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We first formulate several equivalent results for small value
probability, including negative moments, exponential moments,
Laplace transform and Taubirean theorems. The basic techniques
involved are various useful inequalities, motivated from large
deviation estimates.



Laplace Transform and Tauberian Theorems

In general, Tauberian theorems involve a transformation of a class
of objects such as functions, series, sequences. The transformation
is certain type of averaging and must have a continuity property
such that certain limit behavior of the original class implies related
limit behavior of the image of the transformation. A Tauberian
theorem is to reverse the operation, to go from a limit property of
the transform to a limit property of the original class.
•The aim in this lecture is mainly on the behavior of P(V ≤ t) and
the Laplace transform E e−λV , with some applications.
•The standard proofs in analysis is based on Karamata’s method
(1931), see Korevaar (2004, p30-32, p192-194) and Bingham,
Goldie and Teugels (1987).
•Here we only present probabilistic arguments and connections.



Polynomial Rate
Thm: For constants α > 0 and C > 0,

E e−λV ∼ C/λα as λ→∞.

if and only if

P(V ≤ t) ∼ C

Γ(1 + α)
tα as t → 0.

•The following more general statement holds: for α ≥ 0 and slowly
varying function L,

E e−λV ∼ C/(λαL(λ)) as λ→∞.

if and only if

P(V ≤ t) ∼ C

Γ(1 + α)
tα/L(1/t) as t → 0.

•Here we only proof the direction that P implies E since the
argument are instructive and also works even we only have a
one-sided bound on probability.



Observe that using integration by parts or checking by Fubini’s
theorem,

E e−λV =

∫ ∞
0

e−λtdP(V ≤ t) =

∫ ∞
0

λe−λtP(V ≤ t)dt. (0.1)

From the assumption, given any ε > 0 small, there is δε > 0 such
that for all 0 ≤ t ≤ δε,

(1− ε)
C

Γ(α + 1)
tα ≤ P(V ≤ t) ≤ (1 + ε)

C

Γ(α + 1)
tα.

For the lower bound, we have

E e−λV ≥
∫ δε

0
λe−λtP(V ≤ t)dt ≥ (1− ε)

C

Γ(α + 1)

∫ δε

0
λe−λttαdt

and ∫ δε

0
λe−λttαdt = λ−α

∫ δελ

0
e−xxαdx .

Thus

lim inf
λ→∞

λαE e−λV ≥ (1− ε)
C

Γ(α + 1)

∫ ∞
0

e−xxαdx = (1− ε)C .

Taking ε→ 0 gives the desired lower bound.



Similarly, for the upper bound, we have

E e−λV ≤
∫ δε

0
λe−λtP(V ≤ t)dt +

∫ ∞
δε

λe−λtdt

≤ (1 + ε)
C

Γ(α + 1)
λ−α

∫ δελ

0
e−xxαdx + e−δελ

and thus
lim sup
λ→∞

λαE e−λV ≤ (1 + ε)C .

Taking ε→ 0 finishes the proof. �

•The argument from Laplace transform to probability in Korevaar
(2004, p30-32, p192-194) is based on Feller’s continuity theorem
for convergence of a family of transforms. Hence we do not have a
one-sided probabilistic estimates like the proof above. It would be
interesting to find one. The main point is that we may need to use
conditioning argument in probability estimates directly and thus
asymptotic is less useful.
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•Are there a probabilistic flavor arguments for the other direction?
A straightforward argument based on exponential Chebyshev
inequality does not seem work well. In fact, assuming
E e−λV ≤ C/λα for λ > 0 large, we have,

P(V ≤ t) = P(e−λV ≥ e−λt) ≤ eλtE e−λV ≤ Ceλtλ−α

Minimizing the right hand side by taking λ = α/t for t > 0 small,
we obtain under the assumption E e−λV ≤ C/λα,

P(V ≤ t) ≤ C (e/α)αtα

which provides the correct rate but not the best constant.
•The one-sided relation

P(V ≤ t) ≤ C1t
α for some constant C1 > 0 and all t > 0

is equivalent to

E e−λV ≤ C2λ
−α for some constant C2 > 0 and all λ > 0.



Exponential Rate
Thm: For α > 0 and β ∈ R, or α = 0 and β > 0

logP (V ≤ t) ∼ −CV t
−α| log t|β as t → 0+

if and only if

logE e−λV ∼ −(1+α)1−β/(1+α)α−α/(1+α)C
1/(1+α)
V λα/(1+α)(log λ)β/(1+α)

as λ→∞.
•A slightly more general formulation of the above result is given in
Theorem 4.12.9 of Bingham, Goldie and Teugels (1987), and is
called de Bruijn’s exponential Tauberian theorem, see also
Theorem 3 in Kasahara (1978).
•One direction between the two quantities is easy and follows from
the simple connection:

P (V ≤ t) = P (exp(−λV ) ≥ exp(−λt)) ≤ exp(λt)E exp(−λV ),
(0.2)

which is just exponential Chebyshev’s inequality.



We first consider the case α > 0 and β ∈ R and there are four
directions to deal with.
(i). If logE e−λV ≤ −Cλα/(1+α)(log λ)β/(1+α), then from (0.2),

logP(V ≤ t) ≤ λt − Cλα/(1+α)(log λ)β/(1+α)

and thus

lim sup
t→0

tα| log t|−β logP(V ≤ t) ≤ −C (Cα)α(1 + α)β−1−α

by taking λ = (Cα)1+α(1 + α)β−1−αt−(1+α)| log t|β. Note that we
found λ by approximately minimizing the upper bound, i.e, setting
the derivative equals zero and then solving the equation with only
dominating terms.



(ii). If logP(V ≤ t) ≥ −Ct−α| log t|β, then from (0.2)

logE e−λV ≥ −λt − Ct−α| log t|β

and thus

lim inf
λ→∞

λ−α/(1+α)(log λ)−β/(1+α) logE e−λV

≥ −(1 + α)1−β/(1+α)α−α/(1+α)C 1/(1+α)

by taking t1+α = Cαλ−1(log λ/(1 + α))β.

(iii). If logP(V ≤ t) ≤ −Ct−α| log t|β for t ≤ δ, then from (0.1)

logE e−λV ≤
∫ δ

0
λe−λte−Ct

−α| log t|βdt + e−λδ

The rest follows from asymptotic analysis (Laplace method).
(iv). Analytic argument (approximation approach), see Korevaar
(2004). Any there any direct (one-sided) probabilistic argument?
•Next we present an instructive probabilistic argument for (iv) in
the case α = 0 and β > 0.
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Next we present an instructive probabilistic argument in the case
α = 0 and β > 0. It is based on the simple observation that

E exp(−λV ) = E exp(−λV )IV≤t + E exp(−λV )IV>t

≤ P(V ≤ t) + exp(−tλ). (0.3)

(iii)’. If logP(V ≤ t) ≤ −C | log t|β, then from (0.3)

logE e−λV ≤ log
(
e−C | log t|

β
+ e−tλ

)
∼ −C | log λ|β

by taking t = Cλ−1(log λ)β which was picked to make the two
terms approximate equal.
(iv)’. If logE e−λV ≥ −C (log λ)β, then from (0.3),

P(V ≤ t) ≥ e−C(log λ)β−e−tλ = e−C | log t|
β−e−2C | log t|β ∼ e−C | log t|

β

by taking λ = 2Ct−1| log t|β. Note that we have a wide range of
chooses for λ. �
•When the argument in (iii)’ and (iv)’ is directly applied to the
case α > 0, we can obtain the correct rate but not the constant.



•In summary, three useful connections between P(V ≤ t) and
E e−λV are (0.1), (0.2) and (0.3).
Our first application is for sums of independent random variables,
and it is an easy consequence of the Tauberian theorem.

Corollary

If Vi , 1 ≤ i ≤ m, are independent nonnegative random variables
such that

lim
t→0

tα logP (Vi ≤ t) = −di , 1 ≤ i ≤ m,

for 0 < α <∞, then

lim
t→0

tα logP

(
m∑
i=1

Vi ≤ t

)
= −

(
m∑
i=1

d
1/(1+α)
i

)1+α

.

Proof: The result follows from E e−λ
∑m

i=1 Vi =
∏m

i=1 E e−λVi .
•We will present direct probabilistic arguments in the next lecture.



Similarly, we have the following in the case of polynomial rates.

Corollary

If Vi , 1 ≤ i ≤ m, are independent nonnegative random variables
such that

P(Vi ≤ t) ∼ ci t
αi

as t → 0. Then as t → 0

P(
m∑
i=1

Vi ≤ t) ∼

(
m∏
i=1

ci

)
· Γ(1 + α1) · · · Γ(1 + αm)

Γ(1 + α1 + · · ·+ αm)
tα1+···+αm



A typical application: m-th Integrated BM
Let X0(t) = W (t) and

Xm(t) =

∫ t

0
Xm−1(s)ds, t ≥ 0, m ≥ 1,

which is the m’th integrated Brownian motion or the m-fold
primitive. Note that using integration by parts we also have the
representation

Xm(t) =
1

m!

∫ t

0
(t − s)mdW (s), m ≥ 0.

The exact Laplace transform E exp
(
−λ
∫ 1
0 X 2

m(t)dt
)

is computed

in Chen and Li (2003) and one can find from the exact Laplace
transform, for each integer m ≥ 0,

lim
λ→∞

λ−1/(2m+2) logE exp

{
−λ
∫ 1

0
X 2
m(t)dt

}
= −Cm.

where Cm = 2−(2m+1)/(2m+2)
(

sin π
2m+2

)−1
.



Then by the Tauberian theorem, We have

logP
(∫ 1

0
X 2
m(t)dt ≤ ε2

)
∼ 2−1(2m + 1)

(
(2m + 2) sin

π

2m + 2

)−(2m+2)/(2m+1)

ε−2/(2m+1).

•We will use this result in lecture 7.



Feynman Path Integrals
The use of Feynman path integrals to calculate Green functions for
certain elementary potentials has received a lot of attention by
physicists, see Inomata (1988) and its references. Here we briefly
indicate the basic ideas in the calculation of three central forces:
Harmonic oscillator, inverse square and Coulomb potential (or
hydrogen atom).
Consider the Schrödinger equation{

∂u
∂t = σ2

2 ∆u − V (x)u 0 ≤ t ≤ 1
u(0, x) = f (x)

where σ2 > 0, ∆ = ∂2

∂x21
+ · · ·+ ∂2

∂x21
is the Laplace operator and

V : Rn → C is a potential. According to the Feynman-Kac
formula, the solution of (??) can be written in a probabilistic form:

u(t, x , f ) = E x(f (Bσt ) exp{−
∫ t

0
V (Bσs )ds})

where Bσt is the BM with variance σ2 and E x is the expectation
with respect to the measure associated with Bσ starting at x .



The exact formulas and asymptotics as t →∞ can be computed
explicitly for

u(t, 0) = E (exp{−
∫ t

0
V (Bs)ds})

in the case of the following potentials.
(i). Harmonic oscillators, V (x) = λ|x |2;
(ii). Inverse square, V (x) = λ/|x |2;
(iii). Coulomb potential or hydrogen atom, V (x) = λ/|x |
where α is a constant and |x |2 = x21 + · · ·+ x2n , x ∈ Rn.
•See Pitman and Yor (1981, 1982), Inomata (1988), Hu and
Meyer (1988), Hu (1989).



As an example, we consider a general case for the harmonic
oscillator and follow the computation of Revuz and Yor (1991,
p413-414).
Thm: We have

E x exp{−
∫ a

0
|Bt |2dν(dt)} = (ψ(a)n · exp(−1

2
ψ′(0)x)

where φ(t) is the unique positive and non-increasing solution of
the equation

φ′′(t) = −ν(t)ψ(t), 0 ≤ t ≤ a, ψ(0) = 1.

In particular,

E x exp{−λ
2

∫ a

0
|Bt |2dt} = (coth(λa))−n/2 exp{− λx

2 coth(λa)
}

and

logP(

∫ a

0
|Bt |2dt ≤ ε2) ∼ − n

8a2
ε−2



Donsker-Varadhan Theory (1975-9)

In one-dimensional case, the large deviation theory of
Donsker-Varadhan can also be used for certain family of potentials.
Let V (x) ≥ 0 be continuous on R. If V (x)→ +∞ as |x | → ∞,
then the eigenvalue problem

1

2
ψ′′(x)− V (x)ψ(x) = −λψ(x) (0.4)

has a discrete spectrum, and an old result of Kac (1950) is that,
for the least eigenvalue λ1,

lim
t→∞

1

t
logE x exp{−

∫ t

0
V (Bs)ds} = −λ1 (0.5)

where E x denotes expectation on the standard Brownian motion
starting Bs staring at x .



Now from a pure analytic point of view, the least eigenvalue λ1 of
(0.4) has a variation representation formula

λ1 = inf

{∫ ∞
−∞

V (x)ψ2(y)dy +
1

2

∫ ∞
−∞

(ψ′(x))2dx

}
. (0.6)

where the infimum is taken over all ψ ∈ L2 such that∫∞
−∞ ψ

2(x) = 1. Hence it is reasonable to expect that an
expression like the right hand of (0.6) should come from a direct
asymptotic evaluation of E x exp{−

∫ t
0 V (Bs)ds. More important,

such a direct connection will allow us to deal with more general
Brownian functionals, including those for which there is no
associated differential equation at all. This was open for a long
time and was solved by Donsker-Varadhan in a series of remarkable
papers in late 70’s. They developed a whole large deviation theory
for the local times of Markov processes.



The Lp-norm for BM

Thm: For any 1 ≤ p ≤ ∞

lim
ε→0

ε2 logP
(
‖W (t)‖p ≤ ε

)
= −κp

where

κp = 22/pp (λ1(p)/(2 + p))(2+p)/p

and

λ1(p) = inf

{∫ ∞
−∞
|x |pφ2(x)dx +

1

2

∫ ∞
−∞

(
φ′(x)

)2
dx

}
> 0,

the infimum is taken over all φ ∈ L2(−∞,∞) such that∫∞
−∞ φ

2(x)dx = 1.

•The case p = 2 and p =∞ with κ2 = 1/8 and κ∞ = π2/8 are
well known and the exact distributions in terms of infinite series
are known.



From asymptotic point of view for the Laplace transform, Kac
(1951) showed by Feynman-Kac formula and eigenfunction
expansion that

lim
t→∞

1

t
logE exp

{
−
∫ t

0
|W (s)|pds

}
= −λ1(p)

and λ1(p) is the smallest eigenvalue of the operator

Af = −1

2
f ′′(x) + |x |pf (x)

on L2(−∞,∞). Thus we obtain λ1(p) from the classical variation
expression for eigenvalues.
•The theorem is first formulated explicitly this way as an lemma in
Li (2000). It follows from Kac’s result which is by Brownian scaling

lim
λ→∞

λ−2/(2+p) logE exp

{
−λ
∫ 1

0
|W (s)|pds

}
= −λ1(p),

and the exponential Tauberian theorem with α = 2/p.



Some Equivalent Conditions

Next we try to formulate some equivalent conditions for small
values probabilities. There are two types to consider here. One is
the exponential rate P(V ≤ t) ≤ C exp(−ct−α) and the other is
the polynomial rate P(V ≤ t) ≤ Ct−α. We only deal with the
exponential rate here. The polynomial case is left as an exercise.



Some Equivalent Conditions
Thm:

The following conditions are equivalent:
(1). There exist C , c > 0 such that for any t > 0,
P(V ≤ t) ≤ Ce−ct

−α
(small value estimate);

(2). There exist B, b > 0 such that for any λ > 0,

E e−λV ≤ Be−bλ
α/(1+α)

(Laplace transform condition).
(2)′. For any fixed β > 0, there exist B, b > 0 such that for any

λ > 0, E e−λV
β ≤ Be−bλ

α/(β+α)
(Laplace transform condition).

(2)′′. There exist B, b > 0 such that for any λ > 0,

E e−λV
α ≤ Be−bλ

1/2
(Laplace transform condition).

(3). There exists a > 0 such that E eaV
−α

< +∞
(inverse/negative ψα-condition).
(4). For any fixed 0 < γ < α, there exists d > 0 such that for any

λ > 0, E eλV
−γ ≤ Dedλ

α/(α−β)
(Exponential moment condition).

(5). There exist C ′ > 0 such that for any p > 1,
‖V−1‖p = (EV−p)1/p ≤ C ′p1/α, (inverse/negative moment
condition).



Proof: (1) ⇒ (2)′: Note that

E e−λV
β ≤ P(V β ≤ t) + e−λt ≤ e−ct

−α/β
+ e−λt . Taking

λt = ct−α/β finishes the argument.
(2)′ ⇒ (1):

P(V ≤ t) = P(e−λV
β ≥ e−λt

β
)

≤ eλt
β
E e−λV

β ≤ eλt
β−bλα/(β+α) ≤ e−c

′t−α

by taking λtβ = (b/2)λα/(β+α).
(1) ⇒ (3): Take a < c,

E eaV
−α

=

∫ ∞
0

aαxα−1eax
α
P(V−1 > x)dx

≤
∫ ∞
0

aαxα−1 · Ce−(c−a)xαdx < +∞.

(3) ⇒ (2):

E e−λV = E e−λV−aV
−α · eaV−α ≤ sup

v>0
e−λv−av

−α · E eaV
−α
.



(3) ⇒ (4):

E eλV
−γ

= E eλV
−γ−aV−α · eaV−α ≤ sup

u>0
eλu

γ−auα · E eaV
−α
.

(4) ⇒ (5):

EV−p = EV−pe−λV
−γ · eλV−γ

≤ sup
u>0

up/γe−λu · E eλV
−γ ≤ (eγ−1pλ−1)p/γ · Dedλα/(α−γ) .

Taking λα/(α−γ) = p finishes the argument.
(5) ⇒ (1): Note that

P(V ≤ t) = P(V−p ≥ t−p) ≤ tpEV−p ≤ (C ′tp1/α)p.

And we can take p such that C ′tp1/α = e−1.



Corollary

If Vi , 1 ≤ i ≤ m, are independent nonnegative random variables
such that

P (Vi ≤ t) ≤ Cie
−ci t−α , 1 ≤ i ≤ m,

for 0 < α <∞, then

P

(
m∑
i=1

Vi ≤ t

)
≤ −Bme

−bmt−α

•The result follows from E e−λ
∑m

i=1 Vi =
∏m

i=1 E e−λVi .
•We will present direct arguments in the next Lecture.



Moment Inequalities

The problem of providing bounds on the probability that a certain
random variable belongs to a given set, given information on some
of its moments, has a very rich history and many applications.
Here we will focus on small value type.
•The weakest but most general estimate is the straightforward
Chebyshev’s inequality: For any 0 ≤ t < EV = m1,

P(V ≤ t) = P(m1−V ≥ m1−t) ≤ P((m1−V )2 ≥ (m1−t)2) ≤ Var(V )

(m1 − t)2
.

Note the importance of the assumption t < m1 and also that the
right hand side can be bigger than 1 which provides a trivial bound.
•Below we present a refinement and show the technique of using a
shifted Chebyshev’s inequality, by introducing a parameter and
picking the best one at the end, is a very useful trick.



Lemma: For any 0 ≤ t < EV ,

P(V ≤ t) ≤ Var(V )

E (V − t)2
=

Var(V )

Var(V ) + (m1 − t)2
(0.7)

In particular, P(V = 0) ≤ Var(V )
EV 2 =

m2−m2
1

m2
.

•The bound is sharp in the sense that given the first two moments,
m1 = EV and m2 = EV 2, one can construct a random variable
with these moments for which the inequality is an equality. T
•By rewrite the lemma, we have

P(V ≥ t) ≥ (EV − t)2

E (V − t)2

for 0 ≤ t < m1. This provides a minor improvement of the
well-known Paley-Zygmund lower bound: For 0 ≤ t < EV ,

P(V ≥ t) ≥ (EV − t)2

EV 2

which is often applied with t = 0 or t = λEV , 0 < λ < 1. It is
also of interests to note that the proof of Paley-Zygmund is base
on Cauchy-Schwarz inequality applied to V I{V>t}.



Proof: We use the method of Chebyshev’s inequality with a shift
parameter. For any λ > t, we have by Chebyshev’s inequality

P(V ≤ t) = P(λ− V ≥ λ− t) ≤ E (λ− V )2

(λ− t)2
=
λ2 − 2λm1 + m2

(λ− t)2
.

Hence

P(V ≤ t) ≤ inf
λ>t

λ2 − 2λm1 + m2

(λ− t)2
=

m2 −m2
1

m2 −m2
1 + (m1 − t)2

.

where the infimum is archived at

λ = λ0 =
m2 −m1t

m1 − t
> t for t < m1

by simple calculus. This finishes the proof. �



Convex Optimization Approach
Given the first k moments, m0 = 1, m1, · · · ,mk of a random
variable X with domain D ⊂ R, general bounds for P(X ∈ S)
based on Chebyshev’s inequality can be obtained from

P(X ∈ S) ≤ P(g(X ) ≥ 1) ≤ E g(X ) =
k∑

j=0

yjmj (0.8)

where g(x) =
∑k

j=0 yjx
j , g(x) ≥ 0 for any x ∈ D and g(x) ≥ 1 for

any x ∈ S . The best bounds based on this approach is thus

P(X ∈ S) ≤ min
y0,··· ,yk

 k∑
j=0

yjmj

 (0.9)

subject to constrains

k∑
j=0

yjx
j ≥ 0 ∀x ∈ D, and

k∑
j=0

yjx
j ≥ 1 ∀x ∈ S .



In small value estimates, we have D = R+ = [0,∞) and
S = (0, t), 0 ≤ t ≤ m1. It can be checked that (0.7) for P(V ≤ t)
can be found this way. Moreover, the following bound based on
the first three moments is carried out by this approach in Popescu
(1999), see also Bertsimas and Popescu (2005) for an in depth
discussion and history, including multivariate settings.
Thm: For 0 ≤ t ≤ m1,

P(V ≤ t) ≤ 1− (m2 − tm1)3

(m3 − tm2)(m3 − 2tm2 + t2m1)

= 1− (EV (V − t))3

EV 2(V − t) · EV (V − t)2

and the bound is tight.
•Similar method has been used in Li and Liu (2009) for truncated
variance.



The Moments/Probabilistic Method in Combinatorics

In a typical probabilistic proof of the existence of certain
combinatorial result, the basic idea is to define a proper probability
distribution on a class of discrete objects and then to show that
the probability of a certain event is positive. However, many of
these proofs actually give more and show that the probability of
the event considered is not only positive but is large. In fact, most
probabilistic proofs deal with events that hold with high
probability, that is, a probability that tends to one as the size of
the problem grow. This can be seen from examples mentioned
below. On the other hand, many refined results require one to
show that a certain event holds with positive, though very small,
probability. Small value type problems appear often in this setting.
•N. Alon and J. Spencer (2000). The probabilistic method.
•Bollobas (2001), Random Graphs.
•J. Spencer, Random structure and Erdős magic, 2004



Levy Concentration Function

Let X be a random vector in Rn. The Levy concentration function
of X is defined as

L(X , ε) = sup
u∈Rn

P(‖X − u‖2 ≤ ε)

A simple but rather weak bound on Levy concentration function
follows from Paley-Zygmund inequality.
Lemma: Let X be a random variable with unit variance and with
finite fourth moment, and put M4 := E (X −EX )4. Then for every
ε ∈ (0, 1), there exists p = p(M4, ε) ∈ (0, 1) such that L(X , ε) ≤ p.
•There has been significant interests recently in bounding Levy
concentration function for sums of independent random variables;
see Rudelson and Vershynin,(2008, 2009, 2010), Vershynin
(2011+), for discussion for sums, and tensorization to transfer
bounds from random variables to random vectors.



An Edgeworth Curiosum

Let X1 and X2 be i.i.d samples with density fk(x − θ), where

fk(x) = 2−1(k − 1)(1 + |x |)−k , k > 1.

Then for ε > 0 small,

P(|X1 + X2

2
− θ| ≤ ε) ≤ P(|X1 − θ| ≤ ε),

i.e. the sample mean provides a bigger error than a single
observation under the criterion judged by P(|θ̂− θ| ≤ ε) for a given
ε > 0 small.
•This example is based on the poster “Averaging and Edgewood
Expansion”. For a detailed study, see S. Stigler (1980), An
Edgeworth curiosum. Ann. Stat, 8, 931–934.



A Conjecture

For any unit vector u = (u1, · · · , un) ∈ Sn−1, i.e.
∑n

j=1 u
2
j = 1,

P(|
n∑

j=1

εjuj | ≤ 1) ≥ 1

2
.

•An equivalent geometric interpretation of the problem is that any
slab S = {x ∈ Rn : | 〈x , u〉 | ≤ 1} with normal vector u contains at
least half of the vertices of the discrete cube {−1, 1}n ⊂ Rn. The
best known bound is 3/8, I think.
•It is not hard to show a upper bound like

P(|
n∑

j=1

εjuj | ≤ 1/2) ≤ 32

41
.

•Find a better upper bound.



Exercise

Prop: For any positive random variable V ≥ 0 with non-increasing
density, there exist a universal constant c > 0 such that

P(V ≤ ε) ≥ c(EV 2)−1/2 · ε

for all 0 ≤ ε ≤
√
EV 2.

•The condition implies that for any δ > 0, 0 < s ≤ t,

P(s ≤ V ≤ s + δ) ≥ P(t < V ≤ t + δ).

In fact, it is equivalent to ±V is symmetric and unimodal.



A Symmetrization Inequality
For any i.i.d X and Y ,

P(|X + Y | ≤ 1) ≤ 3P(|X − Y | ≤ 1)

where the constant 3 can be replaced by 2, the best possible.


