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We first establish a commonly used general lower bound estimate
for the supremum of non-differentiable Gaussian process via the
chain argument. Then we present a connection between small ball
probabilities that can be used to estimate small ball probabilities
under any norm via a relatively easier L2-norm estimate.



The Generic Chaining Method

•M. Talagrand, The generic chaining: upper and lower bounds of
stochastic processes, Springer Verlag, 2005, 222 pages.

“The fundamental question of characterizing continuity and
boundedness of Gaussian processes goes back to Kolmogorov.
After essential contributions by R. Dudley and X. Fernique, it was
solved by the author in 1985. This advance was followed by a great
improvement of our understanding of the boundedness of other
fundamental classes of processes (empirical processes, infinitely
divisible processes, etc.) This challenging body of work has now
been considerably simplified through the notion of ”generic
chaining”, a completely natural variation on the ideas of
Kolmogorov. The entirely new presentation adopted here takes the
reader from the first principles to the edge of current knowledge,
and to the wonderful open problems that remain in this domain.”



•M. Talagrand, The generic chaining: upper and lower bounds of
stochastic processes, Springer Verlag, 2005, 222 pages.

•M. Talagrand (2001), Majorizing measures without measures,
Annals of Probability 29, (2001), 411417

•M. Talagrand (1996), Majorizing measures: the generic chaining,
Ann. Probab. 24, 1049-1103.

•M. Talagrand (1992), , A simple proof of the majorizing measure
theorem, Geometric and Functional Analysis 2 (1992), 119-125

•M. Talagrand (1987), Regularity of Gaussian processes, Acta
Math. 159 (1987), 99-149.

•X. Fernique (1971, 1975), stationary setting and related
formulation.

•R. Dudley (1967, 1973), using covering numbers to get Dudley
integral.



The Generic Chaining Method: Upper Estimates
Consider a stochastic process {Xt} with index set T . We want
upper bound for supt∈T |Xt − Xt0 |.
•Take q > 1 as a power of discretization. Let
n0 = max{n : D(T ) = diam(T ) ≤ 2q−n}. Consider an increasing
sequence of partition A = (An) of T such that D(A) ≤ 2q−n for
A ∈ An, n ≥ n0.
•For each t ∈ T , write An(t) ∈ An such that t ∈ An(t).
•For each A ∈ An, fix a point of T in A to represent A, and denote
by Tn the collection of these points to represent the partition An.
•For each t ∈ T , denote sn(t) ∈ Tn such that sn(t) ∈ An(t). Then
sn(t) ∈ An−1(Sn(t)) = An−1(t), and d(sn(t), sn−1(t)) ≤ 2q−n+1.
•The fundamental relation is

Xt − Xt0 =
∞∑
j=1

Xsj (t) − Xsj−1(t)

which decomposes the increments as one moves from t0 to t along
the increasing “chain” sj(t) ∈ Tj such that sj(t) = sj(s) implies
sj−1(t) = sj−1(s) and sj(v) = v for any v ∈ Tj .



sup
t∈T
|Xt − Xt0 | ≤ sup

t∈T

∞∑
j=1

∣∣∣Xsj (t) − Xsj−1(t)

∣∣∣
= sup

t∈T

∞∑
j=1

∣∣∣Xsj (t) − Xsj−1(sj (t))

∣∣∣
≤

∞∑
j=1

max
v∈Tj

∣∣∣Xv − Xsj−1(v)

∣∣∣
≤

∞∑
j=1

∑
v∈Tj

∣∣∣Xv − Xsj−1(v)

∣∣∣



Majorizing measure

For
∑∞

j=1

∑
v∈Tj

wj(v) ≤ 1

P
(

sup
t∈T
|Xt − Xt0 | ≥ u

)

≤ P

 ∞∑
j=1

∑
v∈Tj

∣∣∣Xv − Xsj−1(v)

∣∣∣ ≥ u


≤

∞∑
j=1

∑
v∈Tj

P
(∣∣∣Xv − Xsj−1(v)

∣∣∣ ≥ wj(v)u
)

•Majorizing measure: Best partition A = (An) and best weight or
‘measure’ wj(v).
•The Dudley entropy upper bound: For any A ∈ An, cover A by
N(A, d , q−n−1) ≤ N(T , d , q−n−1).



A lower bound for small ball probability

For centered Gaussian process Xt , t ∈ T ,

P
(

sup
t∈T
|Xt − Xt0 | ≤ ε

)

≥ P

 ∞∑
j=1

max
v∈Tj

∣∣∣Xv − Xsj−1(v)

∣∣∣ ≤ ε


≥ P
(

max
v∈Tj

∣∣∣Xv − Xsj−1(v)

∣∣∣ ≤ pj(ε)ε for j ≥ 1

)
≥

∏
j≥1

∏
v∈Tj

P
(∣∣∣Xv − Xsj−1(v)

∣∣∣ ≤ pj(ε)ε
)

=
∏
j≥1

∏
v∈Tj

P (|ξv | ≤ pj(ε)ε/d(v , sj−1(v))

for
∑

j pj(ε) ≤ 1, where we used Sidak’s inequality for the last
inequality.



Lower bound on supremum under entropy conditions
Assume (Xt)t∈T is a centered Gaussian process with entropy
number N(T , d ; ε), the minimal number of balls of radius ε > 0,
under the Dudley metric d(s, t) = (E |Xs − Xt |2)1/2, s, t ∈ T
that are necessary to cover T . Then a commonly used general
lower bound estimate on the supremum is the following
formulation of Talagrand:
Thm: Assume that there is a nonnegative function ψ on R+ such
that N(T , d ; ε) ≤ ψ(ε) and such that c1ψ(ε) ≤ ψ(ε/2) ≤ c2ψ(ε)
for some constants 1 < c1 ≤ c2 <∞ . Then, for some C > 0 and
every ε > 0 we have

logP

(
sup
s,t∈T

|Xs − Xt | ≤ ε

)
≥ −Cψ(ε).

In particular, logP (supt∈T |Xt | ≤ ε) ≥ −C ′ψ(ε).
•See Ledoux (1996) for a detailed proof.



Application: Fractional Brownian Motion

Let BH(t), t ≥ 0 be a standard real valued fractional Brownian
motion with index H ∈ (0, 1). That is, BH(t) is a zero-mean
Gaussian process with stationary increments and covariance
function

E
[
BH(t)BH(s)>

]
=

1

2

{
|t|2H + |s|2H − |t − s|2H

}
Then

logP( sup
0≤t≤1

|BH(t)| ≤ ε) ≥ −cε1/H



Remark

•Although the lower bound is relatively easy to use, it does not
always provide sharp lower estimates even when N(T , d ; ε) can be
estimated sharply. The simplest example is Xt = ξt for
t ∈ T = [0, 1], where ξ denotes a standard normal random
variable. In this case,

P
(

sup
t∈T
|Xt | < ε

)
= P (|ξ| < ε) ∼ (2/π)1/2 · ε,

but the Theorem produces an exponential lower bound exp(−c/ε)
for the above probability. More interesting examples are the
integrated fractional Brownian motion and the fractional
integrated Brownian motion.

Open: Find better probabilistic lower bound for smooth Gaussian
processes.



General Approach

Let (Xt)t∈T be a centered Gaussian process. If there are a
countable set Tc and a Gaussian process Y on Tc such that{

sup
t∈T
|Xt | ≤ x

}
⊃
{

max
t∈Tc

|Yt | ≤ x

}
,

then we have by Sidak’s inequality

P
(

sup
t∈T
|Xt | ≤ x

)
≥
∏
t∈Tc

P(|Yt | ≤ x).

Since Yt is a normal random variable for each t ∈ Tc , the right
hand side above can be easily estimated. So, the key step of
estimating the lower bound of P (supt∈T |Xt | ≤ x) is to find
countable set Tc and Gaussian process Y .



Review: Inequality in Chen and Li (2003)

Let X and Y be any two centered independent Gaussian random
vectors in a separable Banach space B with norm ‖ · ‖. We use
| · |µ(X ) to denote the inner product norm induced on the
associated reproducing Hilbert space Hµ by µ = L(X ). Then for
any λ > 0 and ε > 0,

P(‖Y ‖ ≤ ε) ≥ P(‖X‖ ≤ λε) · E exp{−2−1λ2|Y |2µ(X )}.

In particular, for any λ > 0, ε > 0 and δ > 0,

P (‖Y ‖ ≤ ε) · exp{−λ2δ2/2} ≥ P (‖X‖ ≤ λε)P
(
|Y |µ(X ) ≤ δ

)
.

•This inequality provides a powerful way to estimate lower bound
for the class of processes Yt = G (Ct), t ∈ T where G (·) is a
Gaussian process and Ct is an independent ‘clock’. More details in
lecture 7.



Review: m-th Integrated BM
Let X0(t) = W (t) and

Xm(t) =

∫ t

0
Xm−1(s)ds, t ≥ 0, m ≥ 1,

which is the m’th integrated Brownian motion or the m-fold
primitive.
•We have for m ≥ 0

lim
λ→∞

λ−1/(2m+2) logE exp

{
−λ
∫ 1

0
X 2
m(t)dt

}
= −Cm.

where Cm = 2−(2m+1)/(2m+2)
(

sin π
2m+2

)−1
.

•By the Tauberian theorem, we have

logP
(∫ 1

0
X 2
m(t)dt ≤ ε2

)
∼ 2−1(2m + 1)

(
(2m + 2) sin

π

2m + 2

)−(2m+2)/(2m+1)

ε−2/(2m+1).



Application: m-th Integrated BM under sup-norm

Thm: We have for m ≥ 1,

lim
ε→0

ε2/(2m+1) logP
(

sup
0≤t≤1

|Xm(t)| ≤ ε
)

= −κm

with 2m+1
2

(
(2m + 2) sin π

2m+2

)− 2m+2
2m+1 ≤ κm ≤

2m+1
2

(
π
2

) 2
2m+1

(
2m sin π

2m

)− 2m
2m+1

and limm→∞m−1κm = π−1. In

addition, the following upper bound holds for κm based on κm−1.

(4κm/(2m + 1))2m+1 ≤ (4κm−1/(2m − 1))2m−1 .

•The particular case of m = 1, or the so called integrated
Brownian motion was studied in Khoshnevisan and Shi (1998) by
using local time techniques. Here our upper bound
κ1 ≤ (2π)2/3 · (3/8) is explicit. In general, the exact values of κm
is unknown for m ≥ 1. The value κ0 = π2/8 is well known.



•The existence of the limiting constant κm will be give in lecture 9.
•The probability upper bound follows easily from

P
(

sup
0≤t≤1

|Xm(t)| ≤ ε
)
≤ P

(∫ 1

0
|Xm(t)|2dt ≤ ε2

)
and the L2-estimate.
•The probability lower bound follows from another L2-estimate and
the well known estimate

logP
(

sup
0≤t≤1

|W (t)| ≤ ε
)
∼ −(π2/8)ε−2.



An Application
Take Y = Xm(t) and X = W (t). Then for any norm ‖·‖ on
C [0, 1] and any λ = λε > 0

P (‖Xm‖ ≤ ε) ≥ P (‖W (t)‖ ≤ λε) · E exp
{
− λ2

2

∫ 1

0
X 2
m−1(s)ds

}
since |f |2µ =

∫ 1
0 (f ′(s))2ds for Wiener measure µ = L(W ). Taking

‖·‖ to be the sup-norm on C [0, 1] and λ = λε = αε−2m/(2m+1)

with α > 0, then

−κm = lim
ε→0

ε2/(2m+1) logP
(

sup
0≤t≤1

|Xm(t)| ≤ ε
)

≥ lim
ε→0

ε2/(2m+1) logP
(

sup
0≤t≤1

|W (t)| ≤ αε1/(2m+1)

)
+ lim
ε→0

ε2/(2m+1) logE exp
{
− α2

2
ε−4m/(2m+1)

∫ 1

0
X 2
m−1(s)ds

}
= −(π2/8)α−2 − 1

2
α1/m

(
sin

π

2m

)−1
.

Picking the best α > 0, we obtain the desired result.



Remarks

•It is of interest to note that both bounds rely on easier
L2-estimates and the constant bounds for κm are the sharpest
known.

•We can also obtain similar lower estimates for iterated symmetric
stable processes.

•The corresponding upper estimates are given in lecture 8.



Local Time
Let L = {Lxt ; (x , t) ∈ R1 × R+} denote the local time of a “nice”
stochastic process X (t),≥ 0, i.e. we need at least the existence
and joint continuity of L. Then we have the occupation density
formula, ∫ t

0
g(Xs) ds =

∫
g(x)Lxt dx

for all continuous functions g of compact support. Therefore, for
any bounded Borel set A,∫

A
Lyt dy =

∫ t

0
1A(Xs)ds.

In particular, let A = [x , x + ε]. Using the continuity of Lxt we have

Lxt = lim
ε→∞

measure{0 ≤ s ≤ t : x ≤Ws ≤ x + ε}
ε

=

∫ t

0
δx(Xs)ds.

This gives an intrinsic definition of Lxt as the derivative of an
occupation measure.
•One needs to show the existence and joint continuity by
approximation.
•One can also define self-intersection local times, with possible
renormalization.



Local Times via Fourier transform
For a fixed sample function and fixed time t > 0, the Fourier
transform on space variable x ∈ Rd is the function of λ ∈ Rd ,∫

Rd

e iλ·xL(t, x)dx =

∫ t

0
e iλ·X (s)ds.

Thus the local time L(t, x) can be expressed as the inverse Fourier
transform:

L(t, x) =
1

(2π)d

∫
Rd

e−iλ·x
∫ t

0
e iλ·X (s) dsdλ.

The m-th power of L(t, x) is

L(t, x)m =
1

(2π)md

∫
Rmd

e−ix ·
∑m

k=1 λk

∫
[0,t]m

exp
(
i

m∑
k=1

λk ·X (sk)
)
dsdλ

Take the expected value under the sign of integration: the second
exponential in the above integral is replaced by the joint
characteristic function of X (s1), · · · ,X (sm).



Moments of Local Time for Gaussian Process
In the Gaussian case, we obtain

E L(t, x)m

=
1

(2π)md

∫
Rmd

e−ix ·
∑m

k=1 λk

∫
[0,t]m

exp
(
− 1

2
Var
( m∑
k=1

λk · X (sk)
))

dsdλ.

•Interchanging integration and applying the characteristic function
inversion formula, we can get more explicit (but somewhat less
useful) expression in terms of integration associated with

det(EX (si )X (sj))−1/2.

•Estimates of the moments of local time L(t, x) thus depend on
the rate of decrease to 0 of det(EX (si )X (sj)) as sj − sj−1 → 0 for
some/all j .
•When considering a random fields X (t) taking values in Rd ,
where t = (t1, . . . , tp) ∈ (R+)p, suitable adjustment via
approximation for local time are needed.



Moment Comparison for Local Times of GP

Here are some simplest forms of comparison which are based on
the standard Fourier analytic approach but go far beyond,
motivated mainly by similar small deviation estimates.
•For two independent nice Gaussian fields (centered) X and Y
with index set A,

E [LX+Y (A, 0)m] ≤ E [LX (A, 0)m]

which follows from Var(X + Y ) ≥ Var(X ). This is an analogy of
Anderson’s inequality for local time.
•For two independent nice Gaussian fields (centered) X and Y
with index set A,

E [LX+Y (A, 0)m] ≥ E e
− 1

2
|Y |2

µ(X )E [LX (A, 0)m] ,

which follows from Cameron-Martin formula.



General Functional Analytic Facts
Lemma: Let µ be a centered Gaussian measure in a separable
Banach space B. Let g : B 7→ R+ be a measurable function. Then
(i) if {x ∈ B : g(x) ≥ t} is symmetric and convex for every t > 0,
then for every y ∈ B∫

B
g(x + y)µ(dx) ≤

∫
B
g(x)µ(dx);

(ii) if g is symmetric (g(−x) = g(x), x ∈ B), then for every y in
the RKHS Hµ of µ∫

B
g(x + y)µ(dx) ≥ exp

{
−1

2
‖y‖2µ

}∫
B
g(x)µ(dx),

where ‖y‖µ denotes the norm in Hµ.
Pf: Part (i) follows from Anderson’s inequality∫
B
g(x + y)µ(dx) =

∫∞
0 µ{x ∈ B : g(x + y) ≥ t} dt

≤
∫∞
0 µ{x ∈ B : g(x) ≥ t} dt =

∫
B g(x)µ(dx).

Part (ii) uses Cameron-Martin formula and the convexity of
exponential function∫
B
g(x + y)µ(dx) =

∫
B g(x) exp

{
〈x , y〉µ − 1

2‖y‖
2
µ

}
µ(dx)

= 1
2

∫
B g(x) exp

{
〈x , y〉µ − 1

2‖y‖
2
µ

}
µ(dx)

+1
2

∫
B g(x) exp

{
−〈x , y〉µ − 1

2‖y‖
2
µ

}
µ(dx)

≥ exp
{
−1

2‖y‖
2
µ

} ∫
B g(x)µ(dx).



Chen, Li, Rosinski and Shao (2011)
Thm: Let BH(t) be a standard d-dimensional fractional Brownian
motion with index H such that Hd < 1. Then the limit

lim
a→∞

a−1/(Hd) logP{L01(BH) ≥ a} = −θ(H, d)

exists and θ(H, d) satisfies the following bounds(
πc2H/H

)1/(2H)
θ0(Hd) ≤ θ(H, d) ≤ (2π)1/(2H)θ0(Hd)

and

θ0(κ) = κ

(
(1− κ)1−κ

Γ(1− κ)

)1/κ

Thm: Let αH(·) be the intersection local time of p-independent
standard d-dimensional fractional Brownian motions
BH
1 (t), · · · ,BH

p (t), where Hd < p∗. Then the limit

lim
a→∞

a−p
∗/(Hdp) logP

{
αH
(
[0, 1]p

)
≥ a
}

= −K (H, d , p)

exists with
K (H, d , p) = c

1/H
H K̃ (H, d , p).


