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The upper bound of small ball probabilities is much more
challenging than the lower bound. This can be seen easily from the
precise links with the metric entropy. The upper bound of small
ball probabilities gives the lower estimate of the metric entropy and
vice versa. The lower estimates for metric entropy are frequently
obtained by a volume comparison, i.e. for suitable finite
dimensional projections, the total volume of the covering balls is
less than the volume of the set being covered. As a result, when
the volumes of finite dimensional projections of Kµ do not compare
well with the volumes of the same finite dimensional projection of
the unit ball of E , sharp lower estimates for metric entropy (upper
bounds for small ball probabilities) are much harder to obtain.



Independent and Increments
Let Sα(t) be the α-stable process with Sα(0) = 0, 0 < α ≤ 2.
Then for any 0 = t0 ≤ t1 < · · · < tn ≤ 1,

P
(

sup
0≤t≤1

|Sα(t)| ≤ ε
)
≤ P

(
max

1≤i≤n
|Sα(ti )| ≤ ε

)

≤ P
(

max
1≤i≤n

|Sα(ti )− Sα(ti−1)| ≤ 2ε

)
=

n∏
i=1

P (|Sα(ti )− Sα(ti−1)| ≤ 2ε)

and

P (|Sα(ti )− Sα(ti−1)| ≤ 2ε) = P (|Sα(ti − ti−1)| ≤ 2ε)

= P
(
|Sα(1)| ≤ 2ε(ti − ti−1)−1/α

)
.

If we take ti = i/n and εn1/α = 1 so that each term in the product
is P (|Sα(1)| ≤ 2), then P

(
sup0≤t≤2 |Sα(t)| ≤ ε

)
≤ exp(−cε−α).
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Remarks

•Here we intentionally use arbitrary partition points ti and pick
what we need later. There are problems that we do need to take
uneven partition points.
•Scaling or self-similarity plays important role here.
•What about integrated or m-th integrated Stable process Im(t)
defined by

Im(t) =

∫ t

0
Im−1(s)ds, I0(t) = Sα(t), ,m ≥ 1?

•For m-th integrated BM, we can use L2 bound via KL expansion.



Integrated Stable Process
The first step is to “differentiate” the process by using higher order
differences. We have

P
(

sup
0≤t≤1

|
∫ t

0
Sα(u)du| ≤ ε

)
≤ P

(
max

1≤i≤n
|
∫ ti

0
Sα(u)du| ≤ ε

)

≤ P
(

max
1≤i≤n

|
∫ ti+1

0
Sα(u)du − 2

∫ ti

0
Sα(u)du +

∫ ti−1

0
Sα(u)du| ≤ 4ε

)
= P

(
max

1≤i≤n
|
∫ ti+1

ti

Sα(u)du −
∫ ti

ti−1

Sα(u)du| ≤ 4ε

)

If we take ti = i/n and εn1+1/α = 1, then the last line above equals

P
(

max
1≤i≤n

|
∫ 1

0
(Sα(i + u)− Sα(i − 1 + u)) du|| ≤ 4

)
by using scaling property of stable process.
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Independents

In order to create independent terms inside the maximum, we keep
only the odd terms (i=2j+1) to obtain the upper bound

P
(

max
0≤j≤(n−1)/2

|
∫ 1

0
(Sα(2j + 1 + u)− Sα(2j + u)) du|| ≤ 4

)

=

[(n−1)/2]∏
j=0

P
(
|
∫ 1

0
(Sα(2j + 1 + u)− Sα(2j + u)) du|| ≤ 4

)
= r [(n+1)/2] ≤ exp(−cεα/(1+α))

where c = P
(
|
∫ 1

0 (Sα(1 + u)− Sα(u)) du|| ≤ 4
)
< 1. Note that

we do need to use the fact that the processes

Xj(u) = Sα(2j + 1 + u)− Sα(2j + u), 0 ≤ u ≤ 1,

are independent for j ≥ 0. This can be checked by using the joint
characteristic function.



Remarks

•For general integer m, we can use (m + 1)-th difference scheme.
•Lower bound for Im under sup norm can be obtained by using the
norm comparison inequality of Chen and Li.



Generic L2 upper bound for sup-norm
We have for any index set T ,

P(sup
t∈T
|X (t)| ≤ ε) ≤ P(sup

t∈T
|

m∑
j=1

bjX (t)| ≤ ε)

≤ P( max
1≤i≤n

|
m∑
j=1

biX (ti )| ≤ ε)

≤ P

 n∑
i=1

wi (
m∑
j=1

biX (ti ))2 ≤ ε2


for any m, n ≥ 1,

m∑
j=1

|bj | ≤ 1,
n∑

i=1

wi ≤ 1

with bj ∈ R and wi ≥ 0.



L2 upper bound
We start with the following basic fact.
Lemma For any centered Gaussian sequence {ξi} and for any
0 < x <

∑
i≤n E ξ2

i , we have

P
(∑

i≤n
ξ2
i ≤ x

)
≤ exp

(
−

(
∑

i≤n E ξ2
i − x)2

4
∑

1≤i ,j≤n(E ξiξj)2

)
.

Pf: It is easy to see that there exists a sequence of independent
mean zero normal random variables ηi such that

n∑
i=1

ξ2
i =

n∑
i=1

η2
i .

Then for any 0 < x <
∑n

i=1 E ξ2
i

P(
n∑

i=1

ξ2
i ≤ x) = P(

n∑
i=1

η2
i ≤ x) ≤ eλx

∏
i≤n

E e−λη
2
i

= exp
(
λx − 1

2

∑
i≤n

log(1 + 2λE η2
i )
)
.
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Let

λ =

∑
i≤n E ξ2

i − x

2
∑

i≤n(E η2
i )2

.

Then the exponent

λx − 1

2

∑
i≤n

log(1 + 2λE η2
i ) ≤ −(

∑
i≤n

E ξ2
i − x)λ+ λ2

∑
i≤n

(E η2
i )2

= −
(
∑

i≤n E ξ2
i − x)2

4
∑

i≤n(E η2
i )2

.

Note further that∑
i≤n

(E η2
i )2 =

1

2
Var(

n∑
i=1

η2
i ) =

1

2
Var(

n∑
i=1

ξ2
i ) =

∑
i ,j

(
E (ξiξj)

)2

for E ξ2
i ξ

2
j = (E ξ2

i )(E ξ2
j ) + 2(E ξiξj)2. The lemma follows from

the above inequalities.
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An L2 type upper bound for Gaussian Process

We start with the following general result.
Let {Xt , t ∈ [0, 1]} be a centered Gaussian process. Then
∀ 0 < a ≤ 1/2, ε > 0

P
(

sup
0≤t≤1

|Xt | ≤ ε
)
≤ exp

(
− ε4

16a2
∑

2≤i ,j≤1/a(E (ξiξj))2

)
provided that

a
∑

2≤i≤1/a

E ξ2
i ≥ 32ε2,

where ξi = X (ia)− X ((i − 1)a) or
ξi = X (ia) + X ((i − 2)a)− 2X ((i − 1)a).



Consequences

Let {Xt , t ∈ [0, 1]} be a centered Gaussian process with stationary
increments and X0 = 0. Put
σ2(|t − s|) = E |Xt − Xs |2, s, t ∈ [0, 1]. Assume that there are
1 < c1 ≤ c2 < 2 such that

c1σ(h) ≤ σ(2h) ≤ c2σ(h) for 0 ≤ h ≤ 1/2.

Then there exists a positive and finite constant C such that

P
(

sup
0≤t≤1

|Xt | ≤ σ(ε)

)
≤ exp(−C/ε)

if one of the following conditions is satisfied. (i) σ2 is concave on
(0, 1); (ii)There is c0 > 0 such that (σ2(x))′′′ ≤ c0x

−3σ2(x) for
0 < x < 1/2.



Determinant method

The basic idea is finding lower bounds on the determinant for the
covariance matrix.

P(sup
t∈T
|X (t)| < ε)

≤ P( max
1≤i≤n

|X (ti )| < ε)

= (2π)−n/2(det Σ)−1/2

∫
max1≤i≤n |xi |≤ε

exp
(
−〈x ,Σ−1x〉

)
dx1 · · · dxn

≤ (2π)−n/2(det Σ)−1/2(2ε)n

≤ (det Σ)−1/2εn

where Σ = (EX (ti )X (tj))1≤i ,j≤n is the covariance matrix.
•It is important to pick ‘good’ point ti , 1 ≤ i ≤ n = nε



Lower bound on determinant

I believe this is the right algebraic approach for the Sheet problem
(d ≥ 3)
•Given jointly Gaussian random variables X1, · · · ,Xn, we denote by
det Cov(X1, · · · ,Xn) the determinant of their covariance matrix.
Then

(2π)n/2

det Cov(X1, · · · ,Xn)
=

∫
Rn

E exp

−i n∑
j=1

yjXj

 dy1 · · · dyn.

and

det Cov(X1, · · · ,Xn) = Var(X1)
n∏

j=2

Var(Xj |X1, · · · ,Xj−1)

≥ · · ·

•Local-nondeterminism, see Xiao and Wu (2008).



Small ball probability for smooth Gaussian processes
•Aurzada, Gao, Kühn, Li and Shao (2011): Small deviation
probability for a family of smooth Gaussian processes with

EXα,β(t)Xα,β(s) =
22β+1(ts)α

(t + s)2β+1

for α > 0 and β > −1/2.
Thm: For α > β > −1/2,

− logP
(∫ 1

0
|Xα,β(t)|2 dt ≤ ε2

)
∼ κα,β| log ε|3,

where the constant is given by κα,β := 1
3(α−β)π2 .

For α > β + 1/2 > 0,

κ̃α,β| log ε|3 . − logP

(
sup

t∈[0,1]
|Xα,β(t)| ≤ ε

)
. κα−1/2,β| log ε|3.

•Aurzada (2011+): Path regularity and small deviations of smooth
Gaussian processes.



Gaussian Fields via Riesz Product

This is a combination of techniques in probability and analysis for
the upper bound under the sup-norm for various Gaussian fields,
see Gao and Li (2007). The basic ideas are
• Choosing Basis: Use (multi-dim) series expansion

X (t) =
∞∑
n=1

fn(t)ξn, where ξn are i.i.d. standard normal random

variables, and fn ∈ C ([0, 1]d).
• Choosing Partial Sum: By Andersen’s inequality,
P(‖X‖ ≤ ε) ≤ P(‖Y ‖ ≤ ε) where Y (t) is any partial sum
X (t) =

∑
n∈E fn(t)ξn.

• Construct Riesz Product:

P(‖Y ‖ ≤ ε) ≤ P(

∫
Y (t)R(t) ≤ ε)

where the Riesz product R(t) =
∏

n∈F (1 + εnhn) satisfying
R(t) ≥ 0, ‖R‖1 =

∫
R(t)dt = 1.



A Symmetrization Inequality for Two Norms
Let K ⊂ Rd and L ⊂ Rd be two origin symmetric convex bodies,
‖ · ‖K and ‖ · ‖L be the corresponding gauges on Rd , that is the
norms for which K and L are the unit balls.
Let C+ = C+(‖ · ‖K , ‖ · ‖L, d , a, b, ) be the optimal constant such
that, for all Rd -valued i.i.d. random variables X and Y , and
a, b > 0,

P(‖X + Y ‖L ≤ b) ≤ C+ · P(‖X − Y ‖K ≤ a).

•For d = 1, it is not hard to show C+ ≤ d2b/ae+ 1.
•Schultze and Weizsäcker (2007): For d = 1 and a = b, C+ = 2
which answers an open problem for about 10 years.
•Dong, J. Li and Li (2011+):

C+ ≤ N(BL(b),BK (a/2)),

and the bound are optimal for ‖ · ‖K = ‖ · ‖L = ‖ · ‖∞ with
C+ = d2b/aed .

•For i.i.d r.v Xi ∈ Rd , i ≥ 1, we have as an application

P(‖
2n∑
i=1

Xi‖L ≤ b) ≤ C+ · P(‖
n∑

i=1

(Xi − Xn+i )‖K ≤ a).
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An Extension of 123 Theorem
Let C− = C−(‖ · ‖K , ‖ · ‖L, d , a, b, ) be the optimal constant such
that, for all Rd -valued i.i.d. random variables X and Y , and
b > a > 0,

P(‖X − Y ‖L ≤ b) ≤ C− · P(‖X − Y ‖K ≤ a).

•Alon and Yuster (1995) and (independently) Kotlov: For d = 1,
C− ≤ 2db/ae − 1. In particular, for a = 1, b = 2, we have C− = 3.
•Alon and Yuster (1995): For ‖ · ‖K = ‖ · ‖L = ‖ · ‖2, C− ≤ M if
there is no set F of M + 1 points in a ball of radius b so that the
center belongs to F and the distance between any two pints of F
exceeds a. In addition, C− = M in special settings.
•Dong, J. Li and Li (2011+):

C− ≤ N(BL(b) \ BK (a),BK (a/2)) + 1,

and the bound is optimal for d = 1.



Our approach for both problems (C+ and C−) extends techniques
developed in Schultze and Weizsäcker (2007) which starts with the
following fact:
Lemma: The following two statement are equivalent for a given
symmetric matrix A = (aij)n×n:
(i) For all probability measure p ∈ P := {p :

∑
pi = 1, pi ≥ 0},

pTAp =
∑
i ,j

aijpipj > 0;

(ii) For all p ∈ P,

max
i

∑
j

aijpipj > 0.

•Idea of Pf: Consider Lagrange multiplier
L(p) = pTAp + λ(1− pT1) for the minimum in (i). Then

∂L(p)

∂p
= 2Ap∗ − λp∗ = 0.

Thus (ii) implies λ > 0 and
∑

j aijp
∗
j = λp∗i /2 > 0 for all i .

•The above fact can be reformulated in the infinite dimensional
setting for product measure.
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Fact: Let (Ω,B) be a measurable space and let f : Ω× Ω→ R be
a B ⊗B measurable bounded symmetric function. Let P be the set
of all probability measures on B.
Then the following are equivalent:
(1). For all µ ∈ P ∫

Ω×Ω
f (x , y)µ(dx)µ(dy) > 0.

(2). For all µ ∈ P

µ

(∫
Ω
f (·, y)µ(dy) > 0

)
> 0.



Proof of C+ ≤ N(BL(b),BK (a/2)) = N+

We need to show that, for any constant C > N+,

P(‖X + Y ‖L ≤ b) < C · P(‖X − Y ‖K ≤ a)

for any two i.i.d. Rd -valued random variables X and Y . The above
inequality can be rewritten as

∫
Rd×Rd g(x , y)µ(dx)µ(dy) > 0

where the function g(x , y) is defined as

g(x , y) = C · 1{‖x−y‖K≤a} − 1{‖x+y‖L≤b}, for x , y ∈ Rd

and µ is the probability measure on Rd induced by X . By the key
Lemma, we need to show

P
(∫

Rd

g(·, y)µ(dy) > 0

)
> 0 for all µ ∈ P.

Assume otherwise, then there exists a probability measure µ ∈ P
(i.e. random variables X ,Y ) such that µ(D) = 1, where the set D
is defined by

D = {x ∈ Rd :

∫
Rd

g(x , y)µ(dy) ≤ 0}

= {x ∈ Rd : µ(−x + BL(b)) ≥ C · µ(x + BK (a))}



Define
α = sup

x∈D
µ(x + BK (a)).

For 0 < ε < (1− N+/C )α, pick x0 ∈ D such that

µ(−x0 + BL(b)) ≥ C · µ(x0 + BK (a)) > C · (α− ε) > 0.

Using the fact that the set −x0 + BL(b) can be covered by N+

balls of size Bk(a/2), we have

N+ · sup
x∈Rd

µ(x + BK (a/2)) ≥ µ(−x0 + BL(b)) ≥ C · (α− ε) > 0.

Since µ(D) = 1, we have for any set x + BK (a/2) with positive
measure under µ, there is

x∗ ∈ (x + BK (a/2)) ∩ D.

Thus we have the covering

(x + BK (a/2)) ⊂ x∗ + BK (a)

which implies N+ · supx∈D µ(x + BK (a) ≥ C (α− ε) > N+α. This
contradicts the definition of α = supx∈D µ(x + BK (a).



1-Dimensional Case
Let X and Y be i.i.d. real random variables, then for positive reals
a, b, we have

P(|X + Y | ≤ b) ≤ d2b/ae · P(|X − Y | ≤ a).

Moreover, the constant d2b/ae is sharp.
Proof: It is easy to see that the interval [−x − b,−x + b] can be
covered by d2b/ae intervals in the form [y − a/2, y + a/2], for
x , y ∈ R and thus N+ = d2b/ae. To show the constant d2b/ae is
the best possible, we only need to consider the following example.
Let X ,Y be independent and have the same distribution
P(X = xi ) = 1

2n with

xi =

{
i(1 + ε)δ, i = 1, 2, · · · , n
i(1 + ε)δ − r i = 0,−1, · · · ,−n + 1,

where δ = a/b, ε > 0 is sufficiently small and 0 ≤ r ≤ 1
2 (1 + ε)δ.

Then, it is clear

P(|X − Y | ≤ δ) = P(X = Y ) = 1/2n.



For fixed δ > 0 and n large enough, we have

P(|X + Y | ≤ 1) =
1

2n

n∑
i=−n+1

P(−1− xi ≤ X ≤ 1− xi )

=
1

2n
(
∑
i∈I1

+
∑
i∈I2

+
∑
i∈I3

)P(−1− xi ≤ X ≤ 1− xi )

where I1, I2, I3 defined below are three disjoint subsets of the
summation index set {i : −n + 1 ≤ i ≤ n}.

I1 = {i : x−n+1 ≤ −1− xi < 1− xi ≤ x0}
I2 = {i : x1 ≤ −1− xi < 1− xi ≤ xn}
I3 = {i : −1− xi < x−n+1, or − 1− xi < x0 < 1− xi , or 1− xi > xn}.

•We then need a careful counting of each index set, depending on
various range of δ and r (very technical).
•Finally we can see that

C+(R, a/b, 1, | · |, | · |) ≥ d2/δe = d2b/ae.

and So C+(R, a, b, | · |, | · |) = d2b/ae.


