arithmetic progression of rank O(1) and size nO(1).
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What can we say about the ai if xi are not independent and

sup
a

Px(|a1x1 + · · ·+ anxn − a| ≤ β) = n−O(1)?

(Tao 2010, zero-sum matrix) Let Mn = (mij) be a random iid matrix,
and define Zn as zij = mij − 1

n (mi1 + · · ·+ min). Then µ 1√
n
Zn

converges to the circular law.

(Bordenave-Caputo-Chafai 2008) Let Mn = (mij) be a random iid
matrix with non-negative ξ of bounded density. Define Zn to be the
Markov matrix (zij) where zij = mij/(mi1 + · · ·+ min). Then the ESD
of
√

n(Zn − EZn) converges to the circular law.

(N.) Let Dn be a random doubly stochastic matrix of size n. Then
the ESD of

√
n(Dn − EDn) converges to the circular law.
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What can we say about the coefficients aij if

sup
a

Px(
∑

1≤i ,j≤n

aijxixj − a| ≤ β) = n−O(1)?

(Vershynin, N.) Random symmetric matrices are not singular with
with probability.

(O’Rourke-N.) Assume that the entry pairs (xij , xji ), i < j are iid
copies of a vector (ξ1, ξ2) with ξ1, ξ2 of zero mean, unit variance and
Eξ1ξ2 = ρ with some −1 < ρ < 1.

Then µ 1√
n
Mn

converges to the elliptic law µρ,

µρ(s, t) =
1

π(1− ρ2)
mes

{
(x , y), x ≤ s, y ≤ t,

x2

(1− ρ)2
+

y2

(1 + ρ)2
< 1
}
.
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