Littlewood-Offord estimates and the singularity problem of random matrices

Hoi H. Nguyen

University of Pennsylvania

NSF/CBMS conference, UAH, 4-8 June 2012

Hoi H. Nguyen (Upenn)

Let $\boldsymbol{\xi}$ be a real or complex-valued random variable with mean 0 and variance 1.

 Non-symmetric iid model: M_n denotes the random matrix of order n whose entries are independent and indentically distributed (iid) copies of ξ.

Examples: Bernoulli, real/complex Gaussian.

- 4 週 ト - 4 三 ト - 4 三 ト -

 Wigner symmetric model: M^{sym}_n denotes the random symmetric matrix of order n whose upper diagonal entries are iid copies of ξ.

Examples: symmetric Bernoulli, symmetric Gaussian (GOE).

 Wigner symmetric model: M^{sym}_n denotes the random symmetric matrix of order n whose upper diagonal entries are iid copies of ξ.

Examples: symmetric Bernoulli, symmetric Gaussian (GOE).

• Wigner Hermitian model: H_n denotes the random Hermitian matrix of order *n* whose upper diagonal entries are iid copies of a complex valued r.v. ξ .

Examples: Hermitian Gaussian (GUE).

Many facts about the distribution of eigenvalues of random matrices seem to be **universal** in the limit $n \to \infty$, they do not depend on the precise matrix model used.

Thus, for instance, discrete and continuous models often have the same statistics in the limit.

Given a matrix M_n , the *empirical spectral distribution* (ESD) μ_{M_n} of M_n is defined as

$$\mu_{M_n} = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(M_n)},$$

where $\lambda_1(M_n), \ldots, \lambda_n(M_n)$ are the eigenvalues of M_n .

The most well-known example of **universality** is for the bulk distribution of eigenvalues of Wigner matrices:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The most well-known example of **universality** is for the bulk distribution of eigenvalues of Wigner matrices:

• Wigner's semicircular law: for a Wigner Hermitian random matrix:

$$\mu_{\frac{1}{\sqrt{n}}H_n} \rightarrow \frac{1}{2\pi} (4-x^2)_+^{1/2} \mathrm{d}x$$

as *n* tends to ∞ .

- 4 目 ト - 4 日 ト - 4 日 ト

The most well-known example of **universality** is for the bulk distribution of eigenvalues of Wigner matrices:

• Wigner's semicircular law: for a Wigner Hermitian random matrix:

$$\mu_{\frac{1}{\sqrt{n}}H_n} \to \frac{1}{2\pi} (4 - x^2)_+^{1/2} \mathrm{d}x$$

as *n* tends to ∞ .

• Established by Wigner for GOE in 1955, and then repeatedly generalized and refined by many researchers.

- 4 週 ト - 4 三 ト - 4 三 ト

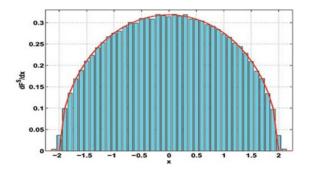


Figure: The ESD of a 100 by 100 random GUE (Picture by Alan Edelman)

∃ >

• Quarter-circle law: for an iid non-symmetric random matrix

$$\mu_{(\frac{1}{n}M_nM_n^*)^{1/2}} \to \frac{1}{\pi} (4-x^2)_+^{1/2} \mathbf{1}_{[0,2]} \mathrm{d}x$$

as *n* tends to ∞ .

・ 何 ト ・ ヨ ト ・ ヨ ト …

• Quarter-circle law: for an iid non-symmetric random matrix

$$\mu_{(\frac{1}{n}M_nM_n^*)^{1/2}} \to \frac{1}{\pi} (4-x^2)_+^{1/2} \mathbf{1}_{[0,2]} \mathrm{d}x$$

as *n* tends to ∞ .

• Established by Marchenko and Pastur in 1967. Again, many further refinements and proofs.

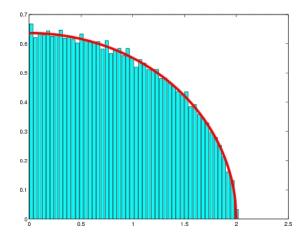


Figure: The ESD of a 100 by 100 random iid Gaussian matrix (Picture by Antonio Tulino)

• Circular law: for an iid non-symmetric random matrix

$$\mu_{\frac{1}{\sqrt{n}}M_n} \to \mathbf{1}_{x^2 + y^2 \le 1} \mathrm{d}x \mathrm{d}y$$

as *n* tends to ∞ .

• Circular law: for an iid non-symmetric random matrix

$$\mu_{\frac{1}{\sqrt{n}}M_n} \to \mathbf{1}_{x^2 + y^2 \le 1} \mathrm{d}x \mathrm{d}y$$

as *n* tends to ∞ .

• Established for gaussian matrices by Mehta in 1967. Generalized by many authors, and in full generality by Tao-Vu-Krishnapur [2008].

Bernoulli

Gaussian

- ∢ ศ⊒ ▶

- A I I I A I I I I

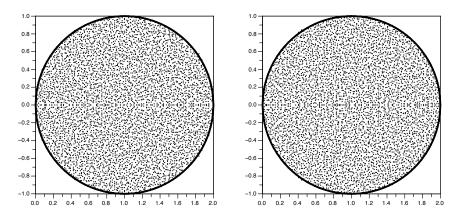


Figure: The ESD of 5000 by 5000 random iid Bernoulli and Gaussian matrices (Picture by Phillip Woods)

æ

proof of the circular law: key ideas

• Roughly speaking, we need to control (for any fixed z)

$$\frac{1}{n}\log|\det(\frac{1}{\sqrt{n}}M_n-zI_n)|.$$

イロト 不同下 不同下 不同下 一日

proof of the circular law: key ideas

• Roughly speaking, we need to control (for any fixed z)

$$\frac{1}{n}\log|\det(\frac{1}{\sqrt{n}}M_n-zI_n)|.$$

• Crucial problem: we need to show that the distances are not too small with very high probability.

・ 何 ト ・ ヨ ト ・ ヨ ト

proof of the circular law: key ideas

• Roughly speaking, we need to control (for any fixed z)

$$\frac{1}{n}\log|\det(\frac{1}{\sqrt{n}}M_n-zI_n)|.$$

- Crucial problem: we need to show that the distances are not too small with very high probability.
- More general: study the least singular value for square matrix $M_n + F_n$,

$$\sigma_n(M_n + F_n) = \inf_{\|x\|=1} \|(M_n + F_n)x\|,$$

(Recent: Tao-Vu, Rudelson-Vershynin)

Given a radius β, given a = (a₁,..., a_n) ∈ Cⁿ, we define the concentration probability of a to be

$$\rho_{\beta}(\mathbf{a}) := \sup_{a} \mathbf{P}(|a_1x_1 + \cdots + a_nx_n - a| \leq \beta),$$

where x_1, \ldots, x_n are iid copies of a given random variable ξ of zero mean and unit variance.

イロト 不同下 不同下 不同下 一日

Given a radius β, given a = (a₁,..., a_n) ∈ Cⁿ, we define the concentration probability of a to be

$$\rho_{\beta}(\mathbf{a}) := \sup_{a} \mathbf{P}(|a_1x_1 + \cdots + a_nx_n - a| \leq \beta),$$

where x_1, \ldots, x_n are iid copies of a given random variable ξ of zero mean and unit variance.

• Discrete counterpart (assuming, say, *a_i* are integers and *x_i* are iid Bernoulli):

$$\rho(\mathbf{a}) := \sup_{a} \mathbf{P}(a_1 x_1 + \cdots + a_n x_n = a).$$

• Littlewood and Offord (1940s) raised the question of bounding $\rho_{\beta}(\mathbf{a})$. They showed that if all $|a_i| \ge 1$ and if x_i are Bernoulli random variables, then

$$\rho_1(\mathbf{a}) = \sup_{\mathbf{a}} \mathbf{P}_{\mathbf{x}}(\sum_{1 \leq i \leq n} a_i x_i - \mathbf{a}| \leq 1) = O(n^{-1/2} \log n).$$

3

イロト イポト イヨト イヨト

• Littlewood and Offord (1940s) raised the question of bounding $\rho_{\beta}(\mathbf{a})$. They showed that if all $|a_i| \ge 1$ and if x_i are Bernoulli random variables, then

$$\rho_1(\mathbf{a}) = \sup_{a} \mathbf{P}_{\mathbf{x}}(\sum_{1 \le i \le n} a_i x_i - a | \le 1) = O(n^{-1/2} \log n).$$

Very soon after, Erdős gave a proof for the following refinement.

$$\rho_1(\mathbf{a}) \leq \binom{n}{\lfloor n/2 \rfloor}/2^n.$$

• Littlewood and Offord (1940s) raised the question of bounding $\rho_{\beta}(\mathbf{a})$. They showed that if all $|a_i| \ge 1$ and if x_i are Bernoulli random variables, then

$$\rho_1(\mathbf{a}) = \sup_{\mathbf{a}} \mathbf{P}_{\mathbf{x}}(\sum_{1 \le i \le n} a_i x_i - a | \le 1) = O(n^{-1/2} \log n).$$

• Very soon after, Erdős gave a proof for the following refinement.

$$\rho_1(\mathbf{a}) \leq \binom{n}{\lfloor n/2 \rfloor}/2^n.$$

 Many other generalizations by Erdős-Moser, Füredi-Frankl, Griggs, Halász, Katona, Kleitman, Sárközy-Szemerédi, Vaughan-Wooley, and others.

Hoi H. Nguyen (Upenn)

3

イロン イ団と イヨン トラン

Question

What is the underlying reason for, say

$$\rho_{\beta}(\mathbf{a}) = \sup_{a} \mathbf{P}_{\mathbf{x}}(|a_1x_1 + \dots + a_nx_n - a| \leq \beta) = n^{-100}?$$

æ

イロト イポト イヨト イヨト

Definition

A set $Q \subset \mathbf{R}$ is a generalized arithmetic progression (GAP) of rank r if it can be expressed as in the form

 $Q = \{g_0 + n_1g_1 + \dots + n_rg_r | N_i \le n_i \le N'_i, n_i \in \mathbf{Z} \text{ for all } 1 \le i \le r\}$

for some $g_0, ..., g_r, N_1, ..., N_r, N'_1, ..., N'_r$.

Definition

A set $Q \subset \mathbf{R}$ is a generalized arithmetic progression (GAP) of rank r if it can be expressed as in the form

 $Q = \{g_0 + n_1g_1 + \dots + n_rg_r | N_i \le n_i \le N'_i, n_i \in \mathbf{Z} \text{ for all } 1 \le i \le r\}$

for some $g_0, ..., g_r, N_1, ..., N_r, N'_1, ..., N'_r$.

It is convenient to think of Q as the image of an **integer box** $B := \{(n_1, \ldots, n_r) \in \mathbf{Z}^r | N_i \le n_i \le N'_i\}$ under the linear map

$$\Phi: (n_1,\ldots,n_r)\mapsto g_0+n_1g_1+\cdots+n_rg_r.$$

Definition

A set $Q \subset \mathbf{R}$ is a generalized arithmetic progression (GAP) of rank r if it can be expressed as in the form

 $Q = \{g_0 + n_1g_1 + \dots + n_rg_r | N_i \le n_i \le N'_i, n_i \in \mathbf{Z} \text{ for all } 1 \le i \le r\}$

for some $g_0, ..., g_r, N_1, ..., N_r, N'_1, ..., N'_r$.

It is convenient to think of Q as the image of an **integer box** $B := \{(n_1, \ldots, n_r) \in \mathbf{Z}^r | N_i \le n_i \le N'_i\}$ under the linear map

$$\Phi:(n_1,\ldots,n_r)\mapsto g_0+n_1g_1+\cdots+n_rg_r.$$

• If the map is one to one, we say that the GAP is proper.

• If $g_0 = 0$ and $N_i = -N'_i$, we say that the GAP is symmetric.

Example (discrete setting)

• Assume that the a_i are elements of a symmetric proper generalized arithmetic progression Q of rank r and size $n^{O(1)}$.

Example (discrete setting)

- Assume that the a_i are elements of a symmetric proper generalized arithmetic progression Q of rank r and size $n^{O(1)}$.
- Then $\sum_{i=1}^{n} a_i x_i$ is always an element of nQ. Thus if x_i are Bernoulli random variables, then

$$\rho_{\beta}(\mathbf{v}) = \sup_{\mathbf{v}} \mathbf{P}(a_1 x_1 + \dots + a_n x_n = a) \ge 1/|nQ| = n^{-O(1)}.$$

Theorem (Tao-Vu 2007, N.-Vu, 2010)

Assume that

$$\rho_{\beta}(\mathbf{a}) = \sup_{a} \mathbf{P}_{\mathbf{x}}(|a_1x_1 + \cdots + a_nx_n - a| \leq \beta) = n^{-O(1)}.$$

Then most of the a_i can be well-approximated by elements of a generalized arithmetic progression of rank O(1) and size $n^{O(1)}$.

$$\sup_{\mathbf{a}} \mathbf{P}_{\mathbf{x}}(|\mathbf{a}_1 \mathbf{x}_1 + \cdots + \mathbf{a}_n \mathbf{x}_n - \mathbf{a}| \leq \beta) = n^{-O(1)}?$$

<ロ> (四) (四) (三) (三) (三)

$$\sup_{a} \mathbf{P}_{\mathbf{x}}(|a_1x_1+\cdots+a_nx_n-a|\leq\beta)=n^{-O(1)}?$$

• (Tao 2010, zero-sum matrix) Let $M_n = (m_{ij})$ be a random iid matrix, and define Z_n as $z_{ij} = m_{ij} - \frac{1}{n}(m_{i1} + \cdots + m_{in})$. Then $\mu_{\frac{1}{\sqrt{n}}Z_n}$ converges to the circular law.

$$\sup_{a} \mathbf{P}_{\mathbf{x}}(|a_1x_1+\cdots+a_nx_n-a|\leq\beta)=n^{-O(1)}?$$

- (Tao 2010, zero-sum matrix) Let $M_n = (m_{ij})$ be a random iid matrix, and define Z_n as $z_{ij} = m_{ij} - \frac{1}{n}(m_{i1} + \cdots + m_{in})$. Then $\mu_{\frac{1}{\sqrt{n}}Z_n}$ converges to the circular law.
- (Bordenave-Caputo-Chafai 2008) Let $M_n = (m_{ij})$ be a random iid matrix with non-negative ξ of bounded density. Define Z_n to be the Markov matrix (z_{ij}) where $z_{ij} = m_{ij}/(m_{i1} + \cdots + m_{in})$. Then the ESD of $\sqrt{n}(Z_n - \mathbf{E}Z_n)$ converges to the circular law.

$$\sup_{a} \mathbf{P}_{\mathbf{x}}(|a_1x_1+\cdots+a_nx_n-a|\leq\beta)=n^{-O(1)}?$$

- (Tao 2010, zero-sum matrix) Let $M_n = (m_{ij})$ be a random iid matrix, and define Z_n as $z_{ij} = m_{ij} - \frac{1}{n}(m_{i1} + \cdots + m_{in})$. Then $\mu_{\frac{1}{\sqrt{n}}Z_n}$ converges to the circular law.
- (Bordenave-Caputo-Chafai 2008) Let $M_n = (m_{ij})$ be a random iid matrix with non-negative ξ of bounded density. Define Z_n to be the Markov matrix (z_{ij}) where $z_{ij} = m_{ij}/(m_{i1} + \cdots + m_{in})$. Then the ESD of $\sqrt{n}(Z_n - \mathbf{E}Z_n)$ converges to the circular law.
- (N.) Let D_n be a random doubly stochastic matrix of size n. Then the ESD of $\sqrt{n}(D_n \mathbf{E}D_n)$ converges to the *circular law*.

$$\sup_{a} \mathsf{P}_{\mathsf{x}}(\sum_{1\leq i,j\leq n} a_{ij}x_ix_j - a| \leq \beta) = n^{-O(1)}?$$

イロト 不同下 不同下 不同下 一日

$$\sup_{a} \mathsf{P}_{\mathsf{x}}(\sum_{1\leq i,j\leq n} a_{ij}x_ix_j - a| \leq \beta) = n^{-O(1)}?$$

• (Vershynin, N.) Random symmetric matrices are not singular with with probability.

æ

イロト イポト イヨト イヨト

$$\sup_{a} \mathsf{P}_{\mathsf{x}}(\sum_{1\leq i,j\leq n} a_{ij}x_ix_j - a| \leq \beta) = n^{-O(1)}?$$

- (Vershynin, N.) Random symmetric matrices are not singular with with probability.
- (O'Rourke-N.) Assume that the entry pairs (x_{ij}, x_{ji}), i < j are iid copies of a vector (ξ₁, ξ₂) with ξ₁, ξ₂ of zero mean, unit variance and Eξ₁ξ₂ = ρ with some −1 < ρ < 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\sup_{a} \mathsf{P}_{\mathsf{x}}(\sum_{1\leq i,j\leq n} a_{ij}x_ix_j - a| \leq \beta) = n^{-O(1)}?$$

- (Vershynin, N.) Random symmetric matrices are not singular with with probability.
- (O'Rourke-N.) Assume that the entry pairs (x_{ij}, x_{ji}), i < j are iid copies of a vector (ξ₁, ξ₂) with ξ₁, ξ₂ of zero mean, unit variance and Eξ₁ξ₂ = ρ with some −1 < ρ < 1.

Then $\mu_{\frac{1}{\sqrt{n}}M_n}$ converges to the **elliptic law** μ_{ρ} ,

$$\mu_{\rho}(s,t) = \frac{1}{\pi(1-\rho^2)} mes\Big\{(x,y), x \leq s, y \leq t, \frac{x^2}{(1-\rho)^2} + \frac{y^2}{(1+\rho)^2} < 1\Big\}$$

イロト 不同下 不同下 不同下 一日