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There are only a handful of known examples (specific Gaussian
processes) for the one-sided exit asymptotics and it is intellectual
challenging to workout more examples in order to find a theory.

Here we show the only general result known that can provide sharp
estimates at the log level.



The Lower Tail Probability

Let X = (X¢)teT be a real valued Gaussian process indexed by T.
The lower tail probability studies

P <sup(Xt — Xp,) < s) ase—0
teT

with tg € T fixed.

e Known cases: Brownian motion(BM), Brownian bridge, OU
process, integrated BM, fractional BM, and a few more.

e The rate for the integrated fractional Brownian motion is related
to the singularity of Burger's equation, See Sinai (1992), Molchan
(1999, 2001, 2004, 2006).

e The rate for the m-th integrated Brownian motion is related to
the positivity exponent of random polynomials.

eFor d-dimensional Brownian sheet W(t), t € RY,

1
logP [ sup W(t)<e|~ —log9=.
tef0,1]¢ €

eMany open problems remain and new techniques are needed.



Lower tails for fractional BM

A fractional Brownian motion (FBM) B is a centered Gaussian
process with covariance

1
EBtHBSH:§<\t]2H+|s]2H—|t—s|2H), t,s€R,

where 0 < H < 1 is the Hurst parameter. For H = 1/2, this is a
Brownian motion.

eMolchan (1999), Aurzada (2011): For fractional Brownian motion
we have, for some ¢ > 0,

T 0Mlog T)y < <P ( sup BH < 1) < T~ 0=H(log T)e,
0<t<T

eOpen: Remove c.

H@A-H)
oConj: P (sup0<t<1 fo Bfds < 5) = I+A +°(1) see Molchan

and Khokhlov (2003+) for numerical evidence.
eAurzada and Simon (2012+), A survey paper on lower tails.



Integrated processes: Simply integrated r.w.

eAurzada and Dereich (2011+): For X a Levy process or RW with
38> 0: EefXl < ooand EX; =0

t
P| sup ZX <1|=P| sup /Xsds<1 — T 1/4¢0(loglog T)
0<n<T 4 0<t<T Jo

eDembo and Gao (2011+): For X a RW with 33 > 0:
EefX < oo, EXy =0, (4 some regularity cond. for X; ),

: E [ X1 T-1/4 if E(X{")? < o0
Pl su Xi<1l| = = |
(ogngriz:; N ) TE[X] {T—(l—l/W2 if X, in DoA(ax

e\/ysotsky (2011+): For a couple of special cases (all require
38> 0: Ee®X < 00, EX; =0),

P| su Xi<1| ~ T -Ya)/2
(0<nl<)TZ >

if X{" in DoA(a), 1 < a < 2.
eConj: The rate 1/4 holds under E X; = 0 and E X? < oc.



Slepian process
Here is an old problem of the first passage time for the so-called
Slepian process. Let S(t), t > 0, be the Slepian process, which is
the Gaussian process with mean zero and covariance
ES(t)S(s) = (1 — |t — s[)1{js—s|<1}- It is easy to see that S(t) can
be represented in terms of the standard Wiener process W(t) by

S(t)=Ww(t)-W(+1), t=0
The first passage probability
Q(T)=P ( sup S(t) < a>
0<t<T

was studied by many authors. In particular, Slepian (1961) found a
simple expression when T <1 and Shepp (1971) gave an explicit
but very hard to evaluate formula in terms of a T-fold integral for
an integer T and a (2[T] + 2)-fold integral for a non-integer T.
eOpen: Find the limit (exists by sub-additity)

lim n_llogIP’< sup S(t) < a)
n—oo Ostgn



Let ag, a1, ...,an € R be i.i.d.N(0, 1) random variables. Define the

random polynomial
n
fo(x) = Z aix’ .
i=0

Let N, denote the number of real zeros of f,(x).
Dembo, Poonen, Shao and Zeitouni (2002): For n even,

P(N, = 0) = P(f,(x) > 0, Vx € R) = n~b+o)

where

1
b= —4 lim flog}P’< sup Y(s) < 0)

t—oo t 0<s<t

and {Y(t), t > 0} is a centered stationary Gaussian process with

Ty v 26_(t_5)/2
DY) = e
Moreover,
04 < b<2.

Their numerical simulations for degree n < 219 suggest
b= 0.76 + 0.03.



Let W(t), t >0, be the standard Brownian motion starting at 0.
Denote by Wy(t) = ) and

/Wml t>0, m>1.

the m times integrated Brownian motion for positive integer m.
Using integration by parts,

Win(t) = % /Ot(t —$)"dW(s), m>0.

The Gaussian process W,,(t) has been studied from various points
of view in Shepp (1966), Wahba (1978), Lachal (1997) and Chen

and Li (2002). The R™*! valued process

(Wo(t), Wa(t),- -, Wh(t )) is Markov with degenerated generator

+ Xk—17—
3X0 ; a Xk

When m = 1, the process
(Wolt), Wa(£)) = (W(0). Ot W(s)ds)



Li and Shao (2007+), Aurzada, Li and Shao (2012+): There exist
constants r, > and r > 0 such that

IP’< sup Y(s)SO) ~ o)

0<s<logt

IP( sup X(s) ) ~ trted)
0<s<t

| /\

| /\

]P’(sup X(t)

0<t<1

> s €2r+o(1),

IN

IP’( sup W, (t)

0<t<1

€> ~ 6rm+o(1)’

P( sup Wi(s) < 1> ~ ¢ m(2m+1)/2+0(1)

0<s<t

and r,(2m+ 1)/2 decrease to r as m — oo, where X(t) is a
centered Gaussian process with E X (t)X(s) = 2f In particular,

b =4r <1since p =1/6 from McKean (1963), Sinai (1992).
Note that ro = 1 and the scaling Wp,(ct) = c@m™tD/2W, (). The

problems of finding r and r,,, m > 2 are open.



Uniformly Dudley type entropy

Let X = (X¢)teT be a real valued Gaussian random process
indexed by T with mean zero. Define the L?-metric

d(s,t) = (E|Xs — X>)Y/?, s,teT.

For every € > 0 and a subset A of T, let N(A,¢) denote the
minimal number of open balls of radius € for the metric d that are
necessary to cover A.

Fort€ T and h >0, let B(t,h) ={s e T :d(t,s) < h}, and
define a locally and uniformly Dudley type entropy (LUDE) integral

Q:supsup/ (log N(B(t, h),eh))*/?d=
h>0teT Jo

e\We follow Li and Shao (2004) for the rest of this lecture.



An Lower Bound
Assume that Q < oo and ty € T. For § = 1000(1 + Q) , define

A = {teT:d(tt) <0 'x},
A = {teT:0x <d(t, to) < 6x},

where 0 < k < L, L =1+ [logy(D/x)] and D = sup,c 7 d(t, to).
Let Nk(x) := N(Ax, 052x), k=0,1,...,L, and

Thm: Assume that @ < oo and
]E((XS — Xto)(Xt — Xto)) > 0 for s, te T

Then we have

P (sup Xe — Xgy < x> > e N
teT



Pf: We start with a basic application of Slepian’s lemma. Assume
EX;Xs >0and T = A; UA,. Then

P(sup X: < x) > P(sup X; < x) - P(sup X; < x).
teT teAr teAs

To see this clearly, we define the comparison process

_f X(t), teA
(1) = { X*(t), te /1\§A2.

where X*(t) is ind. of X(t) and has the same distribution as X(t)
as a process. Then the condition of Slepian’s lemma is satisfied.
Thus

P(sup X¢ < x) > P(sup X¢ < x)-P( sup X; < x)
teT teA; tEAfAz

and

P( sup X <x)=P( sup X¢<x)>P(sup X; < x)
tEAiAz tEAiAz tEA



Without loss of generality, assume that X;, = 0. Let

Akj,Jj =1, ..., Ni(x) be the open balls of radius 0k—2x for the
metric d that cover Ax, k =0,1,..., L. Then, by the positive
correlation assumption and the Slepian’s lemma

L Ne(x)
}P’<sup(Xt—Xto)§x> 21P’<sup Xt§X> H H IP’(sup Xt§x>

teT teEA_1 k=0 j=1 tEALj

By Dudley (1967), we have

0~ 1x
E sup X(t) < 42/ (log N(A_1,€))?de
teA_; 0

0~ 1x
< 42/ (log N(B(to, 07 x),£))/?de
0

1

— 426 1x / (log N(B(to, 07 1x), 071 x))"/?de
0

< 42Q071x < x/2.

Hence P (suptE,LL1 X < x) =1-P (supteA71 X > x) >1/2.



It suffices to show that

Pl sup X; <0 > et
tEAk’j

for every 1 < j < Ni(x),0 < k < L. Let s be the center of Ay .
Then d(sk,to) > 0% 1x.
Observe that

P sup X <0
tEAk’j

> P (XSM < —ak—lx/4) _P ( sup (Xi — Xy ;) > ek—lx/4>

tE€A,
and

P (Xskd_ < _9k—1X/4> >P(Z>1/4)>e 1 +1072

where Z is N(0,1).



By the definition of A ;, we have

sup d(t,sx;) < 0¥ x
tEAL

and similar to the A_; case,

E sup (X(t) — X,,) < 42Q0*2x.
tEAk,j ’

Hence, it follows from the deviation estimate for Gaussian process,

P ( sup (X¢ — X5, ;) > Hk_lx/4>

tEAk,j

< P osup (Xe — X ;) > E sup (Xe — X, ;) + 0k1x/4 — 42Q0% 2,
tEAK ’ tEAK ’

< P ( sup (Xt — X5,;) > E sup (X; — X5, ;) + Hk_lx/5>

tEAkJ tGAk’j

IN

2exp(—(0/5)%/2) <102
since # = 1000(1 + Q) > 1000.



An Upper Bound

For x > 0,lets;e T,i=1,..., M be a sequence such that for

every |
M
D " |Corr(Xs, — Xy, Xs; — Xey)| < 5/4
j=1
and
d(si, to) = (E|Xs, — X3, )2 > x/2.
Then

P (sup Xt — Xgy < x> < e~ M/10,
teT



A Simple Comparison

Let X = (X4, ..., X»)' be distributed according to N(0,X;), and
Y =(Y1,..., Yy) according to N(0,X,). If £, — X is positive
semidefinite, then for all C C R”,

P(Y € C) > (|Z1]/|E2))/*P(X € C).



A Simple Comparison

Let X = (X4, ..., X»)' be distributed according to N(0,X;), and
Y =(Y1,..., Yy) according to N(0,X,). If £, — X is positive
semidefinite, then for all C C R”,

P(Y € C) > (|Z1]/|E2))/*P(X € C).

Pf: Let fx and fy be the joint density functions of X and Y,
respectively. Since Xy — X7 is positive semidefinite, Z;l — Z;l is
positive semidefinite too, see Bellman (1970), page 59. Hence

1 1,4
fY(X) = (27r)n/2|22|1/2exp(—2x 22 X)
1 1
> - VA it |
= 2n) |5, exp( X )3 x)

(1Z1l/[Z21)!26x ().



Pf of Thm:. Without loss of generality, assume again that
Xty = 0. Let Z;,1 < i < M be i.i.d. standard normal random
variables, X be the covariance matrix of

(X /(EX P21 < i < M)

and X, be the covariance matrix of {3Z;/2,1 < i < M}. By the
assumption

M
> |Corr(Xs, X5)| < 5/4,
j=1
Y, is a dominant principal diagonal matrix. Moreover, by Price

(1951)
det(X1) > (1 —1/4)M

It follows from the assumption again that X, — X5 is also a
dominant principal diagonal matrix and hence is positive
semidefinite.



Thus for all G ¢ RM,
P ((xs,/(Ex§)1/2, i< M)e G)

IN

(det(Zg)/det(Zl))l/ "B ((3Z,/2,i < M) € G)
< 2MP2p((3Z;/2,i < M) € G).

In particular, we have

i<M .
- i<M

P (mastl. < x) = P (ﬂ {Xsi/(EXs%)l/2 < x/(EX§)1/2>

IN

P (ﬂ {X: /(EX2)V2 < 1/2)

i<M

IN

oM/2p (max 37;/2 < 1/2>
i<m

= (P(Z<1/3)M
e—M/10

IN



Cor: Let {X(t),t € [0,1]9} be a centered Gaussian process with
X(0) = 0 and stationary increments, that is

Vitsel0,1]9, E(X;— X)? =%t —s|)

where | - | is Euclidean norm on RY. If there are 0 < a < 3 < 1
such that o(h)/h® is non-decreasing and o(h)/h® non-increasing.
Then there exist 0 < ¢; < ¢ < oo depending only on «, 5 and d
such that for 0 < x < 1/2

1 1
—clog— <loglP | sup X(t) <o(x)]| <clog-—.
X te[0,1]¢ X

In particular we have for the fractional Levy's Brownian motion
L. (t) of order v, i.e. L,(0) =0 and E(Ly(t) — La(s))? = |t — s|*,
O<a<?,

1 1
—cplog = <logP | sup Lo(t) <o(x)| <cilog-—.
X te[0,1]¢ X



Cor: Let {X(t),t €[0,1]9} be a centered Gaussian process with
X(0) =0 and

d
E(X:Xs) =[] %(0’2(1“:') +0%(s;) — o?(|ti — sil))
i=1

for t = (t1,...,tq) and s = (s1, ..., S4), where o is a nondecreasing
function.

If there are 0 < o < 8 < 1 such that o(h)/h® is non-decreasing
and o(h)/h? non-increasing. Then there exist 0 < c3 < ¢4 < oo
depending only on «, 8 and d such that for 0 < x < 1/2

1 1
—a Iogd — <logP | sup X(t) < O'd(X) < - Iogd —
X te[0,1]¢ X

In particular, for d-dimensional Brownian sheet W(t), t € R

1
Iog]P’( sup X(t) Sx) ~ —logd =.

telo,1]d



Proof of the upper bound for d-dimensional Brownian sheet
Let # > 1, L = [logy(1/x)] and

Sk = Qkxl/da k = (kla ) kd)7 1<k <L
so that d(sk,0) = §%1FFkix > x/2. Note that
d . .
|Corr(Xg, X))l = H min(9(ki—i)/2 gUi=k)/2)

i=1
_ Sl lk—il/2,

Therefore for any given k

3 (Cor(X, X)) < Y g Tkl

1<<L 1<<L
d

IN

1+ 91/2(1 _ 9—1/2)d S 5/4

for 6 sufficiently large.



Why lower tail is harder?

Note that we can write

Xl = sup £(X)
feD

so the lower tail formulation is more general than the small ball
problem.

Open: Are there any connections with properties of the generating
compact operator?



Probability of all real zeros for random polynomial
with exponential ensemble
Thm: (Li (2012)). The probability that a random polynomial of
degree n with i.i.d exponentially distributed coefficients has all real
zeros is

n—1 -1
P(All zeros are real) = E H |Uj — Ukl = (H <2k: 1))

1<j<k<n k=1

where U; are i.i.d uniform on the interval [0, 1].
eln particular, we have

1 1 1 1

e_1 e _ = e _ — e _ e _ _
P1 ) P> p3 Py p5 132300

30’ 1050

eAsymptotically, log P(N, = n) ~ —log2 - n? as n — oo.
eThe second identity is a form of Selberg integral.



