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Themes in the intertwining of Information theory and
Probability

Classical themes

• Stationary, ergodic processes (e.g., Shannon-McMillan-Breiman theorem)

• Large deviations (e.g., rate function in Sanov’s theorem)

•Mathematical physics motivations (e.g., convergence to equilibrium)

Recent themes

• Entropic Limit Theorems (TODAY’s FOCUS)

• Information theory and High-Dimensional Convex Geometry

• Information-theoretic inequalities in Combinatorics

• Information theory and Statistics



Entropy

•When random variable X has density f (x) on R, the entropy of X is

h(X) = h(f ) := �
Z

R
f (x) log f (x)dx = E[� log f (X)]

• The relative entropy between the distributions of X ⇠ f and Y ⇠ g is

D(fkg) =
Z

f (x) log
f (x)

g(x)
dx

For any f, g, D(fkg) � 0 with equality i↵ f = g

Why are they relevant?

• Entropy is a measure of randomness

• Relative Entropy is a very useful notion of “distance” between probability
measures (non-negative, and dominates several of the usual distances,
although non-symmetric)



Non-Gaussianity

For X ⇠ f in R, its relative entropy from Gaussianity is

D(X) = D(f ) := D(fkfG),

where fG is the Gaussian with the same mean and variance as X

Observe:

• For any density f , its non-Gaussianity D(f ) = h(fG)� h(f )

Proof: Gaussian density is exponential in first two moments

• Thus Gaussian is MaxEnt: N(0, �2) has maximum entropy among all
densities on R with variance  �2

Proof: D(f ) � 0



Entropic Central Limit Theorem

Two observations . . .

• Gaussian is MaxEnt: N(0, �2) has maximum entropy among all densities
on R with variance  �2

• Let Xi be i.i.d. with EX1 = 0 and EX2
1 = �2.

For the CLT, we are interested in SM :=
1p
M

MX

i=1

Xi

The CLT scaling preserves variance

suggest . . .

Question: Is it possible that the CLT may be interpreted like the 2nd law of
thermodynamics, in the sense that h(SM)monotonically increases inM until
it hits the maximum entropy possible (namely, the entropy of the Gaussian)?



The Entropic Central Limit Theorem

If D(SM) < 1 for some M , then as M ! 1,

D(SM) # 0 or equivalently, h(SM) " h(N(0, �2))

Remarks

• Convergence shown by Barron ’86

•Monotonicity shown by Artstein-Ball-Barthe-Naor ’04 with simple proofs by
Barron–M. ’06-’07, Tulino–Verdú ’06

•Monotonicity in n indicates that the entropy is a natural measure for
CLT convergence (cf. second law of thermodynamics)



Original Entropy Power Inequality (EPI)

For independent random variables with densities,

e2h(X1+X2) � e2h(X1) + e2h(X2) [Shannon ’48, Stam ’59]

Remarks

• The non-negative number e2h(X) is called the entropy power of X

• The EPI is quite powerful: it implies both the Gaussian logarithmic Sobolev inequality
and the Heisenberg-Pauli-Weyl uncertainty principle

• Equality holds if and only if both X1 and X2 are normal

• Since h(aX) = h(X) + log |a|, implies for i.i.d. Xi,

h

✓
X1 +X2p

2

◆
� h(X1)

For Xi i.i.d., if Sn =
1p
n

nX

i=1

Xi , then h(S2n) � h(Sn)

Barron ’86 used this to prove entropy convergence h(Sn) ! h(ZX)



ABBN’s Entropy Power Inequality

Leave-one-out Inequality for independent Xi

e2h(X1+...+Xn) � 1

n� 1

nX

i=1

e2h
�P

j 6=i Xj

�

CLT Implication

For Xi i.i.d., let Sn =
1p
n

nX

i=1

Xi

• Entropy is an increasing sequence:

h(Sn+1) � h(Sn)

• Combining with Barron ’86 implies an analogy with the 2nd law

h(Sn) % h(ZX) and D(SnkZX) & 0

• The original proof of Artstein–Ball–Barthe–Naor ’04 is rather complicated and uses a
variational characterization of Fisher information

• We follow Barron–M. ’07, who gave a simple proof of a more general result



New Entropy Power Inequality

Subset-sum EPI

For any collection G of subsets s of indices {1, 2, . . . , n},

e2h(X1+...+Xn) � 1

r

X

s2G
e2h(sums) [Barron–M. ’07]

where sums =
P

j2s Xj is the subset-sum

r = r(G) is the maximal degree, the maximum number of subsets in G in
which any index i can appear

Examples

• G=singletons, r = 1, original EPI

• G=leave-one-out sets, r = n–1, ABBN’s EPI

• G=sets of size m, r =
�
n–1
m–1

�
, leave n–m out EPI

• G=sets of m consecutive indices, r = m



mile-marker

• Entropy and the CLT

• New Entropy power inequalities

• New Fisher Information inequalities

• Simple proof ideas



The Link between h and I

Definitions

• Shannon entropy: h(X) = E
⇥
log 1

f(X)

⇤

• Score function: score(X) = @
@x log f (X)

• Fisher information: I(X) = E [ score2(X) ]

Relationship

For a standard normal Z independent of X ,

• Di↵erential version:
d

dt
h(X +

p
tZ) = 1

2I(X +
p
tZ) [de Bruijn, see Stam ’59]

• Integrated version:

h(X) = 1
2 log(2⇡e)�

1
2

Z 1

0


I(X +

p
tZ)� 1

1 + t

�
dt [Barron ’86]



New Fisher Information Inequality

For independent X1, X2, . . . , Xn with di↵erentiable densities, and any col-
lection G of subsets s of indices {1, 2, . . . , n},

1

I(sum
tot

)
� 1

r

X

s2G

1

I(sums)
[Barron–M. ’07]

where:

sum
tot

=
Pn

j=1Xj is the total sum,

sums =
P

j2s Xj is the subset-sum,

and r = r(G) is the maximal degree, the maximum number of subsets in
G in which any index i can appear.

Showing this would imply the new EPI, via the transference technique



Score of a sum

Lemma: Suppose

• V1, V2 independent random variables

• V1 has a di↵erentiable density f1 and score score1

• V = V1 + V2 has density fV and score score

Then

score(V ) = E[score1(V1)|V ] [Stam ’59, Blachman ’65]

Proof

f 0(v) =
@

@v
E[f1(v � V2)] = E[f 0

1(v � V2)] = E[f1(v � V2)score1(v � V2)]

so that

⇢(v) =
f 0(v)

f (v)
= E


f1(v � V2)

f (v)
score1(v � V2)

�
= E[score1(V1)|V1 + V2 = v].

Thus V = V1 + V2 has the score

score(V ) = E[score1(V1)|V ]



A Projection Inequality

For each subset s,

score(sum
tot

) = E
⇥
score(sums)

�� sum
tot

⇤

Hence, for weights ws that sum to 1,

score(sum
tot

) = E

X

s2G
ws score(sums)

���� sumtot

�

Pythagorean inequality

The Fisher info. of the sum is the mean squared length of the projection

⇢
⇢

⇢
⇢

⇢
⇢

⇢
⇢
⇢

⇢
⇢
⇢

⇢⇢

0 score(sum
tot

)

P
ws score(sums)

I(sum
tot

)  E

X

s2G
ws score(sums)

�2



The Variance Drop Lemma

Let X1, X2, . . . , Xn be independent. Let Xs = (Xi : i 2 s) and gs(Xs) be
some mean-zero function of Xs. Then sums of such functions

g(X1, X2, . . . , Xn) =
X

s2G
gs(Xs)

have the variance bound

Eg2  r
X

s2G
Eg2s(Xs) [Barron–M. ’07]



The Variance Drop Lemma

Let X1, X2, . . . , Xn be independent. Let Xs = (Xi : i 2 s) and gs(Xs) be
some mean-zero function of Xs. Then sums of such functions

g(X1, X2, . . . , Xn) =
X

s2G
gs(Xs)

have the variance bound

Eg2  r
X

s2G
Eg2s(Xs) [Barron–M. ’07]

Remarks

• Note that r  |G|, hence the “variance drop”
• Examples:

G=singletons has r = 1 : additivity of variance with independent summands

G=leave-one-out sets has r = n�1 as in the study of the jackknife and U -statistics

• Proof is based on ANalysis Of VAriance decomposition [Hoe↵ding ’48]



The Heart of the Matter

Recall the Pythagorean inequality

I(sum
tot

)  E

X

s2G
ws score(sums)

�2

and apply the variance drop lemma to get

I(sum
tot

)  r
X

s2G
w2

sI(sums)

for all weights ws that sum to 1.

Optimizing over w yields the new Fisher information inequality

1

I(sum
tot

)
� 1

r

X

s2G

1

I(sums)



Optimized Form for H

We have (again)

I(sum
tot

)  r
X

s2G
w2

sI(sums)

Equivalently,

I(sum
tot

) 
X

s2G
wsI

✓
sumsp
rws

◆

Adding independent normals and integrating, [not immediate that this is

possible but can be justified]

h(sum
tot

) �
X

s2G
wsh

✓
sumsp
rws

◆

Optimizing over w yields the new Entropy Power Inequality

e2h(sumtot

) � 1

r

X

s2G
e2h(sums)



Discrete Entropic Limit Theorems

Theorem 2: [Johnson ’06]

H(Po(�)) = max
�
H(P ) : P ULC with mean �

 

Remarks

• A probability distribution P on Z+ is ultra-log-concave (ULC) if for each k,

P (k)2 �
✓
k + 1

k

◆
P (k � 1)P (k + 1)

• The ULC class is closed under convolution [Pemantle ’99, Liggett ’97]

• Theorem 2 was extended to the much more general compound Poisson case by
[Johnson-Kontoyiannis-M.’09–’11]

• Latter has applications to combinatorics (random independent sets in matroids etc.)

• Related techniques also allow one to obtain optimal-order approximation bounds for
independent summands



Summary

• New Fisher information and entropy power inequalities

• Variance drop lemma of independent interest

•Monotonicity of I and h in central limit theorems (“2nd law”)

• A similar entropic view of discrete limit theorems is possible

• Bonus:
– Statistical proofs with implications for distributed inference

–Multivariate generalization holds and there are interesting dimension-
independent reverse forms for log-concave measures

– Applications: Capacity/rate regions in multi-user information theory

Thank you!

� � � � �
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