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Themes in the intertwining of Information theory and
Probability

Classical themes

e Stationary, ergodic processes (e.g., Shannon-McMillan-Breiman theorem)
e Large deviations (e.g., rate function in Sanov's theorem)

e Mathematical physics motivations (e.g., convergence to equilibrium)

Recent themes

e Entropic Limit Theorems (TODAY's FOCUS)
e Information theory and High-Dimensional Convex Geometry
e Information-theoretic inequalities in Combinatorics

e Information theory and Statistics



Entropy

e When random variable X has density f(xz) on R, the entropy of X is
hX) = () i= = [ fla)log f(a)do = B~ log F(X)

e The relative entropy between the distributions of X ~ fand Y ~ g is
e
D(fllg) = /f x) log dx
(Flo) = [ fa)ios
For any f, g, D(fl||g) > 0 with equality iff f =g¢

Why are they relevant?

e Entropy is a measure of randomness

e Relative Entropy is a very useful notion of “distance” between probability
measures (non-negative, and dominates several of the usual distances,
although non-symmetric)



Non-Gaussianity

For X ~ f in R, its relative entropy from Gaussianity is

D(X) = D(f) = D(f| f),

where f© is the Gaussian with the same mean and variance as X

Observe:

e For any density f, its non-Gaussianity D(f) = h(f%) — h(f)

Proof. Gaussian density is exponential in first two moments

e Thus Gaussian is MaxEnt: N(0, %) has maximum entropy among all
densities on R with variance < o2

Proof. D(f) >0



Entropic Central Limit Theorem

Two observations . ..

e Gaussian is MaxEnt: N(0, o%) has maximum entropy among all densities
on R with variance < ¢

o Let X, bei.id. with EX; =0 and EX12 = o2,
M
1
For the CLT, we are interested in Sy, = —— X;
VT 21

The CLT scaling preserves variance

suggest . ..

Question: Is it possible that the CLT may be interpreted like the 2nd law of
thermodynamics, in the sense that h(.5);) monotonically increases in M until
it hits the maximum entropy possible (namely, the entropy of the Gaussian)?



The Entropic Central Limit Theorem

If D(S)) < oo for some M, then as M — oo,
D(Sy) L0 orequivalently, h(Sy) T h(N(0,0?))

Remarks

e Convergence shown by Barron '86

e Monotonicity shown by Artstein-Ball-Barthe-Naor '04 with simple proofs by
Barron—-M. '06-'07, Tulino—Verdd '06

e Monotonicity in n indicates that the entropy is a natural measure for
CLT convergence (cf. second law of thermodynamics)



Original Entropy Power Inequality (EPI)

For independent random variables with densities,

e?MX1+X2) > e?MX1) 4 g2h(X2) [Shannon '48, Stam '59]

Remarks

h(X)

e The non-negative number e? is called the entropy power of X

e The EPIl is quite powerful: it implies both the Gaussian logarithmic Sobolev inequality
and the Heisenberg-Pauli-Weyl uncertainty principle

e Equality holds if and only if both X7 and X are normal
e Since h(aX) = h(X) + log |al|, implies for i.i.d. X,

1 n
F XZ -.-.d., -f Sn — = X’l y th h S n Z h Sn
or i | \/ﬁ; en h(Sy,) (Sn)

Barron '86 used this to prove entropy convergence h(S,) — h(Zx)



ABBN'’s Entropy Power Inequality

Leave-one-out Inequality for independent X

n
(X4t ) - i 1 Zzl 20 (%)

CLT Implication
For X, i.i.d let S ! zn:X
or ; LLd., € n — —— i
Vg

e Entropy is an increasing sequence:
"(Sp+1) = h(Sy)
e Combining with Barron '86 implies an analogy with the 2nd law
h(Sn) / W(Zx) and  D(S,[|Zx) 0

e The original proof of Artstein—Ball-Barthe-Naor '04 is rather complicated and uses a
variational characterization of Fisher information

e We follow Barron—M. '07, who gave a simple proof of a more general result



New Entropy Power Inequality

Subset-sum EPI

For any collection G of subsets s of indices {1,2,...,n},
1
62h(X1++Xn) 2 - Z 62h(sum5) [Barron—M. 107]
! cG
S

where sum; = > . X is the subset-sum

r = r(G) is the mazimal degree, the maximum number of subsets in G in
which any index 7 can appear

Examples
e (G=singletons, r=1, original EPI
e (=leave-one-out sets, r=n-1, ABBN's EPI
e (G=sets of size m, r = (:;_11) leave n—m out EPI

e (=sets of m consecutive indices, r=m



mile-marker

e New Fisher Information inequalities

e Simple proof ideas



The Link between /i and [

Definitions
e Shannon entropy:  h(X) = [log fl ]
e Score function: score(X) = L log f(X)

e Fisher information: I(X) = E [score’(X)]

Relationship

For a standard normal Z independent of X,

e Differential version:

%h(X + \/EZ) = %](X + \/EZ) [de Bruijn, see Stam '59]

e Integrated version:

> 1
h(X) = %log(Zwe) — %/ [[(X + \/%Z) T 1a¢ dt  [Barron '86]
0



New Fisher Information Inequality

For independent X, X5, ..., X, with differentiable densities, and any col-
lection GG of subsets s of indices {1,2,...,n},

1 1 1
> — Z [Barron—-M. '07]

I(sumio) — 7 ~ I(sumy)

where:
SUMyor = Z?ﬂ X is the total sum,
sum, = ZJ-ES X, is the subset-sum,

and r = r(G) is the maximal degree, the maximum number of subsets in
G in which any index ¢ can appear.

Showing this would imply the new EPI, via the transference technique



Score of a sum

Lemma: Suppose

e V1, V5 independent random variables
e V| has a differentiable density f; and score score;
oV =V, + V5 has density fi, and score score

Then
score(V') = Elscore;(V1)|V] [Stam '59, Blachman '65]

Proof

(0) = 2-Blfi(w = Vo)l = Blfi(o = Vo) = BLA(v — Valscores(o = V)

so that

p(v) = ?é:j; =F fl(;<;)‘/2>score1(v — Va)| = Elscore; (V1) |V1 + Vo = 0.
Thus V = V; + V5 has the score

score(V') = Elscore; (V1)|V]




A Projection Inequality

For each subset s,

score(Sumyg;) = E[score(sums) ‘ sumtot}

Hence, for weights w, that sum to 1,

score(sumyy) = E [ Z w; score(sumy)
seG

Su mtot]

Pythagorean inequality

The Fisher info. of the sum is the mean squared length of the projection

> wy score(sumy)

0 score(sumyg)

2
I(sumiyt) < E [ Z Wy score(sums)]

seG



The Variance Drop Lemma

Let X1, Xo,..., X, beindependent. Let X = (X, :i € s) and g4(X,) be

some mean-zero function of X .. Then sums of such functions

g<X17 X27 c e 7X?”L) — ng(is)
selG

have the variance bound

E92 <r Z Egg(&g [Barron—M. '07]
seG



The Variance Drop Lemma

Let X1, Xo,..., X, beindependent. Let X = (X, :i € s) and g4(X,) be

some mean-zero function of X .. Then sums of such functions

g<X17 X27 c e 7XTL) — ng(is)
seG

have the variance bound

Eg2 <r Z Egg(&g [Barron—M. '07]
seG
Remarks

e Note that r < |G

e Examples:

, hence the “variance drop”

(G'=singletons has » = 1 : additivity of variance with independent summands

(G=leave-one-out sets has r = n—1 as in the study of the jackknife and U-statistics

e Proof is based on ANalysis Of VVAriance decomposition [Hoeffding 48]



The Heart of the Matter

Recall the Pythagorean inequality

2
I(sumgy) < E[Z W score(sums)]

seG

and apply the variance drop lemma to get

I(sumye) <7 Z w21 (sumy)
seG

for all weights wg that sum to 1.

Optimizing over w yields the new Fisher information inequality

1 1 1
> Z
I(sumyy) — 7 Z I(sumy)

seG



Optimized Form for H

We have (again)

I(sumyy) <7 Z wgl(sums)
seG

sums
Sumtot < E wel

selG

Equivalently,

Adding independent normals and integrating, [not immediate that this is
possible but can be justified]

sums
Sumtot > E wsh

selG

Optimizing over w yields the new Entropy Power Inequality

1
2h(sumget) > E : 2h(sumy)
(& (&
oor

se@



Discrete Entropic Limit Theorems

Theorem 2: [Johnson '06]
H(Po(\)) = max {H(P) : P ULC with mean \}

Remarks

e A probability distribution P on Z, is ultra-log-concave (ULC) if for each k,
k+1
P(k)* > <%) Pk —1)P(k+1)

e The ULC class is closed under convolution [Pemantle '99, Liggett 97|

e Theorem 2 was extended to the much more general compound Poisson case by
[Johnson-Kontoyiannis-M.’'09-"11]

e Latter has applications to combinatorics (random independent sets in matroids etc.)

e Related techniques also allow one to obtain optimal-order approximation bounds for
independent summands



Summary

e New Fisher information and entropy power inequalities

e Variance drop lemma of independent interest

e Monotonicity of I and h in central limit theorems (“2nd law” )
e A similar entropic view of discrete limit theorems is possible

e Bonus:

— Statistical proofs with implications for distributed inference

— Multivariate generalization holds and there are interesting dimension-
independent reverse forms for log-concave measures

— Applications: Capacity/rate regions in multi-user information theory

Thank you!

o — O — O
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