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Separate treatments are analyzed for exponential and power decay
rates. Many estimates are non-asymptotic and hence they can be
applied in the setting of conditional probability.



Direct Probabilistic Arguments and Partitions in Finer
Scale

A basic and important starting point for many probability
estimates is the study of the behavior of the sums of independent
random variables in terms of individual terms. It can be viewed as
a fundamental algebraic property. We will introduce some
techniques such as partitions in finer scale, and also use some
familiar arguments such as exponential Chebyshev’s inequality.
•In the last lecture, we have found the small value probability for
independent sums based on the behavior of its individual terms.
Here we provide direct probabilistic arguments, often separated for
upper and lower bounds. These arguments can be used in the
conditioning setting where the Tauberian type results can not be
applied. We will see such type of arguments for processes running
on independent clocks.
•Once again, we try to emphasis various proofs of the same results
based on different methods.



Simple but Rough Lower Bounds: Polynomial Rate
Lemma: Let V1 ≥ 0 and V2 ≥ 0 be two independent random
variables such that

P(Vi ≤ t) ≥ ci t
αi , i = 1, 2 (0.1)

for all t > 0 small. Then for all t > 0 small

P(V1 + V2 ≤ t) ≥
c1c2α

α1
1 α

α2
2

(α1 + α2)α1+α2
tα1+α2 . (0.2)

Proof: For any 0 < λ < 1, we have

P(V1 + V2 ≤ t) ≥ P(V1 ≤ λt,V2 ≤ (1− λ)t)

= P(V1 ≤ λt) · P(V2 ≤ (1− λ)t)

≥ c1c2λ
α1(1− λ)α2tα1+α2 .

Pick the best parameter λ = α1/(α1 + α2) and the estimate
follows from

max
0<λ<1

λα1(1− λ)α2 =
αα1
1 α

α2
2

(α1 + α2)α1+α2

which can be checked easily by calculus.



Simple and Sharp Lower Bounds: Exponential Rate
Lemma: Let V1 ≥ 0 and V2 ≥ 0 be two independent random
variables such that

logP(Vi ≤ t) ≥ −ci t−αi , i = 1, 2

for all t > 0 small. Then for all t > 0 small

logP(V1+V2 ≤ t) ≥

{
−
(
c
1/(1+α)
1 + c

1/(1+α)
2

)1+α
t−α if α1 = α2 = α > 0

?HW? if α1 6= α2

Proof: The case α1 = α2 = α > 0 follows from

logP(V1 + V2 ≤ t) ≥ logP(V1 ≤ λt) + logP(V2 ≤ (1− λ)t)

≥ −(c1λ
−α + c2(1− λ)−α)t−α.

Pick the best parameter λ = c
1/(1+α)
1 /(c

1/(1+α)
1 + c

1/(1+α)
2 ) and

the estimate follows from

min
0<λ<1

(c1λ
−α + c2(1− λ)−α) =

(
c
1/(1+α)
1 + c

1/(1+α)
2

)1+α
which can be checked easily by calculus. �
HW: Find the estimate in the above theorem for α1 6= α2.



Simple but Rough Upper Bounds: Polynomial Rate

Lemma: Let V1 ≥ 0 and V2 ≥ 0 be two independent random
variables such that

P(Vi ≤ t) ≤ ci t
αi i = 1, 2, (0.3)

for all t > 0 small. Then for all t > 0 small

P(V1 + V2 ≤ t) ≤ c1c2t
α1+α2 (0.4)

Proof: The result follows easily from

P(V1+V2 ≤ t) ≤ P(max(V1,V2) ≤ t) = P(V1 ≤ t)·P(V2 ≤ t) ≤ c1c2t
α1+α2

•A relation between sum and max:

P(max(V1,V2) ≤ t/2) ≤ P(V1 + V2 ≤ t) ≤ P(max(V1,V2) ≤ t).



Simple Upper Bounds: Exponential Rate

Lemma: Let V1 ≥ 0 and V2 ≥ 0 be two independent random
variables such that

logP(Vi ≤ t) ≤ −ci t−αi , i = 1, 2 (0.5)

for all t > 0 small. Then for all t > 0 small

logP(V1 + V2 ≤ t) ≤
{
−(c1 + c2)t−α if α1 = α2 = α > 0
−c2t−α if α1 < α2 = α

(0.6)
Proof: Exact the same argument as the above proof. �
•This is sharp under the assumption α1 6= α2 and not sharp under
the assumption α1 = α2 = α. We can tighten the bound by the
argument given below.



Thm: Let V1 and V2 be independent random variables such that
P(Vi ≤ t) ∼ ci t

αi as t → 0. Then as t → 0

P(V1 + V2 ≤ t) ∼ c1c2
Γ(α1 + 1)Γ(α2 + 1)

Γ(α1 + α2 + 1)
tα1+α2 (0.7)

•Even though this result follows from Tauberian’s theorem given in
the previous lecture, it is still useful and important to give a direct
arguments based on probabilistic arguments. The arguments are
applicable to the conditional setting.



Proof of the Lower Bound

Let m be a large positive integer. First we consider the lower
bound. It is natural to exam the probability in finer scale to obtain

P(V1 + V2 ≤ t) =
m∑
i=1

P
(
i − 1

m
t < V1 ≤

i

m
t,V1 + V2 ≤ t

)

≥
m∑
i=1

P
(
i − 1

m
t < V1 ≤

i

m
t,V2 ≤

m − i

m
t

)

=
m∑
i=1

P
(
i − 1

m
t < V1 ≤

i

m
t

)
· P
(
V2 ≤

m − i

m
t

)

=
m∑
i=1

(
P
(
V1 ≤

i

m
t

)
− P

(
V1 ≤

i − 1

m
t

))
·P
(
V2 ≤

m − i

m
t

)



Proof of the Lower Bound

Let m be a large positive integer. First we consider the lower
bound. It is natural to exam the probability in finer scale to obtain

P(V1 + V2 ≤ t) =
m∑
i=1

P
(
i − 1

m
t < V1 ≤

i

m
t,V1 + V2 ≤ t

)

≥
m∑
i=1

P
(
i − 1

m
t < V1 ≤

i

m
t,V2 ≤

m − i

m
t

)

=
m∑
i=1

P
(
i − 1

m
t < V1 ≤

i

m
t

)
· P
(
V2 ≤

m − i

m
t

)

=
m∑
i=1

(
P
(
V1 ≤

i

m
t

)
− P

(
V1 ≤

i − 1

m
t

))
·P
(
V2 ≤

m − i

m
t

)



Thus we have

lim inf
t→0

t−(α1+α2)P(V1 + V2 ≤ t)

≥
m∑
i=1

(
c1(

i

m
)α1 − c1(

i − 1

m
)α1

)
· c2(

m − i

m
)α2

= c1c2
1

m

m∑
i=1

α1

(qi
m

)α1−1
·
(

1− i

m

)α2

where i − 1 ≤ qi ≤ i is determined by the mean value theorem.
Taking m→∞, we obtain by the approximation of Rimann sums.

lim inf
t→0

t−(α1+α2)P(V1 + V2 ≤ t) ≥ c1c2

∫ 1

0
α1x

α1−1(1− x)α2dx

= c1c2
Γ(α1 + 1)Γ(α2 + 1)

Γ(α1 + α2 + 1)
.



Proof of the Upper Bound

Next we consider the upper bound in the similar way as the lower
bound. It follows that in the finer scale,

P(V1 + V2 ≤ t) =
m∑
i=1

P
(
i − 1

m
t < V1 ≤

i

m
t,V1 + V2 ≤ t

)

≤
m∑
i=1

P
(
i − 1

m
t < V1 ≤

i

m
t,V2 ≤

m − i + 1

m
t

)

=
m∑
i=1

(
P
(
V1 ≤

i

m
t

)
− P

(
V1 ≤

i − 1

m
t

))
·P
(
V2 ≤

m − i + 1

m
t

)



Thus we have

lim sup
t→0

t−(α1+α2)P(V1 + V2 ≤ t)

≤
m∑
i=1

(
c1(

i

m
)α1 − c1(

i − 1

m
)α1

)
· c2(

m − i + 1

m
)α2

= c1c2
1

m

m∑
i=1

α1

(qi
m

)α1−1
·
(

1− i − 1

m

)α2

where i − 1 ≤ qi ≤ i is determined by the mean value theorem.
Taking m→∞, we obtain by the approximation of Rimann sums.

lim sup
t→0

t−(α1+α2)P(V1 + V2 ≤ t) ≤ c1c2

∫ 1

0
α1x

α1−1(1− x)α2dx

= c1c2
Γ(α1 + 1)Γ(α2 + 1)

Γ(α1 + α2 + 1)
.

This finishes the entire proof. �



Probabilistic Arguments for Independent Sums

Similarly, we reprove the following result.
Thm: Let V1 and V2 be independent random variables such that
logP(Vi ≤ t) ∼ −ci t−αi as t → 0. Then as t → 0

logP(V1 + V2 ≤ t)

∼

{
−
(
c
1/(1+α)
1 + c

1/(1+α)
2

)1+α
t−α if α1 = α2 = α > 0

−c2t−α if α1 < α2 = α



Pf: The lower estimates is easy, and also the upper estimate for
α2 > α1 = α. For the upper estimate in the case
α1 = α2 = α > 0, we have

P(V1 + V2 ≤ t) =
m∑
i=1

P
(
i − 1

m
t < V1 ≤

i

m
t,V2 ≤

m − i + 1

m
t

)

≤
m∑
i=1

P
(
i − 1

m
t < V1 ≤

i

m
t

)
· P
(
V2 ≤

m − i + 1

m
t

)

≤
m∑
i=1

P
(
V1 ≤

i

m
t

)
· P
(
V2 ≤

m − i + 1

m
t

)
For any given ε > 0 small, there is a δε > 0 such that for all
0 < t ≤ δε,

logP(Vi ≤ t) ≤ −(1− ε)ci t
−α, i = 1, 2.



Thus

P
(
V1 ≤

i

m
t

)
· P
(
V2 ≤

m − i + 1

m
t

)
≤ exp{−(1− ε) ·

(
c1(i/m)−α + c2(1− (i/m) + (1/m))−α

)
· t−α}

≤ exp{−(1− ε) · min
0≤x≤1

(
c1x
−α + c2(1− x + (1/m))−α

)
· t−α}

Hence we have

lim sup
t→0

t−α logP(V1 + V2 ≤ t) ≤ ...

Taking m→∞ first and then ε→ 0 finishes the proof. Note that
there are m terms in the sum and the number of terms disappeared
by taking t → 0. �
•Note that at the exponential rate, P(V ≤ i/m) is an order of
magnitude different from P(V ≤ (i − 1)/m). Hence dropping the
much smaller term does not change the overall asymptotic. This is
not the case for the polynomial rate.
•The above argument shows that we do have a non-asymptotic
upper estimate in terms of m.



More generally, we have the following results.
Thm: Let V1 ≥ 0 and V2 ≥ 0 be independent random variables
such that

P(Vi ≤ t) ∼ bi t
βi exp{−ci t−αi}

as t → 0. Then as t → 0

P(V1+V2 ≤ t) ∼
{

b12t
β1+β2−α/2 · exp{c12t−α} if α1 = α2 = α > 0

?HW? if α1 < α2 = α

where

b12 = b1b2 (2πα/(1 + α))1/2
(
c
1/(1+α)
1 + c

1/(1+α)
2

)(1+α)/2−β1−β2
·

·c(1+2β1)/2(1+α)
1 c

(1+2β2)/2(1+α)
2

and

c12 =
(
c
1/(1+α)
1 + c

1/(1+α)
2

)1+α
.

•We omit the detailed proofs based on general Tauberian theorems.



Sums, Single Term and Ind. Binomial Sums
The following argument changes the small value estimate into a
simple, but useful upper tail Markov bound and/or bounds on Ind.
Binomial Sums. The idea can also be used in several other
situations.
Lemma: Let Vi be i.i.d non-negative random variables. Then for
any ε > 0 and 0 < λ < 1,

P(
n∑

i=1

Vi ≤ nε) ≤ (1− λ)−1P(V1 ≤ λ−1ε).

In particular, for λ = 1/2,

P(
n∑

i=1

Vi ≤ nε) ≤ 2P(V1 ≤ 2ε).

•Various refinement are possible.

Proof: Note that

n∑
i=1

Vi ≥
n∑

i=1

Vi I(Vi ≥ λ−1ε) ≥ λ−1ε
n∑

i=1

I(Vi ≥ λ−1ε).



Sums, Single Term and Ind. Binomial Sums
The following argument changes the small value estimate into a
simple, but useful upper tail Markov bound and/or bounds on Ind.
Binomial Sums. The idea can also be used in several other
situations.
Lemma: Let Vi be i.i.d non-negative random variables. Then for
any ε > 0 and 0 < λ < 1,

P(
n∑

i=1

Vi ≤ nε) ≤ (1− λ)−1P(V1 ≤ λ−1ε).

In particular, for λ = 1/2,

P(
n∑

i=1

Vi ≤ nε) ≤ 2P(V1 ≤ 2ε).

•Various refinement are possible. Proof: Note that

n∑
i=1

Vi ≥
n∑

i=1

Vi I(Vi ≥ λ−1ε) ≥ λ−1ε
n∑

i=1

I(Vi ≥ λ−1ε).



Hence by Markov’s inequality,

P

(
n∑

i=1

Vi ≤ nε

)
≤ P

(
λ−1ε

n∑
i=1

I(Vi ≥ λ−1ε) ≤ nε

)

= P

(
n∑

i=1

I(Vi < λ−1ε) ≥ (1− λ)n

)

≤ nP(V1 < λ−1ε)

(1− λ)n

which finished the proof. �
•Note that exponential type bounds can be given based on sum of
ind. Bernoulli’s via large deviation. Of course, if we know the
Laplace transform of E exp(−δV ) for δ > 0, then we can use
exponential Chebyshev’s inequality.



Large deviation: Cramer’s Upper Bound

Let {Xi , i ≥ 1} be a sequence of i.i.d. random variables. Then, for
all a ≤ EX1,

P(Sn ≤ na) ≤ e−nI (a),

where I (a) = supλ≥0(−λa− logE e−λX1).
•See e.g., Dembo and Zeitouni (1998) [Theorem 2.2.3] for a more
precise version of Cramer’s Theorem
EX: For i.i.d. p-Bernoulli variables Xi , and for β < p,

P(Sn ≤ βn) ≤ e−n[β log(β/p)+(1−β) log((1−β)/(1−p))].

Various simpler bounds can be found in Shorack and Wellner
(1986, book) and Janson, Luczak and Rucinski (2001, book on
Random Graphs).



•We can also consider Chernoff type bound for ind. Bernoulli sums
(not identical). Set T =

∑n
j=1 Xi where each Xi is a random

indicator variable with P(Xi = 1) = pi = 1− P(Xi = 0). It is
nature to compare T with S ∼ Bi(n, p̄) with
ET = ES =

∑n
i=1 pi = np̄. In fact, it follows from Jensen’s

inequality after taking logarithm that for λ ∈ R,

E eλT =
n∏

i=1

(1 + pi (e
λ − 1)) ≤ (1 + p̄(eλ − 1))n = E eλS .

Consequently, every bound derived from exponential Chebyshev’s
inequality applies to T .
•More general cases, such that independent Xi with 0 ≤ Xi ≤ 1,
can be found in Bennett (1962), Hoeffding (1963), etc.



SVP for the Martingale Limit of a Galton-Watson Tree
Consider the Galton-Watson branching process (Zn)n≥0 with
offspring distribution (pk)k≥0 starting with Z0 = 1. In any
subsequent generation individuals independently produce a random
number of offspring according to P(X = k) = pk . Suppose
m = EX > 1 and EX logX <∞. Then by Kesten-Stigum
theorem, the martingale limit (a.s and in L1)

W = lim
n→∞

Zn

mn

exists and is nontrivial almost surely with EW = 1. WOLG,
assume p0 = 0 and pk < 1 for all k ≥ 1. Then in the case p1 > 0,
there exist constants 0 < c < C <∞ such that for all 0 < ε < 1

cετ ≤ P(W ≤ ε) ≤ Cετ , τ = − log p1/ logm

and in the case p1 = 0, there exist constants 0 < c < C <∞ such
that for all 0 < ε < 1

cε−β/(1−β) ≤ − logP(W ≤ ε) ≤ Cε−β/(1−β).

with ν = min{k ≥ 2 : pk 6= 0} and β = log ν/ logm < 1.



•These results are due to Dubuc (1971a,b) in the p1 > 0 case, and
up to a Tauberian theorem also in the p1 = 0 case, see Bingham
(1988). The proofs are relying on nontrivial complex analysis and
are therefore difficult to generalize, for example to processes with
immigration and/or dependent offsprings.
•Examples, near-constancy phenomena and various refinements,
see Harris (1948), Karlin and McGregor (1968 a,b), Dubuc (1982),
Barlow and Perkins (1987), Goldstein (1987) and Kusuoka (1987),
Bingham (1988), Biggins and Bingham (1991), Biggins and
Bingham (1993), Biggins and Nadarajah (1994), Hambly (1995),
Fleischman and Wachtel (2007, 2009).
•A probabilistic argument is given in Mörters and Ortgiese (2008).



SVP for supercritical branching processes with Immigration

Consider the supercritical branching process with immigration,
denoted by (Zn, n ≥ 0). That is

Z0 = Y0, Zn+1 = X n
1 + X n

2 + · · ·+ X n
Zn

+ Yn+1, n ≥ 0,

where X n
1 ,X

n
2 , · · · are independent and identically distributed with

the same offspring distribution as X , the Y0,Y1, · · · are i.i.d. with
the same immigration distribution {qk , k ≥ 0} and the X ′s and
Y ′s are independent. It is classic result, see Seneta (1970), for
example, that

lim
n→∞

Zn/m
n =W

exists and is finite a.s. if and only if

E log+ Y <∞ and E (X logX ) <∞.

where here and throughout, log+ x = log max(x , 1) ≥ 0.



Thm: (Chu, Li and Ren (2012))
Assume the X logX and logY conditions and p0 = 0.
(a) If 0 < q0 < 1, then

P(W ≤ ε) � ε| log q0|/ logm as ε→ 0+.

(b) If q0 = 0 and p1 > 0, then

logP(W ≤ ε) ∼ − κ| log p1|
2(logm)2

· | log ε|2, as ε→ 0+,

with κ = inf{n : qn > 0}.
(c) If q0 = 0 and p1 = 0, then

logP(W ≤ ε) � −ε−β/(1−β), as ε→ 0+,

with β being defined as in the case without immigration.
(d) If p0 > 0, then

P(W ≤ ε) � ε| log h(ρ)|/ logm, as ε→ 0+,

where ρ is the solution of f (s) = s between (0, 1), and h is the
generating function of immigration.



•The asymptotic � is best possible in the sense that it can not be
improved into the more precise asymptotic ∼.
•The oscillation occurs with immigration even there is no
oscillation without immigration. This is quite unexpected and
demonstrates the significant effects of the immigration.



Basic Ideas of Proofs

•Built on Dubuc’s result without extending the involved analytic
method used.
•Start with the very useful probabilistic approach of Mörters and
Ortgiese (2008), the branching tree heuristic.
•Develop additional powerful arguments to overcome difficulties of
immigration effects.
•Decomposition as infinite sums in distribution, truncation,
exponential Chebyshev’s inequality, estimates of Laplace transform,
Tauberian and exponential Tauberian Theorems.



Fundamental Decomposition
For fixed integer r ≥ 0 and l ≥ 1, let ξr (1), · · · , ξr (Zr ) be the
individuals in generation r , and ηl(j), j = 1, · · · ,Yl be the
individuals of immigration in generation l . Then for any r ≥ 0 and
n ≥ r + 1,

Zn =
Zr∑
i=1

Zn−r (ξr (i)) +
n∑

l=r+1

Yl∑
j=1

Zn−l(ηl(j)).

Here (Zn(v), n ≥ 0) is a supercritical G-W branching process
initiated with one individual v and W (v) is the limit of positive
martingale m−nZn(v).
Divided by mn on both sides, then let n→∞, we get

W = m−r
Zr∑
i=1

W (ξr (i)) +
∞∑

l=r+1

m−l
Yl∑
j=1

W (ηl(j)). (0.8)

For simplicity, we rewrite (0.8) as

W = m−r
Zr∑
i=1

Wi +
∞∑

l=r+1

m−l
Yl∑
j=1

W j
l . (0.9)

Here all the Wi ,W
j
l , i = 1, · · · ,Zr , l = r + 1, · · · , n, j = 1, · · · ,Yl

are independent and identically distributed as W .



Review

Lemma: Assume V is a positive random variable and α > 0 is a
constant.
(i) For constant C > 0,

E e−λV ∼ Cλ−α as λ→∞,

if and only if

P(V ≤ t) ∼ C

Γ(1 + α)
tα as t → 0+.

(ii) The one-sided relation

P(V ≤ t) ≤ C1t
α for some constant C1 > 0 and all t > 0

is equivalent to

E e−λV ≤ C2λ
−α for some constant C2 > 0 and all λ > 0.



Review
Lemma: Assume V is a positive random variable and
α > 0, θ ∈ R, or α = 0, θ > 0 are constants.
(i) For constant C > 0,

logP(V ≤ t) ∼ −Ct−α| log t|θ as t → 0+,

if and only if

logE e−λV ∼ −(1+α)1−θ/(1+α)α−α/(1+α)C 1/(1+α)λα/(1+α)(log λ)θ/(1+α) as λ→∞.

(ii) The one-sided relation

logP(V ≤ t) ≤ −C1t
−α| log t|θ for some constant C1 > 0 and all t > 0

is equivalent to

logE e−λV ≤ −C2λ
α/(1+α)(log λ)θ/(1+α) for some constant C2 > 0 and all λ > 0.

Lemma: Under condition E log+ Y <∞, for any fixed constant
δ > 0, there exists integer l such that

P( max
i≥l+1

Yie
−δi ≤ 1) ≥ e−1.



Basic ideas for Lower bounds

For any ε > 0, let k = kε be the integer such that

m−k ≤ ε < m−k+1, (0.10)

which is equivalent to say that

k − 1 < | log ε|/ logm ≤ k, or k = d| log ε|/ logme. (0.11)

Using the fundamental distribution identity (0.9) with r = 0, we
have for a fixed integer l to be chosen later,

P(W ≤ ε) = P
( ∞∑

i=0

m−i
Yi∑
j=1

W j
i ≤ ε

)

≥ P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
· P
( ∞∑

i=k+l+1

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
.



For the second term, we have by using ε ≥ m−k in (0.10),

P
( ∞∑

i=k+l+1

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
≥ P

( ∞∑
i=k+l+1

m−i
Yi∑
j=1

W j
i ≤

m−k

2

)

= P
( ∞∑

i=l+1

m−i
Yi∑
j=1

W j
i ≤

1

2

)
.

Note that the last equality follows from the independence and
identical distribution of all W j

i ’s and Yi ’s.
Next we have by controlling the size of Yi , i ≥ l + 1.

P
( ∞∑

i=l+1

m−i
Yi∑
j=1

W j
i ≤

1

2

)

≥ P
( ∞∑

i=l+1

m−i
Yi∑
j=1

W j
i ≤

1

2
, max
i≥l+1

Yie
−δi ≤ 1

)

≥ P
( ∞∑

i=l+1

m−i
eδi∑
j=1

W j
i ≤

1

2

)
· P
(

max
i≥l+1

Yie
−δi ≤ 1

)
.



Using Chebyshev’s inequality for the first part, we get

P
( ∞∑

i=l+1

m−i
eδi∑
j=1

W j
i ≤

1

2

)
≥ 1− 2E

∞∑
i=l+1

m−i
eδi∑
j=1

W j
i

= 1− 2eδ(l+1)

(m − eδ)ml
.

We can now choose δ such that eδ < m, and then find large
enough integer l so that

2eδ(l+1)

(m − eδ)ml
<

1

2
.

Combining all estimates together, we obtain that

P
( ∞∑

i=k+l+1

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
≥ P

( ∞∑
i=l+1

m−i
Yi∑
j=1

W j
i ≤

1

2

)
≥ 1

2e
.



Now back to the first part, we have to handle it under conditions
(a) and (b) separately. In the case (a) with q0 > 0, we have the
simple estimate

P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤

ε

2

)
≥ P

(
Y0 = · · · = Yk+l = 0

)
= qk+l+1

0 .

Using k − 1 < | log ε|/ logm, it’s easy to deduce that

qk0 ≥ q0 · q| log ε|/ logm0 = q0ε
| log q0|/ logm.

which finishes the lower bound under condition q0 > 0.



For the case (b) with q0 = 0, we have, recalling the definition of
K = inf{n : qn > 0},

P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤

ε

2

)

≥ P
( k+l∑

i=0

m−i
Yi∑
j=1

W j
i ≤

ε

2
,Y0 = · · · = Yk+l = K

)

= P
( k+l∑

i=0

m−i
K∑
j=1

W j
i ≤

ε

2

)
· qk+l+1

K .



The above probability of sums can be bounded termwise, and thus

P
( k+l∑

i=0

m−i
K∑
j=1

W j
i ≤

ε

2

)

≥ P
(

max
0≤i≤k+l

max
1≤j≤K

m−iW j
i ≤

ε/2

K (k + l + 1)

)
=

k+l∏
i=0

PK

(
m−iW ≤ ε/2

K (k + l + 1)

)

≥
k+l∏
i=0

PK

(
W ≤ mi−k/2

K (k + l + 1)

)
.

where we used the independence of all W j
i ’s in the last equality

and ε ≥ m−k in the last inequality.



Basic ideas for upper bounds

As we can see from the arguments before, only the finite terms are
contributing to the small value probabilities of W. Hence we take
only r = 0 in (0.9), choose suitable cut off k, and focus on
properties of

∑k
l=0m

−l∑Yl
j=1W

j
l .

Let k = kε be the integer defined as in (0.10). Using the
fundamental distribution identity (0.9) with r = 0 and exponential
Chebyshev’s inequality, we have for any λ > 0,

P(W ≤ ε) ≤ P
( k∑

i=0

m−i
Yi∑
j=1

W j
i ≤ ε

)

≤ eλε · E exp

(
− λ

k∑
i=0

m−i
Yi∑
j=1

W j
i

)
.



Notice that all the (W j
i ,Yi , i = 0, · · · , k , j = 1, · · · ) are

independent, we have

E exp

(
− λ

k∑
i=0

m−i
Yi∑
j=1

W j
i

)
=

k∏
i=0

E exp

(
− λm−i

Yi∑
j=1

W j
i

)
.

Conditioning on Yi = 0 or Yi ≥ 1, we have

E exp

(
− λm−i

Yi∑
j=1

W j
i

)
≤ q0 + (1− q0)E exp

(
− λm−iW 1

i

)
≤ q0(1 + δi ),

where

δi = q−10 E exp
(
− λm−iW 1

i

)
= q−10 E exp

(
− λm−iW

)
, i = 0, · · · , k .



Substituting things in and letting λ = ε−1, we obtain

P(W ≤ ε) ≤ eqk+1
0

k∏
i=0

(1 + δi ).

Since k ≥ | log ε|/ logm in (0.11), we have

qk0 ≤ ε| log q0|/ logm.

So we finish the proof by showing

k∑
i=0

log(1 + δi ) ≤
k∑

i=0

δi ≤ M (0.12)

where M > 0 is a constant independent of ε (noticing that the k
depends on ε).



Next we turn to consider a slightly different type of supercritical
branching process with immigration, which is denoted by
(Z̃n, n ≥ 0). The only difference is to assume Z̃0 = 1. The

corresponding limit of Z̃n/m
n is denoted by W̃. Then by simple

computation we get that

W̃ =d W +
W
m

(0.13)

in distribution, as denoted by =d throughout this paper. Due to
(0.13) and the fact that

P(W +W/m ≤ ε) ≥ P(W ≤ ε/2) · P(W/m ≤ ε/2),

P(W +W/m ≤ ε) ≤ P(W ≤ ε) · P(W/m ≤ ε), (0.14)

we can obtain the following result as a consequence of combining
two early results.



Assume p0 = 0.
(a) If p1 > 0 and q0 > 0, then

P(W̃ ≤ ε) � ε| log(p1q0)|/ logm as ε→ 0+.

(b) If p1 > 0 and q0 = 0, then

logP(W̃ ≤ ε) ∼ − κ| log p1|
2(logm)2

| log ε|2 as ε→ 0+,

(c) If p1 = 0, then

logP(W̃ ≤ ε) � −ε−β/(1−β) as ε→ 0+,

(d) If p0 > 0, then

P(W̃ ≤ ε) � ε| log h(ρ)|/ logm, as ε→ 0+.


