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We treat the sum of two not necessarily independent Gaussian
random vectors in a separable Banach space. The main ingredients
are Anderson’s inequality and the weaker correlation inequality.
Various applicants are provided to show the power of the method.



Abstract: Gaussian inequalities play a fundamental role in the
study of high dimensional probability and stochastic analysis. We
will first provide an overview of various Gaussian inequalities and
then present several recent results and conjectures for Gaussian
measure/vectors, together with various applications.
Gaussian inequalities, whose goal, loosely speaking, consists of
searching for an inequality between dependent (complicated) and
independent (simpler) structures that becomes an equality in
certain (possibility limiting) cases.
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Fundamental Gaussian Inequalities

• Isoperimetric inequalities: Gaussian Isoperimetric inequalities;
Ehrhard’s inequality; Shift inequalities; S-inequality; B-inequality;
etc.
• Comparison inequalities: Anderson’s inequality; Slepian’s
inequality; Gordon’s min-max inequalities; Reverse Slepian type
inequalities; etc.
• Correlation inequalities and conjectures: Sidak inequality; Weak
correlation inequality; etc.
• Concentration and deviation inequalities: Dudley, Fernique,
Berman, Talagrand, etc.
• Functional inequalities: Poincare inequalities; Logarithmic
Sobolev inequality; Transportation-entropy-information inequalities;
etc.



The density and distribution function of the standard Gaussian
(normal) distribution on the real line R are

φ(x) = (2π)−1/2 exp{−x2/2} and Φ(x) =

∫ x

−∞
φ(t)dt.

Let γn denote the canonical Gaussian measure on Rn with density
function

φn(x) = (2π)−n/2 exp(−|x |2/2)

with respect to Lebesgue measure, where |x | is the Euclidean norm
of x ∈ Rn. All results for γn on Rn can be used to determine the
appropriate infinite dimensional analogue by a classic
approximation argument.
The n-dimensional normal density is

f (x) = f (x1, · · · , xn)

=
1

(2π)n/2(det(A))1/2
exp

{
−1

2
〈x ,A−1xT 〉

}
where the covariance A = (EXiXj) is an n × n positive definite
symmetric matrix.



Gaussian Random Element in Banach Space

A centered random element X in a separable Banach space E is
called Gaussian if f (X ) is mean-zero Gaussian for any f ∈ E ∗, and
equivalently, the characteristic functional of X is

µ̂(f ) := E e i〈f ,X 〉 = exp(−1

2
〈f ,Kf 〉

for some positive definite operator K : E ∗ → E .
Ex: For E = Rn, E ∗ = Rn and thus X = (X1, · · · ,Xn) is a
centered Gaussian if

a1X1 + · · ·+ anXn

is a one-dim Gaussian r.v.
•Uncorrelated Gaussian vectors are independent.



Gaussian Process, Operator and RKHS
The following statements are equivalent:
(i). X is a centered Gaussian random vector with law µ = L(X ) in
a separable Banach space E .
(ii). There exist a separable Hilbert space H and an operator
u : H → E such that

∑∞
j=1 ξju(fj) converges a.s. in E for one

(each) ONB (fj)
∞
j=1 in H and

X
d
=
∞∑
j=1

ξju(fj)

where ξj are i.i.d. N(0, 1).
(iii). There are x1, x2, . . . in E such that

∑∞
j=1 ξjxj converges

a.s. in E and X
d
=
∑∞

j=1 ξjxj .
• The series

∑∞
j=1 ξju(fj) converges a.s. implies that u is compact

and the RKHS Hµ = u(H) with compact unit ball Kµ in E .
• The RKHS Hµ can also be described as the completion of the
range of the mapping S : E ∗ → E defined by the Bochner integral
Sf =

∫
E xf (x)dµ(x), f ∈ E ∗.



Isoperimetry
The main geometric property of both measures (Lebesgue and
Gaussian) is an isoperimetric inequality. For Lebesgue measure it is
classical (J. Steiner 1842, H. Schwarz 1884). Among all bodies of
a given volume, a ball minimizes the surface area. For Gaussian
measure, an isoperimetric inequality has appeared independently in
the work
•V.N. Sudakov, B.S. Tsirelson, ”Extremal properties of half-spaces
for spherically invariant measures”, Zapiski LOMI 41 (1974), 14-24
(Russian); J. Soviet Mathematics 9, (1978), 9-18 (English).
•C. Borell, ”The Brunn-Minkowski inequality in Gauss space”,
Invent. Math. 30 (1975), 207-216.
Statement: Among all sets of a given Gaussian measure, a
half-space minimizes the Gaussian measure of a neighborhood.
•The usefulness for the theory of Gaussian processes was only
realized in the mid-80’s. Many (better) proofs have appeared later,
see A. Ehrhard (1983), M. Ledoux (1994), S. Bobkov (1997), C.
Borell (2005).



The Gaussian Isoperimetric Inequality
Let A be a measurable subset of Rn such that

γ(A) = γ(H) = Φ(a) =

∫ a

−∞
φ(t)dt,

where H is a half–space {x ∈ Rn : (x , u) < a}, for some u ∈ Rn

with |u| = 1 and a ∈ [−∞,∞]. Then, for every r ≥ 0

γ(A + rU) ≥ γ(H + rU) = Φ(a + r) = Φ(Φ−1(γ(A)) + r)

where U is the open unit ball in Rn and
A + rU = {a + ru : a ∈ A, u ∈ U}.
• Ehrhard’s inequality: For any Borel sets A and B of Rn, and
0 ≤ λ ≤ 1,

Φ−1 ◦ γn(λA + (1− λ)B)

≥ λΦ−1 ◦ γn(A) + (1− λ)Φ−1 ◦ µ(B).

Open: Bounds on γn(A + rU) for symmetric and convex set A.



• Concentration and deviation inequalities
Let f be Lipschitz function on Rn with

‖f ‖Lip = sup {|f (x)− f (y)|/|x − y | : x , y ∈ Rn} .

Denote further by Mf a median of f for µ and by E f =
∫
fdµ(x)

for the expectation of f . Then

µ(|f −Mf | > t) ≤ exp{−t2/2 ‖f ‖2Lip}

and
µ(|f − E f | > t) ≤ 2 exp{−t2/2 ‖f ‖2Lip}

•Another version of the above result can be stated as follows. Let
{Xt , t ∈ T} be a centered Gaussian process with

d(s, t) = (E |Xs − Xt |2)1/2, s, t ∈ T

and σ2 = supt∈T EX 2
t . Then for all x > 0, we have

P
(

sup
t∈T

Xt − E sup
t∈T

Xt ≥ x
)
≤ exp

(
− x2

2σ2

)
.

There are several other inequalities of various flavor given by
Dudley (1967), Fernique (1972) and Berman (1985), etc.



Comparison inequalities

Slepian’s lemma: If EX 2
i = EY 2

i and EXiXj ≤ EYiYj for all
i , j = 1, 2, ..., n, then for any x ,

P
(

max
1≤i≤n

Xi ≤ x

)
≤ P

(
max
1≤i≤n

Yi ≤ x

)
.

•The basic comparison identity: Let f : Rn → R1 be a function
with bounded second derivatives. Then for centered Gaussian
random vectors X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn),

E f (X )− E f (Y ) =
1

2

∫ 1

0

∑
1≤i ,j≤n

(EXiXj − EYiYj)

·E ∂2f

∂xi∂xj
((1− λ)1/2X + λ1/2Y )dλ.

•Other interesting and useful extensions of Slepian’s inequality,
involving min-max, etc, can be found in Gordon (1985).



Reverse Slepian type Inequality

A very useful extension of Slepian’s inequality in the ‘reverse’
direction is established in Li and Shao (2002) with three important
applications: (i). A conjecture of Erdős and Révész (1990) is
settled; (ii). A conjecture of Kesten (1992) is confirmed. (ii).
Sharper estimate on the positivity exponent (b > 0.5) for random
polynomials of even degree.
Thm: Let {ξi , 1 ≤ i ≤ n} and {ηi , 1 ≤ i ≤ n} be two normal
random vectors with mean zero and variance one. Assume that
E ξiξj ≥ E ηiηj ≥ 0 for 1 ≤ i , j ≤ n. Then for u ≥ 0

P
(

max
1≤i≤n

ηi ≤ u

)
≤ P

(
max
1≤i≤n

ξi ≤ u

)
≤ P

(
max
1≤i≤n

ηi ≤ u

)
·

·
∏

1≤i<j≤n

(
π − 2 arcsin(E ηiηj)
π − 2 arcsin(E ξiξj)

)exp{−u2/(1+E ξiξj )}
.

•There are other related variations under slightly different
conditions.



Gaussian Inequalities for Products

Thm: For any centered joint Gaussian random variables
X1, · · · ,Xn with the covariance matrix Σ,

E |X1X2 · · ·Xn| ≤
√

perm(Σ) ≤ (EX 2
1X

2
2 · · ·X 2

n )1/2.

The first inequality is due to the speaker, see Li and Wei (2009)
and the second inequality is due to Frenkel (2008).
Gaussian Products Conjecture: For any centered Gaussian
vector (X1, · · · ,Xn) and positive integer m,

EX 2m
1 · · ·X 2m

n ≥ EX 2m
1 · · ·EX 2m

n .

•Frenkel (2008): Yes for m = 1. In fact,

EX 2
1 · · ·X 2

n ≥ perm(Σ) ≥ EX 2
1 · · ·EX 2

n .

via hafnians and exterior algebra for the first inequality above.



•The B-inequality in Cordero-Erausquin, Fradelizi and Maurey
(2005):

µ(aK ) · µ(bK ) ≤ µ2(
√
abK )

for any symmetric convex set K and positive numbers a and b.
•Equivalently, for any norm ‖ · ‖ = ‖ · ‖K on Rn or a Banach space,
and centered Gaussian random vector X ,

P(‖X‖ ≤ a) · P(‖X‖ ≤ b) ≤ P2(‖X‖ ≤
√
ab).

•Relation between K and ‖x‖ = ‖ · ‖K :

‖x‖ = inf{t > 0 : x ∈ tK}, K = {x : ‖x‖ ≤ 1}.



Shift Inequalities

•Anderson’s inequality: For every convex symmetric set K ,

µ(K + x) ≤ µ(K )

which follows easily from log-concavity of Gaussian measure.
•Measure of shifted balls: For any f ∈ Hµ and r > 0,

exp{− |f |2µ /2}·µ(x : ‖x‖ ≤ r) ≤ µ(x : ‖x − f ‖ ≤ r) ≤ µ(x : ‖x‖ ≤ r).

Furthermore, as ε→ 0,

P(‖X − f ‖ ≤ ε) ∼ exp{− |f |2µ(X ) /2} · P(‖X‖ ≤ ε).

The upper bound follows from Anderson’s inequality. The lower
bound follows from the Cameron-Martin formula. Various sharp
refinements and applications are given in Kuelbs, Li and Talagrand
(1994), Kuelbs, Li and Linde (1994), and Kuelbs and Li (1998).



Correlation inequalities

The Gaussian correlation conjecture: For any two symmetric
convex sets A and B in a separable Banach space E and for any
centered Gaussian measure µ on E ,

µ(A ∩ B) ≥ µ(A)µ(B).

An equivalent formulation: If (X1, . . . ,Xn) is a centered, Gaussian
random vector, then

P
(

max
1≤i≤n

|Xi | ≤ 1

)
≥ P

(
max
1≤i≤k

|Xi | ≤ 1

)
P
(

max
k+1≤i≤n

|Xi | ≤ 1

)
for each 1 ≤ k < n.
• Sidak inequality: The above holes for k = 1 or any slab B.



The weaker Correlation inequality:
For any 0 < λ < 1, any symmetric, convex sets A and B,

µ(A ∩ B)µ(λ2A + (1− λ2)B) ≥ µ(λA)µ((1− λ2)1/2B).

In particular,

µ(A ∩ B) ≥ µ(λA)µ((1− λ2)1/2B)

and

P(X ∈ A,Y ∈ B) ≥ P
(
X ∈ λA

)
P
(
Y ∈ (1− λ2)1/2B

)
for any centered joint Gaussian vectors X and Y .
The varying parameter λ plays a fundamental role in applications,
see Li (1999). It allows us to justify

µ(A ∩ B) ≈ µ(A) if µ(A)� µ(B).

Note also that

µ(∩mi=1Ai ) ≥
m∏
i=1

µ(λiAi )

for any λi ≥ 0 with
∑m

i=1 λ
2
i = 1.



The proof in Li (1999) follows ideas in Schechtman, Schlumprecht
and Zinn (1998), where the case λ = 1/

√
2 was proved. It is based

on the rotational invariance of the measure µn × µn for
(x , y) 7→ (λx + ηy , ηx − λy) and the following theorem on log
concave functions.
Theorem (Prékopa ’72, Leindler ’73). If f is log-concave on Rn

and 1 ≤ k < n, then the function g : Rk → R , with

g(x1, . . . , xk) =

∫
Rn−k

f (x1, . . . , xk , z1, . . . , zn−k) dz

is also log concave.
Corollary. If f and g are log concave, so is y 7→

∫
f (x + y)g(x) dx .



For the weaker correlation inequality established in Li (1999), here
is a very simple proof given in Li and Shao (2001). Let
a = (1− λ2)1/2/λ, and (X ∗,Y ∗) be an independent copy of
(X ,Y ). Then X − aX ∗ and Y + Y ∗/a are independent. Thus, by
Anderson inequality

P(X ∈ A,Y ∈ B) ≥ P(X − aX ∗ ∈ A,Y + Y ∗/a ∈ B)

= P(X − aX ∗ ∈ A)P(Y + Y ∗/a ∈ B)

= P
(
X ∈ λA

)
P
(
Y ∈ (1− λ2)1/2B

)
.



Consider the sums of two centered Gaussian random vectors X and
Y in a separable Banach space E with norm ‖·‖.
Thm:If X and Y are independent and

lim
ε→0

εγ logP (‖X‖ ≤ ε) = −CX , lim
ε→0

εγ logP (‖Y ‖ ≤ ε) = −CY

with 0 < γ <∞ and 0 ≤ CX ,CY ≤ ∞. Then

lim sup
ε→0

εγ logP (‖X + Y ‖ ≤ ε) ≤ −max(CX ,CY )

lim inf
ε→0

εγ logP (‖X + Y ‖ ≤ ε) ≥ −
(
C

1/(1+γ)
X + C

1/(1+γ)
Y

)1+γ
.

Open: What is the precise constant?

Thm: If two joint Gaussian random vectors X and Y , not
necessarily independent, satisfy

lim
ε→0

εγ logP (‖X‖ ≤ ε) = −CX , limε→0 ε
γ logP (‖Y ‖ ≤ ε) = 0

with 0 < γ <∞, 0 < CX <∞. Then

lim
ε→0

εγ logP (‖X + Y ‖ ≤ ε) = −CX .



Consider the sums of two centered Gaussian random vectors X and
Y in a separable Banach space E with norm ‖·‖.
Thm:If X and Y are independent and

lim
ε→0

εγ logP (‖X‖ ≤ ε) = −CX , lim
ε→0

εγ logP (‖Y ‖ ≤ ε) = −CY

with 0 < γ <∞ and 0 ≤ CX ,CY ≤ ∞. Then

lim sup
ε→0

εγ logP (‖X + Y ‖ ≤ ε) ≤ −max(CX ,CY )

lim inf
ε→0

εγ logP (‖X + Y ‖ ≤ ε) ≥ −
(
C

1/(1+γ)
X + C

1/(1+γ)
Y

)1+γ
.

Open: What is the precise constant?
Thm: If two joint Gaussian random vectors X and Y , not
necessarily independent, satisfy

lim
ε→0

εγ logP (‖X‖ ≤ ε) = −CX , limε→0 ε
γ logP (‖Y ‖ ≤ ε) = 0

with 0 < γ <∞, 0 < CX <∞. Then

lim
ε→0

εγ logP (‖X + Y ‖ ≤ ε) = −CX .



Proof of the Lower Bound

For any 0 < δ < 1, 0 < λ < 1,

P (‖X + Y ‖ ≤ ε)

≥ P (‖X‖ ≤ (1− δ)ε, ‖Y ‖ ≤ δε)

≥ P (‖X‖ ≤ λ(1− δ)ε) · P
(
‖Y ‖ ≤ (1− λ2)1/2δε

)
.

Thus

lim inf
ε→0

εγ logP (‖X + Y ‖ ≤ ε) ≥ −(λ(1− δ))−γCX

and the lower bound follows by taking δ → 0 and λ→ 1.
•How should we use the inequality for the upper bound?



Proof of the Upper Bound

For the upper bound, we have

P
(
‖X‖ ≤ ε

(1− δ)λ

)
≥ P

(
‖X + Y ‖ ≤ ε

λ
, ‖Y ‖ ≤ δ · ε

(1− δ)λ

)
≥ P (‖X + Y ‖ ≤ ε) · P

(
‖Y ‖ ≤ (1− λ2)1/2δ

ε

(1− δ)λ

)
.

Thus

lim sup
ε→0

εγ logP (‖X + Y ‖ ≤ ε) ≤ −(λ(1− δ))γCX

and the upper bound follows by taking δ → 0 and λ→ 1.



Applications

As a direct consequence, we have the following for any Gaussian
“bridge”.
Cor: Let {X (t), 0 ≤ t ≤ 1} be a Rd -valued, d ≥ 1, continuous
Gaussian random variable. Assume for some norm ‖·‖ on
C ([0, 1],Rd) that

lim
ε→0

εγ logP (‖X (t)‖ ≤ ε) = −CX

with 0 < γ <∞ and 0 < CX <∞. Then

lim
ε→0

εγ logP (‖X (t)− tX (1)‖ ≤ ε) = −CX .

•Brownian sheet and tied down brownian sheet has the same small
ball rate under Lp([0, 1]d)-norm, 0 ≤ p ≤ ∞.



Our next application extends the small ball results for Brownian
motion under weighted sup-norms over the finite interval to those
over the infinite interval.
•Let W (t), t ≥ 0, be the standard Brownian motion. If
f : (0,T ] 7→ (0,∞) satisfies either of the conditions (H1):
inf0<t≤T f (t) > 0 or (H2): f (t) is nondecreasing in a
neighborhood of 0. Then,

lim
ε→0

ε2 logP

(
sup

0<t≤T

|W (t)|
f (t)

≤ ε

)
= −π

2

8

∫ T

0
f −2(t)dt.

This result was proved by Mogulskii (1974) under essentially
condition (H1) and by Berthet and Shi (1998) under condition

(H2). The critical case, when
∫ T
0 f −2(t)dt =∞, and connections

with Gaussian Markov processes were treated in Li (1998). Here
we extend the result to sup over the whole positive half line.



Thm: Let g : (0,∞) 7→ (0,∞] satisfies the conditions:
(i). inf0<t<∞ g(t) > 0 or g(t) is nondecreasing in a neighborhood
of 0.
(ii). inf0<t<∞ t−1g(t) > 0 or t−1g(t) is nonincreasing for t
sufficiently large;
Then,

lim
ε→0

ε2 logP
(

sup
0<t<∞

|W (t)|
g(t)

≤ ε
)

= −π
2

8

∫ ∞
0

g−2(t)dt.

Here we use the convention 1/∞ = 0 and hence we can recover
the finite interval result by taking g(t) = f (t) for t ≤ T and
g(t) =∞ for t > T .
•Related result for symmetric stable processes will be discussed in
lecture 6, together with BM under weighted Lp-norm, 1 ≤ p <∞.



Without loss of generality, we assume
∫∞
0 g−2(t)dt exists and is

finite. The upper estimate follows easily from finite interval case by
observing

lim sup
ε→0

ε2 logP
(

sup
0<t<∞

|W (t)|
g(t)

≤ ε
)

≤ lim sup
ε→0

ε2 logP

(
sup

0<t≤T

|W (t)|
g(t)

≤ ε

)

= −π
2

8

∫ T

0
g−2(t)dt

for any T > 0. Taking T →∞ gives the desired upper bound.
For the lower bound, we have by the weaker correlation inequality
with any 0 < λ < 1 and T > 0,

P
(

sup
0<t<∞

|W (t)|
g(t)

≤ ε
)

= P

(
sup

0<t≤T

|W (t)|
g(t)

≤ ε , sup
T≤t<∞

|W (t)|
g(t)

≤ ε

)

≥ P

(
sup

0<t≤T

|W (t)|
g(t)

≤ λε

)
· P

(
sup

T≤t<∞

|W (t)|
g(t)

≤ (1− λ2)1/2ε

)
.



For the second term in the equation above, we have by using the
time inversion representation {W (t), t > 0} = {tW (1/t), t > 0}
in law

P

(
sup

T≤t<∞

|W (t)|
g(t)

≤ (1− λ2)1/2ε

)
= P

(
sup

0<t≤1/T

|W (t)|
tg(1/t)

≤ (1− λ2)1/2ε

)
Combining things together, we obtain

lim inf
ε→0

ε2 logP
(

sup
0<t<∞

|W (t)|
g(t)

≤ ε
)

≥ lim inf
ε→0

ε2 logP

(
sup

0<t≤T

|W (t)|
g(t)

≤ λε

)
+ lim inf

ε→0
ε2P

(
sup

0<t≤1/T
· · ·

)

= −λ−2π
2

8

∫ T

0

dt

g2(t)
− (1− λ2)−1

π2

8

∫ 1/T

0

dt

t2g2(1/t)

= −λ−2π
2

8

∫ T

0

dt

g2(t)
− (1− λ2)−1

π2

8

∫ ∞
T

dt

g2(t)
.

Taking T →∞ first and then λ→ 1, we obtain the desired lower
estimate and thus finish the whole proof.



Inequality in Chen and Li (2003)

Let X and Y be any two centered independent Gaussian random
vectors in a separable Banach space B with norm ‖ · ‖. We use
| · |µ(X ) to denote the inner product norm induced on the
associated reproducing Hilbert space Hµ by µ = L(X ). Then for
any λ > 0 and ε > 0,

P(‖Y ‖ ≤ ε) ≥ P(‖X‖ ≤ λε) · E exp{−2−1λ2|Y |2µ(X )}.

In particular, for any λ > 0, ε > 0 and δ > 0,

P (‖Y ‖ ≤ ε) · exp{−λ2δ2/2} ≥ P (‖X‖ ≤ λε)P
(
|Y |µ(X ) ≤ δ

)
.

•This inequality provides a powerful way to estimate lower bound
for the class of processes Yt = G (Ct), t ∈ T where G (·) is a
Gaussian process and Ct is an independent ‘clock’. More details in
lecture 7.


