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We first present a vary useful iterating/blocking technique for
symmetric stable processes. The lower bound is more involved
since the end position of each block has to be controlled also.
Then we give a block decomposition method for weighted Lp norm
of Brownian motion.



Let {X (t) : t ≥ 0} be a symmetric stable process of index
α ∈ (0, 2] with stationary independent increments. Define
M(t) = sup0≤s≤t |X (s)|,
Thm: Let ρ : [0, 1]→ [0,∞) be a bounded function such that
ρ(t)α is Riemann integrable on [0, 1]. Then

lim
ε→0

ε2 logP( sup
0≤t≤1

|ρ(t)X (t)| ≤ ε) = −cα
∫ 1

0
ρ(t)αdt

where the constant 0 < cα <∞ is given by

cα = − lim
ε→0+

εα logP
(

sup
0≤s≤1

|X (s)| ≤ ε
)
.

•The existence of the limit defining cα can be found in Mogul’skii
(1974). The earlier paper Taylor (1967) obtained strictly positive,
finite bounds for cα, and there is also a variational representation
of cα in Donsker and Varadhan (1977).



•The paper by Samorodnitsky (1998) studies self-similar stable
processes with stationary increments, and when they are also
independent it recovers the Taylor (1967) result mentioned above.
Without this independence, the upper and lower bounds in
Samorodnitsky differ by a power of log(1/ε).
•The exact value of cα is unknown for 0 < α < 2 but various
estimates are available. See works of Banuelos and his coauthors.



We prove a slightly stronger result which are useful in proving
Chung-Wichura type LIL.
Upper Bound: Fix sequences {ti}mi=0, {ai}mi=0, and {bi}mi=0 such
that 0 = t0 < t1 < · · · < tm and
a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm. Then

lim sup
ε→0+

εα logP(aiε ≤ M(ti ) ≤ biε, 1 ≤ i ≤ m) ≤ −cα
m∑
i=1

(ti−ti−1)/bαi .

Pf:. Let Ai =
{

supti−1≤s<ti |X (s)| ≤ biε
}

for i = 1, . . . ,m. Then
it is easy to see

P(aiε ≤ M(ti ) ≤ biε, 1 ≤ i ≤ m) ≤ P
( m⋂
i=1

Ai

)
.



Furthermore, we have

P
( m⋂
i=1

Ai

)
=

∫
R
P
(m−1⋂

i=1

Ai , sup
tm−1≤s<tm

|X (s)− X (tm−1) + x | ≤ bmε
∣∣∣

X (tm−1) = x
)
dPX (tm−1)(x)

=

∫
R
P
(

sup
tm−1≤s<tm

|X (s)− X (tm−1) + x | ≤ bmε
)
·

·P
(m−1⋂

i=1

Ai

∣∣∣X (tm−1) = x
)
dPX (tm−1)(x),

since suptm−1≤s<tm |X (s)− X (tm−1) + x | is independent of

X (tm−1) and
⋂m−1

i=1 Ai by the independent increments property of
X (t).



By Anderson’s inequality for independent clock representation
X (t) = W (Sα/2(t)),

P
(

sup
tm−1≤s<tm

|X (s)− X (tm−1) + x | ≤ bmε
)

≤ P
(

sup
tm−1≤s<tm

|X (s)− X (tm−1)| ≤ bmε
)

= P
(

sup
0≤s≤1

|X (s)| ≤ bmε/(tm − tm−1)1/α
)
,

where the equality follows from the scaling property of
{X (t) : t ≥ 0} and the homogeneity of the increments. Thus

P
( m⋂
i=1

Ai

)
≤ P

(m−1⋂
i=1

Ai

)
· P
(

sup
0≤s≤1

|X (s)| ≤ bmε/(tm − tm−1)1/α
)
,

and iterating the above estimate implies the result.



To obtain a reverse estimate, we need the following lemma.
Lemma: Given δ > 0,

lim
ε→0+

εα logP(M(1) ≤ ε, |X (1)| ≤ εδ) = −cα.

•We have for given positive numbers a < b and δ > 0,

lim
ε→0+

εα logP(aε ≤ M(1) ≤ bε, |X (1)| ≤ εδ) = −cα/bα.

Pf: We assume δ ∈ (0, 1), Note that for any θ ∈ R,

P(M(1) ≤ ε, |X (1)| ≤ εδ) ≥ P(M(1) < ε, |X (1) + θ| ≤ εδ)

= P(M(1) ≤ ε, |X (1) + θ| ≤ εδ).

where the inequality is due to Anderson’s inequality applied
conditionally to the Gaussian probability in only the last
coordinate. Thus

P(M(1) ≤ ε) ≤
[1/δ]∑

j=−[1/δ]

P(M(1) ≤ ε, |X (1) + jεδ| ≤ εδ)

≤
(

2
[
1/δ
]

+ 1
)
P(M(1) ≤ ε, |X (1)| ≤ εδ).



Lower Bound: Fix sequences {ti}mi=0, {ai}mi=0, {bi}mi=0 such that
0 = t0 < t1 < · · · < tm and a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm.
Then, for every γ > 0,

lim inf
ε→0

εα logP(aiε ≤ M(ti ) ≤ biε, 1 ≤ i ≤ m, |X (tm)| ≤ bmγε)

≥ −cα
m∑
i=1

ti − ti−1
bαi

.

Pf: Take a small δ > 0 such that δ < γ and ai (1 + δ) < bi (1− δ)
for all 1 ≤ i ≤ m. Define

Bi =

{
aiε ≤ sup

ti−1≤s≤ti
|X (s)| ≤ biε, |X (ti )| ≤ biδε

}

for i = 1, . . . ,m. Then

{aiε ≤ M(ti ) ≤ biε, 1 ≤ i ≤ m, |X (tm)| ≤ bmγε} ⊇
m⋂
i=1

Bi .



On the other hand, if for i = 1, . . . ,m.

Ai =
{
ai (1 + δ)ε ≤ sup

ti−1≤s≤ti
|X (s)− X (ti−1)| ≤ bi (1− δ)ε,

|X (ti )− X (ti−1)| ≤ (bi − bi−1)δε
}

then

P
( m⋂

i=1

Bi

)
≥ P

(m−1⋂
i=1

Bi ∩ Am

)
= P

(m−1⋂
i=1

Bi

)
· P(Am) ≥

m∏
i=1

P(Ai ).

and P(Ai ) = P
(

ai (1+δ)ε

(ti−ti−1)1/α
≤ M(1) ≤ bi (1−δ)ε

(ti−ti−1)1/α
, |X (1)| ≤

(bi−bi−1)δε

(ti−ti−1)1/α

)
. Recall

Bi =

{
aiε ≤ sup

ti−1≤s≤ti
|X (s)| ≤ biε, |X (ti )| ≤ biδε

}
.



Weighted Lp-norm for BM

Thm: Under regularity conditions on ρ : [0,∞)→ [0,∞] we have
for 1 ≤ p <∞

lim
ε→0

ε2 logP

((∫ ∞
0
|ρ(t)W (t)|pdt

)1/p

≤ ε

)

= −κp
(∫ ∞

0
ρ(t)2p/(2+p)dt

)(2+p)/p

where κp is the small ball constant for BM under Lp-norm, see
lecture 2.
•The full generality of this result is given in Li (2001) and related
works can be found in Mogul’skii (1974), Shi (1996), Berthet and
Shi (1999), Li (1998), Lifshits and Linde (2000).



Let {X (t); 0 ≤ t ≤ 1} be a real–valued continuous Gaussian
Markov process with mean zero and covariance
σ(s, t) = EX (s)X (t) 6= 0 for 0 < s, t < 1. It is known that we can
write σ(s, t) = G (min(s, t))H(max(s, t)) with G > 0,H > 0 and
G/H nondecreasing on the interval (0, 1).
Cor:

lim
ε→0

ε2 logP(‖X (t)‖p < ε) = −κp
(∫ 1

0
(G ′H − H ′G )p/(2+p)dt

)(2+p)/p

.

•We have the following representation for Gaussian Markov
processes

X (t) = h(t)W (g(t))

with g(t)G (t)/H(t) > 0 nondecreasing on the interval (0, 1) and
h(t) = H(t) > 0 on the interval (0, 1).



Ex: Let U(t) be the O-U process with EU(s)U(t) = σ2e−θ|t−s|

for θ > 0 and any s, t ∈ [a, b], −∞ < a < b <∞. The we have
for 1 ≤ p ≤ ∞

lim
ε→0

ε2 logP
(
‖U(t)‖p ≤ ε

)
= −2σ2θ(b − a)(2+p)/pκp.

Ex: For α < (2 + p)/2p, p ≥ 1,

lim
ε→0

ε2 logP
(∫ 1

0
|t−αW (t)|pdt ≤ εp

)
= −κp

(
2 + p

2 + p − 2αp

)(2+p)/p

.

Thus by the exponential Tauberian theorem and scaling property of
Brownian motion,

lim
t→∞

t−(2+p−2β)/(2+p) logE exp

{
−λ
∫ t

0

|W (s)|p

sβ
ds

}
= − 2 + p

2 + p − 2β
λ1(p)λ2/(2+p)

for β < (2 + p)/2 and λ > 0.



Our proof is given in three steps. First we assume that ρ(t) is
bounded and ρ(t)2p/(2+p) Riemann integrable on [0,T ] and
ρ(t) = 0 for t ≥ T . In the second step, we assume ρ(t) is
non-increasing on [0, a] for some a > 0 small and ρ(t) = 0 for
t ≥ T . The weaker Gaussian correlation inequality can be used but
it is not critical here since we can form independent increment by
introducing the value at t = a. In the last step, we show the
theorem over the whole positive half line. In this step, the weaker
Gaussian correlation inequality is important.

•We only show the first step in this lecture to illustrate the
blocking technique.



Prop: Let ρ : [0,T ]→ [0,∞) be a bounded function on [0,T ],
0 < T <∞. Then

lim inf
ε→0

ε2 logP
(∫ T

0
|ρ(t)W (t)|pdt ≤ εp

)

≥ −κp inf

(
n∑

i=1

M
2p/(2+p)
i (ti − ti−1)

)(2+p)/p

and

lim sup
ε→0

ε2 logP
(∫ T

0
|ρ(t)W (t)|pdt ≤ εp

)

≤ −κp sup

(
n∑

i=1

m
2p/(2+p)
i (ti − ti−1)

)(2+p)/p

.

where the infimum and supremum being taken over all partitions
P = {ti}n0 and

mi = inf
ti−1≤t≤ti

ρ(t) and Mi = sup
ti−1≤t≤ti

ρ(t).



In particular, if ρ(t)2p/(2+p) is Riemann integrable, then

lim
ε→0

ε2 logP
(∫ T

0
|ρ(t)W (t)|pdt ≤ εp

)
= −κp

(∫ T

0
ρ(t)2p/(2+p)dt

)(2+p)/p

.

.



Stochastic Representation for BM
Fix a finite partition P = {ti}n0 of [0,T ] such that

0 = t0 < t1 < · · · < tn = T .

Let B1(t),B2(t), · · ·Bn(t), 0 ≤ t ≤ 1 be independent standard
Brownian bridges that are also independent of W (t). Define for
ti−1 ≤ t ≤ ti

Ŵ (t) = W (ti−1) + (W (ti )−W (ti−1))
t − ti−1
ti − ti−1

+

+
√
ti − ti−1Bi

(
t − ti−1
ti − ti−1

)
Then it is easy to check that

{
Ŵ (t), 0 ≤ t ≤ T

}
is a standard

Brownian motion by checking covariance function.
•From the weaker correlation inequality,

lim
ε→0

ε2 logP (‖W ‖p ≤ ε) = lim
ε→0

ε2 logP (‖B‖p ≤ ε) = −κp

since B(t) = W (t)− tW 1), 0 ≤ t ≤ 1.



Upper Bound
We have

P

((∫ T

0
|ρ(t)W (t)|pdt

)1/p

≤ ε

)

= P

(
n∑

i=1

∫ ti

ti−1

ρp(t)|Ŵ (t)|pdt ≤ εp
)

≤ P

(
n∑

i=1

mp
i

∫ ti

ti−1

|Ŵ (t)|pdt ≤ εp
)

= P

(
n∑

i=1

mp
i (ti − ti−1)

∫ 1

0
|(1− t)W (ti−1) + tW (ti )

+
√

ti − ti−1Bi (t)|pdt ≤ εp
)

≤ P

(
n∑

i=1

mp
i (ti − ti−1)1+p/2

∫ 1

0
|Bi (t)|pdt ≤ εp

)
where the second inequality follows from Anderson’s inequality and
the fact that Bi (t), 1 ≤ i ≤ n, are independent of W (t).



Thus from lecture 2 or 3 on independent sums,

lim sup
ε→0

ε2 logP

((∫ T

0
|ρ(t)W (t)|pdt

)1/p

≤ ε

)

≤ lim sup
ε→0

ε2 logP

(
n∑

i=1

mp
i (ti − ti−1)1+p/2

∫ 1

0
|Bi (t)|pdt ≤ εp

)

= −κp

(
n∑

i=1

m
2p/(2+p)
i (ti − ti−1)

)(2+p)/p

.



Lower Bound
By the representation for BM used for the upper bound, we have

P
(∫ T

0
|ρ(t)W (t)|pdt ≤ εp

)
≥ P

(
n∑

i=1

Mp
i (ti − ti−1)

∫ 1

0
|(1− t)W (ti−1) + tW (ti )

+
√

ti − ti−1Bi (t)|pdt ≤ εp
)

≥ P
(∫ 1

0
|(1− t)W (ti−1) + tW (ti ) +

√
ti − ti−1Bi (t)|pdt ≤ Qp

i ε
p,

1 ≤ i ≤ n) , for
∑

Mp
i (ti − ti−1)Qp

i = 1

≥ P
(∫ 1

0
|(1− t)W (ti−1) + tW (ti )|pdt ≤ δpεp,∫ 1

0
|
√

ti − ti−1Bi (t)|pdt ≤ (Qi − δ)pεp, 1 ≤ i ≤ n

)
≥ P

(
|W (ti )| ≤ δε,

∫ 1

0
|
√
ti − ti−1Bi (t)|pdt ≤ (Qi − δ)pεp, 1 ≤ i ≤ n

)
for δ < min1≤i≤n Qi .



For the last line, we have

P
(
|W (ti )| ≤ δε,

∫ 1

0
|
√

ti − ti−1Bi (t)|pdt ≤ (Qi − δ)pεp, 1 ≤ i ≤ n

)
= P

(
max
1≤i≤n

|W (ti )| ≤ δε
)
·

·
n∏

i=1

P
(∫ 1

0
|Bi (t)|pdt ≤ (ti − ti−1)−p/2(Qi − δ)pεp

)
where the equality follows from the independence of Bi (t),
1 ≤ i ≤ n and W (t). Thus

lim inf
ε→0

ε2 logP
(∫ T

0
|ρ(t)W (t)|pdt ≤ εp

)
≥

n∑
i=1

lim
ε→0

ε2 logP
(∫ 1

0
|Bi (t)|pdt ≤ (ti − ti−1)−p/2(Qi − δ)pεp

)

= −κp
n∑

i=1

(Qi − δ)−2(ti − ti−1).

Taking δ → 0 and we need Qi to match the upper bound.



This forces

Qi = M
−p/(2+p)
i

(
n∑

i=1

M
2p/(2+p)
i (ti − ti−1)

)−1/p
> 0, 1 ≤ i ≤ n.

and we can pick 0 < δ < min1≤i≤n Qi .
•Note that

n∑
i=1

Mp
i (ti − ti−1)Qp

i = 1.


