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For a continues centered Gaussian processes, the generating linear
operator is compact and so is the unit ball of the associated
reproducing kernel Hilbert space. The fundamental links between
small ball probability for Gaussian measure and the metric entropy
are given and various far-reaching implications are explored.
Several purely probabilistic results, obtained via the analytic
connection without direct probabilistic proofs, are analyzed.



Covering Number, Metric Entropy and ε-nets
Let A be a compact subset in a metric space (E , ρ), and let ε > 0
be given. The metric entropy of A is denoted by
H(A, ρ, ε) = logN(A, ρ, ε) where

N(A, ε) = N(A, ρ, ε) = N(A, εBρ)

= min {n ≥ 1 : ∃x1, · · · , xn ∈ A

such that A ⊂ ∪nj=1(xj + εBρ)
}
,

and Bρ(a; r) = {x : ρ(x , a) < r} is the open ball of radius r
centered at a.
We also say a set F ⊂ Rd is an ε-net for A with respect to B if
A ⊂ ∪x∈F (x + εB). The smallest cardinality of an ε-net is denoted
by N(A,B, ε) = N(A, εB).



•The metric entropy is a natural representation of how many bits
you need to send in order to identify an element of a set up to
precision ε. It is a tool heavily used in approximation theory,
probability and statistics, learning theory, compressive sensing and
random matrix theory
•Kolmogorov (1956), Asymptotic characteristic of some complete
bounded metric spaces. Dokl. Akad, Nauk SSSR, 108, 585-589.
•A.N. Kolmogorov and V.M. Tikhomirov, ε-entropy and ε-capacity
of sets in function spaces, Uspecki 14 (1959), 3-86.
•Lorentz (1966), Metric entropy and approximation, Bull. Amer.
Math. Soc. 72, 903-937.
•Kuelbs, J. and Li, W.V. (1993). Metric entropy and the small ball
problem for Gaussian measures. J. Funct. Anal. 116, 133-157.
•Li, W.V. and Linde, W. (1999). Approximation, metric entropy
and small ball estimates for Gaussian measures. Ann. Probab. 27,
1556-1578.



ε-Distinguishable and Capacity
Points h1, h2, · · · , hm of A are called ε-distinguishable if the
distance between each two of them exceeds ε.
The capacity of A is denoted by C (A, ε) = logM(A, ε) where

M(A, ε) = max {n ≥ 1 : ∃h1, · · · , hn ∈ A,

‖hi − hj‖ ≥ ε for all i 6= j }

The general facts about the metric entropy:

M(A, 2ε) ≤ N(A, ε) ≤ M(A, ε), i.e C (A, 2ε) ≤ H(A, ε) ≤ C (A, ε).

If E is a Banach space and λ > 0, then

H(λA, ε) = H(A, ελ−1).

Notations: f (x) ≈ g(x) as x → a if

0 < lim inf
x→a

f (x)/g(x) ≤ lim sup
x→a

f (x)/g(x) <∞.

and f (x) � g(x) as x → a if lim supx→a f (x)/g(x) <∞.



Methods To Find Metric Entropy
•Construction/approximation, both upper and lower bounds;
•Volume arguments (lower bounds); Embedding (upper bounds);
etc.
•Small ball probability, both upper and lower bounds;
Ex: A = [0, 1]d = unit cube in Rd and ρ=usual Euclidean metric.
Then as ε→ 0,

cdε
−d ≤ N(A, ε) ≤ Cdε

−d and H(A1, ε) ∼ d log
1

ε
.

The constants αd such that N(A1, ε) ∼ αdε
−d is almost

impossible to obtain for d ≥ 3.
For d = 2, it is easy to see that

1

πε2
≤ N(A1, ε) ≤

(
[ε−1] + 1

)2



Ex:

A2 = {f ∈ C [0, 1] : f (0) = 0, |f (x)−f (y)| ≤ |x−y |α,∀x , y ∈ [0, 1]}

for 0 < α ≤ 1 and ‖f ‖ = sup0≤x≤1 |f (x)|.
Then H(A2, ε) ≈ (1/ε)1/α as ε→ 0.
Ex:

A3 = {f ∈ C [0, 1] : f (0) = 0, |f (x)− f (y)| ≤ |x − y |α,
∀x , y ∈ [0, 1]and Var(f , [0, 1]) ≤ 1 }

where 0 < α < 1.
Then H(A3, ε) ≈ (1/ε) log(1/ε) as ε→ 0 (Clements, 1963).



Ex:

K =

{
g ∈ C [0, 1] : g(0) = 0, g absol. cont.,

∫ 1

0
|g ′(s)|2ds ≤ 1

}
.

Note that K ⊂ A3 when α = 1/2 since

|g(t)− g(s)| =

∣∣∣∣∫ t

s
g ′(u)du

∣∣∣∣
≤ (t − s)1/2

(∫ t

s

∣∣g ′(u)
∣∣2 du)1/2

≤ (t − s)1/2

and Var(g) ≤
∫ 1
0 |g

′(t)| dt ≤ 1
• Kolmogorov and Tihomirov (1961): H(ε,K , ‖·‖2) ≈ 1/ε.
• Birman and Solomjak (1967): H(ε,K , ‖·‖∞) ≈ 1/ε.
• Kuelbs and Li (1993): As ε→ 0

(2−
√

3)/4 ≤ ε · H(K , ‖·‖2 , ε) ≤ 1

(2−
√

3)π/4 ≤ ε · H(K , ‖·‖∞ , ε) ≤ π.

Note that K is the unit ball of the reproducing kernel Hilbert space
generated by Brownian motion.



Metric Entropy of High Dimensional Distributions
Let Fd be the collection of all d-dimensional probability
distribution functions on [0, 1]d , d ≥ 2. The metric entropy of Fd

under the L2([0, 1]d) norm arises naturally in non-parametric
estimation in statistics; see van der Vaart and Wellner (1996). The
following result is proved in Blei, Li and Gao (2007) by interplays
among duality relations, metric entropy and small ball probability.
Thm: We have

logN(Fd , ‖ · ‖2, ε) ≈ logN(Kd , ‖ · ‖∞, ε).

In particular, for d ≥ 2 there exist constants c1, c2 > 0 depending
only on d such that

c1ε
−1[log(1/ε)]d−1 ≤ logN(Fd , ‖ · ‖2, ε) ≤ c2ε

−1[log(1/ε)]d−1/2.

and for d = 2,

c1ε
−1[log(1/ε)]3/2 ≤ logN(F2, ‖ · ‖2, ε) ≤ c2ε

−1[log(1/ε)]3/2.



•Small ball inequality on a lower bound on the L1 norm of sums of
Haar functions, see Talagrand (1994), Temlyakov (1998).
•van der Vaart and van Zanten (2008): Statistical applications for
Gaussian priors based on Reproducing kernel Hilbert spaces of
Gaussian priors.
•Bilyk and Lacey (2008): Small ball inequality in harmonic analysis
and discrepancy theory.
•Gao, Li and Welner (2010): How many Laplace transforms of
probability measures are there? Applications to bracket entropy in
empirical processes theory and learning theory.



Links between Small Ball and Metric Entropy
As it was established in Kuelbs and Li (1993) and completed in Li
and Linde (1999), the behavior of

φ(ε) := logP (‖X‖ ≤ ε)

for Gaussian random element X is determined up to a constant by
the metric entropy of the unit ball of the reproducing kernel
Hilbert space associated with X , and vice versa.
• The Links can be formulated for entropy numbers of compact
operator from Hilbert space to Banach space.
• This is a fundamental connection (both asymptotic and
non-asymptotic) that has been used to solve important questions
on both directions.



Ex: For the standard Brownian motion W (t), 0 ≤ t ≤ 1 on
C [0, 1], the associated compact operate is the integration operator

uf (t) =

∫ t

0
f (s)ds.

The unit ball of the RKHS is

K =

{
g ∈ C [0, 1] : g(0) = 0, g absol. cont.,

∫ 1

0
|g ′(s)|2ds ≤ 1

}
.

• Kolmogorov and Tihomirov (1961): H(ε,K , ‖·‖2) ≈ 1/ε.
• Birman and Solomjak (1967): H(ε,K , ‖·‖∞) ≈ 1/ε.
• Kuelbs and Li (1993): As ε→ 0

(2−
√

3)/4 ≤ ε · H(ε,K , ‖·‖2) ≤ 1

(2−
√

3)π/4 ≤ ε · H(ε,K , ‖·‖∞) ≤ π.



The Small Ball Probability for Brownian Sheets
The standard Brownian sheet W (t1, · · · td) on [0, 1]d with values
C ([0, 1]d) is associated with the integration operator

uf (t1, · · · td) =

∫ t1

0
· · ·
∫ td

0
f (s1, · · · , sd)ds1 · · · dsd .

The associated compact set is

Kd = {g ∈ C ([0, 1]d) : g(t1, · · · , ti = 0, · · · , td) = 0,∫
[0,1]d

∣∣∣∣ ∂d

∂t1 · · · ∂td
g

∣∣∣∣2 dt ≤ 1}.

• Lifshits and Tsyrelson (1986), Bass (1988), Talagrand (1994),
Gao and Li (2007): For d = 2,

logP
(

sup
t∈[0,1]2

|W (t)| ≤ ε
)
≈ −ε−2| log ε|3

or equivalently

logN(ε,K2, ‖·‖∞) ≈ ε−1(log 1/ε)3/2

by using the entropy link discovered in Kuelbs and Li (1993).



• The best known bounds for d ≥ 3 are

−C2ε
−2| log ε|2d−1 ≤ logP

(
sup

t∈[0,1]d
|W (t)| ≤ ε

)
≤ −C1ε

−2| log ε|2d−2+δ

and it is conjectured that the lower bound is sharp.
•The upper bound without some δ > 0 follows from simple L2
estimates, see Li (1992) and the one with δ > 0 is given in Bilyk
and Lacey (2008) based on Harmonic analysis.
•The lower bound is proved in Dunker, Kuhn, Lifshits, and Linde
(1999) based on combined techniques from entropy estimates and
small ball estimates. The
•It is easy to reformulate the result as two-sided boundary crossing:

logP
(

sup
t∈[0,T ]d

|W (t)| ≤ 1
)
, as T →∞

for Gaussian random fields.



Precise links between small ball probability and metric entropy
The following is established in Kuelbs and Li (1993) and completed
in Li and Linde (1999).
Thm: Let J(x) be a slowly varying function at infinity such that
J(x) ≈ J(xρ) as x →∞ for each ρ > 0.
(I). If φ(ε) � ε−αJ(ε−1), φ(2ε) � φ(ε), α > 0, then

H(Kµ, ε) � ε−2α/(2+α)J(1/ε)2/(2+α).

(II). If φ(ε) � ε−αJ(ε−1), α > 0, then

H(Kµ, ε) � ε−2α/(2+α)J(1/ε)2/(2+α).

(III). If H(Kµ, ε) � ε−αJ(1/ε), 0 < α < 2, then

φ(ε) � ε−2α/(2−α)(J(1/ε))2/(2−α).

(IV). If H(Kµ, ε) � ε−αJ(1/ε), 0 < α < 2 then

φ(ε) � ε−2α/(2−α)(J(1/ε))2/(2−α).



• As a consequence, for α > 0 and β ∈ R,

φ(ε) ≈ ε−α(log 1/ε)β

if and only if

H(Kµ, ε) ≈ ε−2α/(2+α)(log 1/ε)2β/(2+α).

• In the notation of (dyadic) entropy numbers, the following are
equivalent for 0 < θ < 2:
(i). en(u) ≈ n−1/θ(1 + log n)β as n→∞
(ii). logP (‖X‖E < ε) ≈ −ε−2θ/(2−θ)| log ε|2θβ/(2−θ) as ε→ 0,
• This is a fundamental connection that has been used to solve
important questions on both directions.
• Many important problems are open, in particular, small ball or
entropy number for tensors.
• Similar connections for other measures such as stable are
studied. One direction is given in Li and Linde (2003).



Two Basic Relations for Centered Gaussian Measure µ
Let Kµ be the unit ball of reproducing kernel Hilbert spaces
generated by µ in a Banach space with unit ball B. We have for
any λ > 0 and ε > 0

logN(λKµ, 2εB) ≤ λ2/2− logµ(εB)

and
logN(λKµ, εB) + log µ(2εB) ≥ log Φ(λ+ αε)

where

Φ(t) =
1√
2π

∫ t

−∞
e−u

2/2du and Φ(αε) = µ(εB).

We outline the proof in the finite dimensional setting:

µ = γn (standard Gaussian measure on Rn)

Kµ = Bn
2 (Euclidean ball)

B = K (norm ‖ · ‖ = ‖ · ‖K )

• Inequalities for shifted symmetric convex set K :

e−|h|
2
2/2 · µ(εK ) ≤ µ(εK + h) ≤ µ(εK ).



The first relation uses full strength of the argument in proving dual
Sudakov inequality. Assume that the points x1, · · · , xM ∈ Bn

2 are
2ε-separated in ‖ · ‖K . Then for any j 6= l ,

(xj + εK ) ∩ (xl + εK ) = ∅
Hence for any λ > 0

1 ≥ µ
(
∪Mj=1(λxj + λεK )

)
=

M∑
j=1

µ(λxj + λεK )

≥
M∑
j=1

e−λ
2‖xj‖2/2 · µ(λεK ) ≥ M · e−λ2/2 · µ(λεK )

This implies one key relation

logN(Bn
2 , 2εK )− λ2/2 + log µ(λεK ) ≤ 0.

For the second relation, by Gaussian isoperimetric inequality,

Φ(λ+ Φ−1(µ(εK )) ≤ µ(λBn
2 + εK )

≤ N(λBn
2 + εK , 2εK ) · µ(2εK )

≤ N(λBn
2 , εK ) · µ(2εK ).



Analytic (Entropy) Approach to Small Ball Probability
Advantages:
• Helpful algebraic properties of entropy numbers such as
en+m−1(u + v) ≤ en(u) + em(v).
• Tight relations between entropy numbers and other useful
approximation quantities such as Kolmogorov widths and
ln-numbers.
• Powerful tools and methods to study entropy numbers.
• Enormous amount of deep and strong results about entropy
numbers.
• Only known approach to some very useful small ball estimates.
Disadvantages:
• Analytic proofs give fewer insights into the structure of the
Gaussian process.
• Results are never sharp w.r.t. the constants. Existence of small
ball constants cannot be obtained.
• One relation to obtain φ(ε) from en(u) is quite implicit. It is only
useful in terms of asymptotic behavior rather than direct estimates,
unless additional information on φ(ε) is known.



Probabilistic (SBP) Approach to Entropy
Advantages:
• Helpful algebraic properties such as

P(‖X+Y ‖ ≤ ε) ≥ P(‖X‖+‖Y ‖ ≤ ε) ≥ P(‖X‖ ≤ λε)·P(‖Y ‖ ≤ (1−λ)ε)

for independent random element X and Y , and any 0 < λ < 1.
• Powerful Gaussian inequalities such as the weaker correlation
inequality.
• Useful interactions with other areas of probability theory such as
large deviations.
• Systematic probabilistic arguments such as Chaining and
exponential Chebyshev’s inequality.
• Direct but less sharp connections with the ln numbers, the rate
of approximation by ”finite rank” processes.
• Reasonable constants for metric entropy can be obtained in nice
cases.
Disadvantages:
• So far, only compact operator u : H → E with “good” rate can
be studied this way.



The Winning Approach to Both Directions Is: Combining
Them and Go Back and Forth

All of these enable the application of tools and results from
functional analysis to small ball probabilities and vice versa.
•The following result in Li and Linde (1999) has no purely
probabilistic proof to date.



Theorem
Let Y = (Y (t))t∈[0,1] be a centered Gaussian process with
continuous sample path and assume that

logP
(

sup
0≤t≤1

|Y (t)| ≤ ε
)
� −ε−α

(
log

1

ε

)β
for α > 0. If

X (t) =

∫ 1

0
K (t, s)Y (s)ds (0.1)

with the kernel K (t, s) satisfying the Hölder condition∫ 1

0

∣∣K (t, s)− K (t ′, s)
∣∣ ds ≤ c

∣∣t − t ′
∣∣λ , t, t ′ ∈ [0, 1] , (0.2)

for some λ ∈ (0, 1] and some c > 0, then

logP
(

sup
0≤t≤1

|X (t)| ≤ ε
)
� −ε−α/(αλ+1)

(
log

1

ε

)β/(αλ+1)

.



•Note that the integrated kernel K (t, s) = 1(0,t)(s) satisfies the
Hölder condition with λ = 1. So if Y (t) is a fractional Brownian
motion and X (t) is the integrated fractional Brownian motion,
then the lower bound given above is sharp.
•Other significant applications are for integrated Brownian sheets.


