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Smooth measures in finite dimensions

Definition A measure p on R"™ is said to be smooth if u

IS absolutely continuous with respect to Lebesgue measure
and the Radon-Nikodym derivative is smooth — that is,

for some



Three examples on R?

1. Gaussian measure: In particular, for t > 0 and
pt ~ Normal(0,%), we have

1

—|z|? /2t
(27715)3/26 dzx.

dp(z) =

Of course, u; = Law(B;) where B, = (B}, B?, B}) is
Brownian motion with generator



Three examples on R?

2. elliptic “Heisenberg” example: Now let

~ 1
Xi(z) = (1, 0, —55132)

~ 1
Xo(z) = <O> 1, 5331)

Xs3(z) = (0,0,1)
Note that for all z € R’
Spaﬂ{Xl(ﬂU)a Xz(x)a X:ﬂ(ﬂ?)} = R°.
Consider the SDE
dé; = X1(&) 0 dB} + Xa(&) 0 dB? + X3(&1) o dBj

with & = 0.



Three examples on R?

2. elliptic “Heisenberg” example: Now let
X1 () (1 0,2 ) A1 — 2220
T) = yUy,—=x2 | = — =X
1 9 2 1 9 203
~ 1 1
Xo(x) = (0, 1, —LE1> = Oy + —x103
2 2
X3(z) = (0,0,1) = 05
Then the solution to the SDE
dés = X1(&) o dB; + X2(&;) o dB? + X3(&) o dB},

is generated by the elliptic operator I, = X’ + X7 4+ X7, and
p: = Law(&) is @ smooth measure on R3. We have

1 t
& = (BQ,BE,BE — 5/ BidB? — BﬁdBi) .
0



Three examples on R?

3. hypoelliptic “Heisenberg” example: Again let

~ 1 1
Xi(x) = (1, 0, —5562) = 01 — 5:6283

~ 1 1
Xo(x) = (0, 1, §LE1> = Oy + 558183
X3(z) = (0,0,1) = 05

Note that [Xl,XQ] L= Xng — XgXl — Xg. ThUS, we could
write
span{X1(x), Xa2(z), [ X1, X2](z)} = R®.

Consider the SDE

dny = X1 () o dB} + Xo(my) 0 dB?

with ng = 0.



Three examples on R?

3. hypoelliptic “Heisenberg” example: Again let

~ 1 1
Xl(ﬂ?) — (1, O, —5332) = 61 — 5513283

- 1 1
Xo(x) = (0, 1, §$1> = 0y + 551?1(93

X3(z) = (0,0,1) = 05

Thus, Hormander's theorem implies that £ = X’ + X7 is a
“hypoelliptic’” operator in the sense that the diffusion

dny = X1(ne) 0 dBy + Xa(n) 0 dBy,

has a smooth measure v; = Law(n;) on R3. Again, we may
solve this SDE explicitly as

1 t
= <B§,B§, 5/ BldB? — BgdB;> .
0



An aside on Lévy Area

The process given by
t
A(t) ::/ B! dB? — B?dB!
0

is called the stochastic Lévy area of (B!, B?). It is well
known that

( )

(Any LB ( [+ @2y ds>

\ /

Ve

where B is a real BM independent of (Bj, B2). (See, for
example, Ikeda & Watanabe.)

LIL and FLIL have been proved for {A(t)} and
generalizations of this process via this representation and
small ball estimates: see Shi (1994), Rémillard (1994),
and Kuelbs & Li (2005).



A geometric interpretation: Heisenberg group

Let g = Span{Xl,Xz,Xg} SO that [Xl,XQ] = X3. Then
G =2 R? =2 R? x R with

/ / / / 1 / /
x-x = a:1+a31,a?2—|—a:2,a;3—|—a?3—|—5(:1;1:1;2—:1;2:1;1) :

Then X; is the unique left invariant vector field on G such
that X;(e) = X;. We may think of

as “rolling” the flat BM B, = B! X + B?X, + By X3 onto G.
(Similarly for n with B; = B} X1 + B?X5.)

We will call & and n; Brownian motion and hypoelliptic
Brownian motion, respectively, on G.



Smooth measures on Lie groups

Let G be a Lie group with identity e and Lie algebra g
with dim(g) = n.

Suppose span({X;}! ;) = g and let

where X is the unique left invariant v.f. such that
X(e) = X. Then L is an elliptic operator and

with & = e, has a smooth law on G.



Smooth measures on Lie groups

More generally, suppose {X;}F | C g satisfies
Spa’n{Xia [Xila Xig]) SR [Xi17 [ T [Xir_laXir]]]} — 9. (HC)

Then L = 5" X7 is hypoelliptic, and

k
dgt S St O dBt = ZXZ(ft) O dB;
1=1

with & = e, has a smooth law on G (where now B; is BM

on go :=span({X;}* ).
that is, 3 0 < p; € C*(G) such that

dvy := Law (&) = pe(+) d(Haar).

We call p; the heat kernel and 4 heat kernel measure.



Smooth measures in infinite dimensions

Definition! A measure p on R” is said to be smooth if u
IS absolutely continuous with respect to Lebesgue measure
and the Radon-Nikodym derivative is smooth — that is,

for some

Definition? A measure p on R” is said to be smooth if,
for any multi-index «, there exists a function
go € C®°(R™) N L~ (u) such that

for all f e C°(R").

Fact: Definition! <« Definition?



A first step to smoothness: Quasi-invariance

Definition A measure p on €2 is quasi-invariant under a
transformation T : Q — Q if p and poT~! are mutually
absolutely continuous.

In particular, we will be interested in quasi-invariance
under transformations of the type

where )y is some distinguished subset of ().



Quasi-invariance: The finite-dimensional examples

Recall the standard Gaussian measure on R"™ given by

du(x) = (275”/2 e~ 17°/2 dz. Then, for any y € R”,

1

= e WIP/2 4w g ()

More generally, for v a smooth measure on a (fin-dim) Lie
group G with density p > 0 (that is,
dv(z) = p(x) d(Haar)(x)), for any y € G,

dv¥(x) :=d(vo Ry_l)(x)

— p(ajy_l) d(Haar)(x) = pley ) dv(z).

p(x)




Quasi-invariance: Cameron-Martin theorem

et
W(R"™) ={w:[0,T] — R" : w is continuous and w(0) = 0}
equipped with Wiener measure p and
T .
H(R") ={h € W(R") : h is abs cts and / (1) dt < oo}.
0

Then, for any y € H(R"),

Moreover, if y ¢ H, then p, L wu.

More generally, this holds for any abstract Wiener space
(W, H, ).



oco-dimensional curved example

Theorem (Shigekawa, 1982)

Let G be a (fin dim) compact group with Lie algebra g.
Let W(G) be path space on G equipped with “Wiener
measure” u, and let H(G) denote the space of
finite-energy paths on G. Then p is quasi-invariant under
translation by elements of H(G).

More generally, a Cameron-Martin type quasi-invariance
theorem holds for paths on a Riemannian manifold.

See Driver (1992), Hsu (1995,2002), Enchev & Stroock
(1995), and Hsu & Ouyang (2010), as well as Airault &
Malliavin (2006), Driver & Gordina (2008), et al for other
infinite-dimensional elliptic examples.



co-dimensional Heisenberg-like groups

Definition Let (W, H, u) be an abstract Wiener space and
C be a finite-dimensional inner product space.

Then IS a Heisenberg-like Lie algebra if
1. W, W] c C and [W,C] =[C,C] =0, and
2. [,]: g x g — C is continuous.

et denote W x C when thought of as the Lie group
with multiplication given by

et denote H x C when thought of as a Lie
subalgebra of g, and let denote H x C when thought
of as a subgroup of G.



An elliptic q.i. theorem on Heisenberg-like groups

Let G be an infinite-dimensional Heisenberg-like group.

Definition Let b, = (B}Y,B) be BM on g. Then
with

is BM on . This may be solved explicitly as

& = (BtW,BC /[B dBW>

For t > 0, let denote the heat kernel measure
on G.



An aside on second-order chaos

Consider the case where dim(C) =1, and let {h;}:2, be an
ONB of H in W*. Consider the process

t
AW = [ (BB
t _w . w . ]
= [ |3 Bin. Y- dBin,
0 |i=1 j=1 |

t
=5 [ha by /0 BidB! — BldB' £ B(C(1))

i<j

where B is an independent real BM and
Ct)y=) of / (BZ71)? + (B2 ds.
i=1 0

And if so, can one use the arguments from Kuelbs & Li
(2005) to prove LIL, FLIL?



An elliptic q.i. theorem on Heisenberg-like groups

Let G be an infinite-dimensional Heisenberg-like group.
Definition Let b, = (B}Y, B°) be BM on g. Then
d& = & o dby, with &5 = e,

is BM on G. Fort >0, let yu; = Law(&,) denote the heat
kernel measure on G.

Theorem (Driver and Gordina, 2008)
For all y € Gop and t > 0, ug is quasi-invariant under left
and right translations by y. Moreover, for all g € (1,00),

k(g —1) 2
LQ(G,Vt>

. d(uoLy? .
and similarly for deﬁy ) where “Ric > k”.

d(pe o Ry
d,ut




Sketch of elliptic proof:

Define a class of finite-dimensional “projection” groups

G p, SO that for
del = ¢F o dPYy

we have & — &, and prove that “sup, Ric” > k7. Then

“Ric’ > k¥ — log Sobolev inequality
—> Woang/Integrated Harnack inequality:

For all y € Gp and q € (1, c0),

1/q
pf(ay )| k(g — 1) :
/G { P () } py (z) dx < exp (2(€kt - 1>dp(€7y> ) :

Recall that, for du! (z) = p/ (x) dz,

duy o Ry™ pf(xy ™)
duf pf (x)

=: J'(z,y).




Sketch of elliptic proof:

So fix a projection Py and let {P,}>°, so that P, T I|g.,,-
Let y € Go C Gp,. Then, for any f € BC(G) and ¢ € (1, 00),

/ [(f ©in)(zy)| dpy " () =/ Iy (@, 9)|(f 0 in)(2)] dpy ™ ()
G Gn

: k(g —1) p, 2
< f oinll o g upm) P <2<ekt_1>d )

Taking the limit as n — oo,

k(g — 1) 2
/Gf(xy) dp(z) < HfHLq'(GaMt) P <2(€zt - 1)d(€vy) > |

Thus, Ji(-,y) :=d(u o R;')/dp exists in L7 for all
qg € (1,00). H



Problems with Ric > £ in hypoelliptic setting

et
[(f,9) = SL(fo) ~ fLg — 9L

Ca(f) = SLD(F, 1)~ T(f L),



Problems with Ric > £ in hypoelliptic setting

et
[(f,9) = SL(fo) ~ fLg — 9L
1

In particular, if £=3" X2, then

k
L'(f,g) =Vf-Vg=) (Xif)(Xig).
1=1



Problems with Ric > £ in hypoelliptic setting
et

[(f,9) = SL(fo) ~ fLg — 9L
1

In particular, if £=3" X2, then
k ~ ~
L'(f,g) =Vf-Vg=) (Xif)(Xig).
1=1

We have the following FACT:

(CDI)



Problems with Ric > £ in hypoelliptic setting

Consider the Heisenberg group case again.
X(x,y,2) = 0y — %yaz Y (x,y,2) =0y + %xaz
Then £ =X2+Y?2 and
L(f) =D, f) = (X + (Y )’
La(f) = 5 £T(f) — T(f, £f)

Note that
L)) = fz+ f;

T'2(f)(0) = Z\aaf(0)|2+ Lr20) +

1,7=1
Then there is no constant k£ € R so that

[2(f)(0) =2 kI'(£)(0), Vf e C™(G).



A replacement for Ric> k <— Iy > kI'?

Suppose G is a (fin-dim) Lie group with Lie({Xi}le) — g,
and let {Z;}%, be an ONB of span({X;}? ). Define

(Zif)(Zig)

ME

T2(f,g) ==
1

LT2(f) = T7(f, Lf).

.
I

1
T7(f) =3

Suppose there exists «, 3 > 0 such that, for all A > 0,

(GCDI)



A replacement for Ric> k <— Iy > kI'?

Suppose G is a (fin-dim) Lie group with Lie({X;}¥ ,) = g,
and let {Z;}%, be an ONB of span({X;}? ). Define

d
7 (f,9) == Z(Zif)(zig)

1
L3 (f) = SLT7(f) = T(f, L),
Suppose there exists «, 8 > 0 such that, for all A > 0,

Lo(f) + ATE() > ol (1) — 21(p). (GCDI)

Then (GCDI) — reverse log Sobolev inequality
— Woang/Integrated Harnack inequality:
For all y € G and q € (1, c0),

1/q

pi(zy~ )| 86\ 1+q ,
/G{ (@) } pi(z) dx SeXp<<1+ a) " dh(%?/))-




(GCDI) for 3-dim Heisenberg group

L(f) = (Xf)?+ (Yf)?
L7 (f) = (Zf)

Da(f) = (X3) 4+ (V2 1) 4 (XY + VX))
n %(z £? = 2X Y ZF) +2(Y F)(XZ)
Y (f) = %LFZ(f) —D7(f, Lf)

S Y2~ (20) - 23] + V)

= (XZFP + (Y2 + (22X + 2Y2)
—(Z1)(ZX7f + 2Y°])

= (XZf)?+ (YZf)*?



(GCDI) for 3-dim Heisenberg group
Note that

La(f) > 3 (20 = 20X )Y Zf) +2(Y ) (X ZS)

For example, taking A =1

> (Z0) ~ 20X PV Zf) + 2 fXZS) + (X2 + (V2 ])?
= (P4 (XF Y2~ (X + (Vf + XZf) — (V)2
> (Zf) — (X = (V)P

So (GCDI) holds with and



Hypoelliptic BM on Heisenberg-like groups

Let G =W x C be an infinite-dimensional Heisenberg-like
Lie algebra such that

(W, W] = C.

Then, for B,}’V BM on W, the “hypoelliptic’ Brownian
motion on G is the solution to

dns = n¢ o dBF/, with 7y = e.

This may be solved explicitly as

1 /! 1 /!
szXV+2/[BW dB,'] = (BXVE/[BZ%BZV})
0 0

Let v, = Law(7:) be the “hypoelliptic’ heat kernel measure.



A hypoelliptic q.i. on Heisenberg like groups

Theorem (Baudoin, Gordina, M. 2011)
For all y € Gopy and t > 0, v is quasi-invariant under left
and right translations by y. Moreover, for all g € (1,00),

d(vio R;1 SIT-. -T2\ 1
( o, ) < oxp <1+ 11l ) 94, )
Vt La(G) P2
—1
and similarly for d(”t;f;y ) where

|6 =]

o0 d
Al e mac = D > (e e, fod,

ij=1 0=1
( 2 )
00 d d
. 2
pai=1nf ¢ > [ > (les ej], fodcze | + Y xj=1,
ij=1 \ (=1 (=1
\ /

and d;, is the horizontal distance on Ggyy.



Sketch of proof:

We prove that for all A > 0

Lo.p(f) + A5 p(f) > po,pTH(f) —

Thus, we have that for all projections P

pf (zy~1) ’ P
/ { e } pf () da

< exp <1+

1/q

dy, (e, y)?

8\\@-]\\%) 1+ ¢

P2, P 4¢



Sketch of proof:

Using this integrated Harnack inequality in the same
limiting argument as in the elliptic case completes the
proof (modulo topological considerations):

Fix a projection Py and let {P,}>°, so that P, T I|g.,,- Let
y € Go. Then, for any f € BC(G) and ¢’ € (1, 00),

/ (f 0 in) (ay)| () = / T (2, 9)|(f 0 in) ()| df ()
sm-,-m%> 1 +q

P2.n 41

<|[fo inHLq’(Gn,Vp) CXp <1 + dZ“(e,y)z

Taking the limit as n — oo,

Thus, Ji(-,y) :=d(r o R;")/dy exists in LI, V g€ (1,00). B



