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There are only a handful of known examples (specific Gaussian
processes) for the one-sided exit asymptotics and it is intellectual
challenging to workout more examples in order to find a theory.
Here we show the only general result known that can provide sharp
estimates at the log level.



The Lower Tail Probability
Let X = (Xt)t∈T be a real valued Gaussian process indexed by T .
The lower tail probability studies

P
(

sup
t∈T

(Xt − Xt0) ≤ ε
)

as ε→ 0

with t0 ∈ T fixed.
• Known cases: Brownian motion(BM), Brownian bridge, OU
process, integrated BM, fractional BM, and a few more.
• The rate for the integrated fractional Brownian motion is related
to the singularity of Burger’s equation, See Sinai (1992), Molchan
(1999, 2001, 2004, 2006).
• The rate for the m-th integrated Brownian motion is related to
the positivity exponent of random polynomials.
•For d-dimensional Brownian sheet W (t), t ∈ Rd ,

logP

(
sup

t∈[0,1]d
W (t) ≤ ε

)
≈ − logd

1

ε
.

•Many open problems remain and new techniques are needed.



Lower tails for fractional BM
A fractional Brownian motion (FBM) BH is a centered Gaussian
process with covariance

EBH
t BH

s =
1

2

(
|t|2H + |s|2H − |t − s|2H

)
, t, s ∈ R,

where 0 < H < 1 is the Hurst parameter. For H = 1/2, this is a
Brownian motion.
•Molchan (1999), Aurzada (2011): For fractional Brownian motion
we have, for some c > 0,

T−(1−H)(logT )−c ≤ P

(
sup

0≤t≤T
BH
t ≤ 1

)
≤ T−(1−H)(logT )c ,

•Open: Remove c.

•Conj: P
(

sup0≤t≤1
∫ t
0 BH

s ds ≤ ε
)

= ε
H(1−H)
1+H

+o(1), see Molchan

and Khokhlov (2003+) for numerical evidence.
•Aurzada and Simon (2012+), A survey paper on lower tails.



Integrated processes: Simply integrated r.w.
•Aurzada and Dereich (2011+): For X a Levy process or RW with
∃β > 0: E eβ|X1| <∞ and EX1 = 0

P

(
sup

0≤n≤T

n∑
i=1

Xi ≤ 1

)
≈ P

(
sup

0≤t≤T

∫ t

0
Xsds ≤ 1

)
= T−1/4eO(log logT )

•Dembo and Gao (2011+): For X a RW with ∃β > 0:

E eβX
−
1 <∞, EX1 = 0, (+ some regularity cond. for X−1 ),

P

(
sup

0≤n≤T

n∑
i=1

Xi ≤ 1

)
≈

√
E |XT |
T E |X1|

≈

{
T−1/4 if E (X+

1 )2 <∞
T−(1−1/α)/2 if X+

1 in DoA(α)

•Vysotsky (2011+): For a couple of special cases (all require

∃β > 0: E eβX
−
1 <∞, EX1 = 0),

P

(
sup

0≤n≤T

n∑
i=1

Xi ≤ 1

)
∼ cT−(1−1/α)/2,

if X+
1 in DoA(α), 1 < α ≤ 2.

•Conj: The rate 1/4 holds under EX1 = 0 and EX 2
1 <∞.



Slepian process
Here is an old problem of the first passage time for the so-called
Slepian process. Let S(t), t ≥ 0, be the Slepian process, which is
the Gaussian process with mean zero and covariance
ES(t)S(s) = (1− |t − s|)1{|t−s|≤1}. It is easy to see that S(t) can
be represented in terms of the standard Wiener process W (t) by

S(t) = W (t)−W (t + 1), t ≥ 0.

The first passage probability

Qa(T ) = P

(
sup

0≤t≤T
S(t) ≤ a

)
was studied by many authors. In particular, Slepian (1961) found a
simple expression when T ≤ 1 and Shepp (1971) gave an explicit
but very hard to evaluate formula in terms of a T -fold integral for
an integer T and a (2[T ] + 2)-fold integral for a non-integer T .
•Open: Find the limit (exists by sub-additity)

lim
n→∞

n−1 logP
(

sup
0≤t≤n

S(t) ≤ a

)



Let a0, a1, . . . , an ∈ R be i.i.d.N(0, 1) random variables. Define the
random polynomial

fn(x) :=
n∑

i=0

aix
i .

Let Nn denote the number of real zeros of fn(x).
Dembo, Poonen, Shao and Zeitouni (2002): For n even,

P(Nn = 0) = P(fn(x) > 0, ∀x ∈ R) = n−b+o(1)

where

b = −4 lim
t→∞

1

t
logP

(
sup

0≤s≤t
Y (s) ≤ 0

)
and {Y (t), t ≥ 0} is a centered stationary Gaussian process with

EY (t)Y (s) =
2e−(t−s)/2

1 + e−(t−s)

Moreover,
0.4 < b ≤ 2.

Their numerical simulations for degree n ≤ 210 suggest
b ≈ 0.76± 0.03.



Let W (t), t ≥ 0, be the standard Brownian motion starting at 0.
Denote by W0(t) = W (t) and

Wm(t) =

∫ t

0
Wm−1(s)ds, t ≥ 0, m ≥ 1.

the m times integrated Brownian motion for positive integer m.
Using integration by parts,

Wm(t) =
1

m!

∫ t

0
(t − s)mdW (s), m ≥ 0.

The Gaussian process Wm(t) has been studied from various points
of view in Shepp (1966), Wahba (1978), Lachal (1997) and Chen
and Li (2002). The Rm+1 valued process
(W0(t),W1(t), · · · ,Wm(t)) is Markov with degenerated generator

L =
∂2

∂x20
+

m∑
k=1

xk−1
∂

∂xk
.

When m = 1, the process

(W0(t),W1(t)) = (W (t),

∫ t

0
W (s)ds)

is the Kolmogorov diffusion, see Kolmogorov (1934), McKean
(1963) and Groeneboom, Jongbloed and Wellner (1999).



Li and Shao (2007+), Aurzada, Li and Shao (2012+): There exist
constants rm > and r > 0 such that

P

(
sup

0≤s≤log t
Y (s) ≤ 0

)
≈ t−r+o(1),

P
(

sup
0≤s≤t

X (s) ≤ 1

)
≈ t−r+o(1),

P
(

sup
0≤t≤1

X (t) ≤ ε
)
≈ ε2r+o(1),

P
(

sup
0≤t≤1

Wm(t) ≤ ε
)
≈ εrm+o(1),

P
(

sup
0≤s≤t

Wm(s) ≤ 1

)
≈ t−rm(2m+1)/2+o(1)

and rm(2m + 1)/2 decrease to r as m→∞, where X (t) is a
centered Gaussian process with EX (t)X (s) = 2st

t+s . In particular,
b = 4r ≤ 1 since r1 = 1/6 from McKean (1963), Sinai (1992).
Note that r0 = 1 and the scaling Wm(ct) = c(2m+1)/2Wm(t). The
problems of finding r and rm, m ≥ 2 are open.



Uniformly Dudley type entropy

Let X = (Xt)t∈T be a real valued Gaussian random process
indexed by T with mean zero. Define the L2-metric

d(s, t) = (E |Xs − Xt |2)1/2, s, t ∈ T .

For every ε > 0 and a subset A of T , let N(A, ε) denote the
minimal number of open balls of radius ε for the metric d that are
necessary to cover A.

For t ∈ T and h > 0, let B(t, h) = {s ∈ T : d(t, s) ≤ h}, and
define a locally and uniformly Dudley type entropy (LUDE) integral

Q = sup
h>0

sup
t∈T

∫ ∞
0

(logN(B(t, h), εh))1/2dε

•We follow Li and Shao (2004) for the rest of this lecture.



An Lower Bound
Assume that Q <∞ and t0 ∈ T . For θ = 1000(1 + Q) , define

A−1 = {t ∈ T : d(t, t0) ≤ θ−1x},
Ak = {t ∈ T : θk−1x < d(t, t0) ≤ θkx},

where 0 ≤ k ≤ L, L = 1 + [logθ(D/x)] and D = supt∈T d(t, t0).
Let Nk(x) := N(Ak , θ

k−2x), k = 0, 1, ..., L, and

N(x) = 1 +
∑

0≤k≤L
Nk(x).

Thm: Assume that Q <∞ and

E ((Xs − Xt0)(Xt − Xt0)) ≥ 0 for s, t ∈ T

Then we have

P
(

sup
t∈T

Xt − Xt0 ≤ x

)
≥ e−N(x)



Pf: We start with a basic application of Slepian’s lemma. Assume
EXtXs ≥ 0 and T = A1 ∪ A2. Then

P(sup
t∈T

Xt ≤ x) ≥ P( sup
t∈A1

Xt ≤ x) · P( sup
t∈A2

Xt ≤ x).

To see this clearly, we define the comparison process

Y (t) =

{
X (t), t ∈ A1

X ∗(t), t ∈ Ac
1A2.

where X ∗(t) is ind. of X (t) and has the same distribution as X (t)
as a process. Then the condition of Slepian’s lemma is satisfied.
Thus

P(sup
t∈T

Xt ≤ x) ≥ P( sup
t∈A1

Xt ≤ x) · P( sup
t∈Ac

1A2

X ∗t ≤ x)

and

P( sup
t∈Ac

1A2

X ∗t ≤ x) = P( sup
t∈Ac

1A2

Xt ≤ x) ≥ P( sup
t∈A2

Xt ≤ x)



Without loss of generality, assume that Xt0 = 0. Let
Ak,j , j = 1, ...,Nk(x) be the open balls of radius θk−2x for the
metric d that cover Ak , k = 0, 1, ..., L. Then, by the positive
correlation assumption and the Slepian’s lemma

P
(

sup
t∈T

(Xt − Xt0) ≤ x

)
≥ P

(
sup

t∈A−1

Xt ≤ x

)
L∏

k=0

Nk (x)∏
j=1

P

(
sup

t∈Ak,j

Xt ≤ x

)
.

By Dudley (1967), we have

E sup
t∈A−1

X (t) ≤ 42

∫ θ−1x

0
(logN(A−1, ε))1/2dε

≤ 42

∫ θ−1x

0
(logN(B(t0, θ

−1x), ε))1/2dε

= 42θ−1x

∫ 1

0
(logN(B(t0, θ

−1x), εθ−1x))1/2dε

≤ 42Qθ−1x ≤ x/2.

Hence P
(

supt∈A−1
Xt ≤ x

)
= 1− P

(
supt∈A−1

Xt > x
)
≥ 1/2.



It suffices to show that

P

(
sup

t∈Ak,j

Xt ≤ 0

)
≥ e−1

for every 1 ≤ j ≤ Nk(x), 0 ≤ k ≤ L. Let sk,j be the center of Ak,j .
Then d(sk,j , t0) ≥ θk−1x .
Observe that

P

(
sup

t∈Ak,j

Xt ≤ 0

)

≥ P
(
Xsk,j ≤ −θ

k−1x/4
)
− P

(
sup

t∈Ak,j

(Xt − Xsk,j ) > θk−1x/4

)

and

P
(
Xsk,j ≤ −θ

k−1x/4
)
≥ P (Z ≥ 1/4) ≥ e−1 + 10−2.

where Z is N(0, 1).



By the definition of Ak,j , we have

sup
t∈Ak,j

d(t, sk,j) ≤ θk−2x

and similar to the A−1 case,

E sup
t∈Ak,j

(X (t)− Xsk,j ) ≤ 42Qθk−2x .

Hence, it follows from the deviation estimate for Gaussian process,

P

(
sup

t∈Ak,j

(Xt − Xsk,j ) > θk−1x/4

)

≤ P

(
sup

t∈Ak,j

(Xt − Xsk,j ) > E sup
t∈Ak,j

(Xt − Xsk,j ) + θk−1x/4− 42Qθk−2x

)

≤ P

(
sup

t∈Ak,j

(Xt − Xsk,j ) > E sup
t∈Ak,j

(Xt − Xsk,j ) + θk−1x/5

)
≤ 2 exp(−(θ/5)2/2) ≤ 10−2

since θ = 1000(1 + Q) ≥ 1000.



An Upper Bound

For x > 0, let si ∈ T , i = 1, ...,M be a sequence such that for
every i

M∑
j=1

|Corr(Xsi − Xt0 ,Xsj − Xt0)| ≤ 5/4

and
d(si , t0) = (E |Xsi − Xt0 |2)1/2 ≥ x/2.

Then

P
(

sup
t∈T

Xt − Xt0 ≤ x

)
≤ e−M/10.



A Simple Comparison

Let X = (X1, ...,Xn)′ be distributed according to N(0,Σ1), and
Y = (Y1, ...,Yn)′ according to N(0,Σ2). If Σ2 −Σ1 is positive
semidefinite, then for all C ⊂ Rn,

P (Y ∈ C ) ≥ (|Σ1|/|Σ2|)1/2P(X ∈ C).

Pf: Let fX and fY be the joint density functions of X and Y,

respectively. Since Σ2 −Σ1 is positive semidefinite, Σ−1
1 −Σ−1

2 is
positive semidefinite too, see Bellman (1970), page 59. Hence

fY(x) =
1

(2π)n/2|Σ2|1/2
exp

(
− 1

2
x′Σ−1

2 x
)

≥ 1

(2π)n/2|Σ2|1/2
exp

(
− 1

2
x′Σ−1

1 x
)

= (|Σ1|/|Σ2|)1/2fX(x).



A Simple Comparison

Let X = (X1, ...,Xn)′ be distributed according to N(0,Σ1), and
Y = (Y1, ...,Yn)′ according to N(0,Σ2). If Σ2 −Σ1 is positive
semidefinite, then for all C ⊂ Rn,

P (Y ∈ C ) ≥ (|Σ1|/|Σ2|)1/2P(X ∈ C).

Pf: Let fX and fY be the joint density functions of X and Y,

respectively. Since Σ2 −Σ1 is positive semidefinite, Σ−1
1 −Σ−1

2 is
positive semidefinite too, see Bellman (1970), page 59. Hence

fY(x) =
1

(2π)n/2|Σ2|1/2
exp

(
− 1

2
x′Σ−1

2 x
)

≥ 1

(2π)n/2|Σ2|1/2
exp

(
− 1

2
x′Σ−1

1 x
)

= (|Σ1|/|Σ2|)1/2fX(x).



Pf of Thm:. Without loss of generality, assume again that
Xt0 = 0. Let Zi , 1 ≤ i ≤ M be i.i.d. standard normal random
variables, Σ1 be the covariance matrix of

{Xsi/(E |Xsi |
2)1/2, 1 ≤ i ≤ M}

and Σ2 be the covariance matrix of {3Zi/2, 1 ≤ i ≤ M}. By the
assumption

M∑
j=1

|Corr(Xsi ,Xsj )| ≤ 5/4,

Σ1 is a dominant principal diagonal matrix. Moreover, by Price
(1951)

det(Σ1) ≥ (1− 1/4)M

It follows from the assumption again that Σ2 −Σ1 is also a
dominant principal diagonal matrix and hence is positive
semidefinite.



Thus for all G ⊂ RM ,

P
(

(Xsi/(EX 2
si

)1/2, i ≤ M) ∈ G
)

≤
(

det(Σ2)/det(Σ1)
)1/2

P ((3Zi/2, i ≤ M) ∈ G )

≤ 2M/2P ((3Zi/2, i ≤ M) ∈ G ) .

In particular, we have

P
(

max
i≤M

Xsi ≤ x

)
= P

⋂
i≤M
{Xsi/(EX 2

si
)1/2 ≤ x/(EX 2

si
)1/2


≤ P

⋂
i≤M
{Xsi/(EX 2

si
)1/2 ≤ 1/2


≤ 2M/2P

(
max
i≤M

3Zi/2 ≤ 1/2

)
= (21/2P (Z ≤ 1/3))M

≤ e−M/10.



Cor: Let {X (t), t ∈ [0, 1]d} be a centered Gaussian process with
X (0) = 0 and stationary increments, that is

∀ t, s ∈ [0, 1]d , E (Xt − Xs)2 = σ2(|t − s|)

where | · | is Euclidean norm on Rd . If there are 0 < α ≤ β < 1
such that σ(h)/hα is non-decreasing and σ(h)/hβ non-increasing.
Then there exist 0 < c1 ≤ c2 <∞ depending only on α, β and d
such that for 0 < x < 1/2

−c2 log
1

x
≤ logP

(
sup

t∈[0,1]d
X (t) ≤ σ(x)

)
≤ c1 log

1

x
.

In particular we have for the fractional Levy’s Brownian motion
Lα(t) of order α, i.e. Lα(0) = 0 and E (Lα(t)− Lα(s))2 = |t − s|α,
0 < α < 2,

−c2 log
1

x
≤ logP

(
sup

t∈[0,1]d
Lα(t) ≤ σ(x)

)
≤ c1 log

1

x
.



Cor: Let {X (t), t ∈ [0, 1]d} be a centered Gaussian process with
X (0) = 0 and

E (XtXs) =
d∏

i=1

1

2
(σ2(ti ) + σ2(si )− σ2(|ti − si |))

for t = (t1, ..., td) and s = (s1, ..., sd), where σ is a nondecreasing
function.
If there are 0 < α ≤ β < 1 such that σ(h)/hα is non-decreasing
and σ(h)/hβ non-increasing. Then there exist 0 < c3 ≤ c4 <∞
depending only on α, β and d such that for 0 < x < 1/2

−c4 logd
1

x
≤ logP

(
sup

t∈[0,1]d
X (t) ≤ σd(x)

)
≤ −c3 logd

1

x
.

In particular, for d-dimensional Brownian sheet W (t), t ∈ Rd ,

logP

(
sup

t∈[0,1]d
X (t) ≤ x

)
≈ − logd

1

x
.



Proof of the upper bound for d-dimensional Brownian sheet
Let θ > 1, L = [logθ(1/x)] and

sk = θkx1/d , k = (k1, ..., kd), 1 ≤ ki ≤ L

so that d(sk, 0) = θk1+···+kd x ≥ x/2. Note that

|Corr(Xsk ,Xsj)| =
d∏

i=1

min(θ(ki−ji )/2, θ(ji−ki )/2)

= θ−
∑d

i=1 |ki−ji |/2.

Therefore for any given k∑
1≤j≤L

|Corr(Xk,Xj)| ≤
∑

1≤j≤L
θ−

∑d
i=1 |ki−ji |/2

≤ 1 +
2d

θ1/2(1− θ−1/2)d
≤ 5/4

for θ sufficiently large.



Why lower tail is harder?

Note that we can write

‖X‖ = sup
f ∈D

f (X )

so the lower tail formulation is more general than the small ball
problem.

Open: Are there any connections with properties of the generating
compact operator?



Probability of all real zeros for random polynomial
with exponential ensemble

Thm: (Li (2012)). The probability that a random polynomial of
degree n with i.i.d exponentially distributed coefficients has all real
zeros is

P(All zeros are real) = E
∏

1≤j<k≤n
|Uj − Uk | =

(
n−1∏
k=1

(
2k + 1

k

))−1

where Ui are i.i.d uniform on the interval [0, 1].
•In particular, we have

pe1 = 1, pe2 =
1

3
, pe3 =

1

30
, pe4 =

1

1050
pe5 =

1

132300
.

•Asymptotically, logP(Nn = n) ∼ − log 2 · n2 as n→∞.
•The second identity is a form of Selberg integral.


