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We first define the small value (deviation) probability in several
setting, which basically studies the asymptotic rate of approaching
zero for rare events that positive random variables take smaller
values. Benefits and differences of various formulations of small
value probabilities are examined in details, together with
connections to related fields.



Small Value Probability
Small value (deviation) probability studies the asymptotic rate of
approaching zero for rare events that positive random variables
take smaller values. To be more precise, let Vn be a sequence of
non-negative random variables and suppose that some or all of the
probabilities

P (Vn ≤ εn) , P (Vn ≤ C ) , P (Vn ≤ (1− δ)EVn)

tend to zero as n→∞, for εn → 0, some constant C > 0 and
0 < δ ≤ 1. Of course, they are all special cases of P (Vn ≤ hn)→ 0
for some function hn ≥ 0, but examples and applications given
later show the benefits of the separated formulations.

•What is often an important and interesting problem is the
determination of just how “rare” the event {Vn ≤ hn} is, that is,
the study of the small value (deviation) probabilities of Vn

associated with the sequence hn.
•If εn = ε and Vn = ‖X‖, the norm of a random element X on a
separable Banach space, then we are in the setting of small
ball/deviation probabilities.
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Deviations: Large vs Small

• Both are estimates of rare events and depend on one’s point of
view in certain problems.
• Large deviations deal with a class of sets rather than special sets.
And results for special sets may not hold in general.
• Similar techniques can be used, such as exponential Chebychev’s
inequality, change of measure argument, isoperimetric inequalities,
concentration of measure, etc.
• Second order behavior of certain large deviation estimates
depends on small deviation type estimates.
• General theory for small deviations has been developed for
Gaussian processes and measures.



Concentration of Product Measure

The concentration of measure phenomenon for the product
measures has been investigated in depth by Talagrand (1995,
1996) in a remarkable way. His method has been applied to various
interesting cases and produced very good concentration
inequalities. However, his method is technically too complicated.
Hence many people tried to simplify his proof and studied to find
an alternative to reproduce and more ambitiously to extend his
result.
•One of the successful alternatives is the entropy method. See
Ledoux (1996), Massart (2000), Boucheron, Lugosi, Massart
(2000, 2003, 2009), Maurer (2006), Kim, Ko and Lee (2006+,
Entropy method for the left tail), etc.



Some technical difficulties between small and large values
• Let X and Y be two positive r.v’s (not necessarily ind.). Then

P (X + Y > t) ≥ max(P (X > t) ,P (Y > t))

P (X + Y > t) ≤ P (X > δt) + P (Y > (1− δ)t)

but
?? ≤ P (X + Y ≤ ε) ≤ min(P (X ≤ ε) ,P (Y ≤ ε))

• Moment estimates an ≤ EX n ≤ bn can be used for

E eλX =
∞∑
n=0

λn

n!
EX n

but E exp{−λX} is harder to estimate.
• Exponential Tauberian theorem: Let V be a positive random
variable. Then for α > 0

logP (V ≤ ε) ∼ −CV ε
−α as ε→ 0+

if and only if

logE exp(−λV ) ∼ −(1 + α)α−α/(1+α)C
1/(1+α)
V λα/(1+α)

as λ→∞.



EX: Simple Random Walks

Let Xi , i ≥ 1, be i.i.d. random variables with EXi = 0 and
EX 2

i = 1, E exp(t0|X1|) <∞ for t0 > 0, and Sn =
∑n

i=1 Xi . Then
as n→∞ and xn →∞ with xn = o(

√
n)

logP
(

1√
n

max
1≤i≤n

|Si | ≥ xn

)
∼ −1

2
x2n

and as n→∞ and εn → 0,
√
nεn →∞

logP
(

1√
n

max
1≤i≤n

|Si | ≤ εn
)
∼ −π

2

8
ε−2n .

•Open: Find

logP
(

max
1≤i≤n

|Si | ≤ C

)
∼ −??n.

Note that ?? 6= π2/8.



Ex: Let Lµ(n) be the length of the longest increasing subsequence
(or records) in i.i.d sample {(Xi ,Yi )}ni=1 with law µ. Then

lim
n→∞

Lµ(n)√
n

= 2Jµ.

The upper tail is known and for c > 0

lim
n→∞

1√
n

logP
(
Lµ(n) > (2Jµ + c)

√
n
)

= −Uµ(c).

The lower tail is unknown in general, but for 0 < c < 2Jµ

logP
(
Lµ(n) < (2Jµ − c)

√
n
)
≈ −n.

See Deuschel and Zeitouni (1999), Aldous and Diaconis (1999),
Okounkov (2000), and Li (2004+) for Gaussians.
•Open: Find

lim
n→∞

1

n
logP

(
Lµ(n) < (2Jµ − c)

√
n
)
.

There are some recent work on this direction.



EX: Related formulations for BM

•For one-dim Brownian motion B(t) under the sup-norm, we have
by scaling

logP
(

sup
0≤t≤1

|B(t)| ≤ ε
)

= logP

(
sup

0≤t≤T
|B(t)| ≤ 1

)
= logP (τ2 ≥ T )

∼ −π
2

8
· T ∼ −π

2

8

1

ε2

as ε→ 0 and T = ε−2 →∞. Here τ2 = inf {s : |B(s)| ≥ 1} is the
first two-sided exit (or passage) time.
•Lower tail and one sided exit time:

P
(

sup
0≤t≤1

B(t) ≤ ε
)

= P

(
sup

0≤t≤T
B(t) ≤ 1

)
= P (τ1 > T )

= P (|B(T )| ≤ 1) ∼ (2/π)1/2T−1/2 = (2/π)1/2ε

where τ1 = inf {s : B(s) = 1} is the one-sided exit time.



Some Formulations for General Processes

Let X = (Xt)t∈T be a real valued stochastic process (not
necessary Gaussian) indexed by T .
The large deviation under the sup-norm:
P (supt∈T (Xt − Xt0) ≥ λ) as λ→∞.
The small ball (deviation) probability: logP (‖X‖ ≤ ε) as
ε→ 0 for any norm ‖·‖.
The small ball probability under the sup-norm:
P (supt∈T |Xt | ≤ ε) as ε→ 0.
Two-sided exit problem: P (supt∈T |Xt | ≤ 1) as |T | → ∞.
The lower tail probability: P (supt∈T (Xt − Xt0) ≤ ε) as ε→ 0
with t0 ∈ T fixed.
One-sided exit problem: P (supt∈T (Xt − Xt0) ≤ 1) as |T | → ∞.
• The last two types of probability can also be viewed as the first
exit time problems if the process has scaling property. If there is no
scaling, then method of proofs are similar in many settings.



Exit Time, Principal Eigenvalue, Heat Equation
Let D be a smooth open (connected) domain in Rd and τD be the
first exit time of a diffusion with generator A. For bounded domain
D and strong elliptic operator A, by Feynman-Kac formula,

lim
t→∞

t−1 logP (τD > t) = −λ1(D)

where λ1(D) > 0 is the principal eigenvalue of −A in D with
Dirichlet boundary condition.
Ex: Brownian motion in Rd with A = ∆/2. Let

v(x , t) = Px{τD ≥ t} Then v solves

{
∂v
∂t = 1

2∆v in D
v(x , 0) = 1 x ∈ D.

So

this type of results can be viewed as long time behavior of
log v(x , t), which satisfies a nonlinear evolution equation.
• Unbounded domain D and/or degenerated differential operator.
Li (2003), Lifshits and Shi (2003), van den Berg (2004), Kuelbs
and Li (2004), Bañuelos and Carroll (2005), Bañuelos and K.
Bogdan (2005), Bañuelos and DeBlassie (2006).
Conj: The general lower bound in Li (2003) is sharp.



The Wiener-Hopf Equation
The Wiener-Hopf equation

H(x) =

∫ ∞
0

f (x − y)H(y)dy , x ≥ 0

is still an active area of study, even the existence and uniqueness of
a solution.
Spitzer (1956) has obtained a beautiful formula (Spitzer’s identity)
from which one can (in principle at least) calculate the joint
distribution of any pair (max0≤j≤n Sj , Sn) knowing the individual
distributions of the first n partial sums, S0 = 0,Sk = X1 + · · ·+Xk .
He then used it in Spitzer (1957, 1960a,b) to study the
Wiener-Hopf equation. Here is a typical result.
Let f (x) be the density of X , i,e, F (x) =

∫ x
−∞ f (t)dt. If X is

symmetric with characteristic function φ(λ), then

lim
n→∞

n1/2P( max
0≤k≤n

Sk ≤ x) = π−1/2H(x)



where H(x) is the unique solution (in the class of functions that
are non-decreasing, continuous on the right, with H(0) > 0) of the
Wiener-Hopf equation

H(x) =

∫ ∞
0

f (x − y)H(y)dy

and H(0+) = 1. In addition, the Laplace transform of H(x) is
given for λ > 0 by∫ ∞
0−

e−λxdH(x) = 1 +

∫ ∞
0+

e−λxdH(x)

= exp

{
− 1

2π

∫ ∞
−∞

λ

λ2 + t2
log(1− φ(t))dt

}
<∞.

Moreover, if EX 2 = σ2 <∞, then H(x) has the asymptotic
behavior

lim
x→∞

H(x)

x
=

√
2

σ
.

If the variance is infinite, then H(x) = o(x) as x →∞.
• Li and C-H. Zhang (2010+): Purely probabilistic arguments with
bounds on P(max0≤k≤n Sk ≤ x) and H(x) under weaker moment
conditions.



Hamiltonian and Partition Function

One of the basic quantity in various physical models is the
associated Hamiltonian (energy function) H which is a nonnegative
function. The asymptotic behavior of the partition function
(normalizing constant) E e−λH for λ > 0 is of great interests and it
is directly connected with the small value behavior P(H ≤ ε) for
ε > 0 under appropriate scaling.
In the one-dim Edwards model a Brownian path of length t
receives a penalty e−βHt where Ht is the self-intersection local time
of the path and β ∈ (0,∞) is a parameter called the strength of
self-repellence. In fact

Ht =

∫ t

0

∫ t

0
δ(Wu −Wv )dudv =

∫ ∞
−∞

L2(t, x)dx



It is known, see van der Hofstad, den Hollander and König (2002),
that

lim
t→∞

1

t
logE e−βHt = −a∗β2/3

where a∗ ≈ 2.19 is given in terms of the principal eigenvalues of a
one-parameter family of Sturm-Liouville operators. Bounds on a∗

appeared in van der Hofstad (1998).
• Chen and Li (2012+): For the one-dim Edwards model, it is not
hard to show

lim
ε→0

ε2/(p+1) logP{
∫ ∞
−∞

Lp(1, x)dx ≤ ε} = −cp

for some unknown constant cp > 0. Bounds on cp can be given by
using Gaussian techniques.
•Chen (2010), Chen and Rosinski (2011): Renormalization and
asymptotics for physical models.
•Chen, Li, Rosinski and Shao (2011): Large deviations for local
times and intersection local times
•There are close connections between SHE/KPZ (finite
dimensional distributions) and intersection local times.



• Klenke and Morters (2005): Let lm,n(B(0, 1)) be the intersection
local time of m vs n independent Brownian paths in Rd for
d = 2, 3 inside the unit ball B(0, 1) ⊂ Rd . Then

lim
ε→0

logP(lm,n(B(0, 1)) ≤ ε)

− log ε
= −ξd(m, n)

4− d

where ξd(m, n) are called the non-intersection exponents. The
values ξ2(m, n) are found by Lawler, Schramm and Werner based
on SLE. Much less is known in R3.



Hitting Probability of a Set

Let Xt , t ≥ 0, be a fractional Brownian motion on Rd with index
0 < H < 1. Then

P( inf
1≤t≤2

|Xt | ≤ ε)


≈ εd−1/H if d > 1/H
> δ if d < 1/H
≈ (log 1/ε)−?? if d = 1/H

The motivations for extending results classical for Brownian motion
to the fractional Brownian motions are not only the importance of
these processes, but also the force to find proofs that relay upon
general principles at a more fundamental level by moving away
from crucial properties (such as the Markov property) of Brownian
motion. Fractional Brownian motion might not be an object of
central mathematical importance but abstract principles are.



Random graphs
Let G (n, p) be a random graph and ω(G ) denote the number of
vertices in the maximum clique of the graph G .
Thm: For k = o(log n),

P(ω(G (n, 1/2)) ≤ k) = exp(−n2+o(1))

Note that a o(1) in the hyper-exponent leaves lots of room! Also,
It is not difficult to show that ω(G (n, 1/2)) is concentrated at
2 log2 n
Thm: Let P(Xij = 0) = p = pn, P(Xij = 1) = 1− p and

Hn =
∑

1≤i<j<k<m≤n
XijXjkXkmXmi

Then the probability of C4-free is

P(Hn = 0)


→ 1 ifp = O(n−1)

≤ poly. small ifp = n−2/3

≤ exp. small ifp = n−1/2

Open: What is the correct cut off behavior?



Statistical Related Applications

•Gao, Li and Wellner (2010): How many Laplace transforms of
probability measures are there? Related estimates for the bracket
entropy in empirical processes theory are also studied.
•van der Vaart and van Zanten (2008a,b): Statistical applications
for Gaussian priors based on Reproducing kernel Hilbert spaces.
•Nikitin and Pusev (2011): Refined estimates for weighted
L2-norm.
•Gine and Nickl (2012+): Non-parametric estimation, using lower
bounds for small ball probabilities for m-th integrated BM.



Sequential Analysis
Several stopping times which arise from problems in
approximations for sequential point and interval estimation may be
written in the form

tc = inf{n ≥ m : Sn < cnαL(n)},
where Sn = X1 + · · ·+ Xn, X1,X2, · · · are i.i.d. positive r.v’s with
EX 2

1 <∞, L(n) = 1 + O(n−1), α > 1, m ≥ 1 and c > 0.
• The probability of stopped early

P(tc ≤ (1− δ)E tc) ∼ Km,δ · c(m−1)/2α, c → 0,

which is strongly influenced by the initial sample size m.
• The uniform integrability of |t∗c |r in c is determined by the
behavior of

P(X1 ≤ x) or P(Sm ≤ x), x → 0

where t∗c = tc−E tc√
Var(tc )

⇒ N(0, 2α2). See Robbins (1959), Chow and

Robbins (1965), Starr and Woodroofe (1968, 1972), Woodroofe
(1977, 1982), Lai and Siegmund (1977), Yu (1981), Takada
(1992), etc.



Smoothness of the Density via Malliavin Matrix

Consider F = (F 1, · · · ,Fm) : Ω→ Rm with F i ∈ D1,2. Then
Malliavin Matrix of F is

γF = (γ ijF ), γijF =
〈
DF i ,DF j

〉
Thm:(Bouleau-Hirsch) If det(γF ) > 0, a.s, then the law of F is
absolute continuous.
Thm: (Malliavin) If (1) F i ∈ D∞ and (2) E | det γF |−p <∞ for
any p > 0, then F has a C∞ density.
•The condition (ii) is called non-degeneracy for F .
•All these have been extended into theory of SDE and SPDE. It is
curial to check the non-degeneracy condition which is small value
probability.
•Mueller and Nualart (2008): Regularity of the density for the
stochastic heat equation.
•Fei, Hu and Nualart (2011+): convergence of densities.
•Nualart (2010, book): Malliavin Calculus and its Applications.



Smoothness of the Density via Malliavin Matrix
Lemma: Let M(ω) = (mij)n×n be a symmetric nonnegative
definite random matrix with moments of all order for mij . If for
any p ≥ 2

sup
|v |=1

P(vTMv ≤ ε) = O(εp), as ε→ 0+,

Then det(M−1) = (detM)−1 ∈ Lp for all p > 0.
•In many applications of Malliavin calculus to the smoothness of
the density of the solutions of SPDEs, one needs to show the
inverse of the determinant of the Malliavin matrix has moments of
all orders, or equivalently, the determinant of the Malliavin matrix
has negative moments of all orders.
•In fact, the negative moments estimates

EV−p <∞ for any/all p > 0

is equivalent to the upper small value estimates

P(V ≤ ε) ≤ Cpε
p for any/all p > 0, as ε→ 0.



Determinant of Bernoulli Matrices

Let Mn = (±1)n×n be a random matrix whose entries are i.i.d.
Bernoulli random variables with P(±1) = 1/2. This model of
random matrices is of considerable interest in many areas,
including combinatorics, theoretical computer science and
mathematical physics. On the other hand, many basic questions
concerning this model have been open for a long time.
•Hadamard’s inequality: | det(Mn)| ≤ nn/2, with equality if and
only if Mn is an Hadamard matrix.
•For typical value, it is easy to show E (detMn)2 = n! and one is
led to conjecture that | det(Mn)| should be of

√
n! = e−n+o(1)nn/2

with high probability.
•Tao and Vu (2006):
P(| det(±1)| ≤

√
n! exp(−29

√
(n log n))) = o(1).

•Conj: P(| detMn| ≤ (1− δ)
√
n!) = o(1).



Determinant of Bernoulli Matrices: Singularity

For random Bernoulli matrices (±1)n×n with P(±1) = 1/2,

pn = P(smin(±1) = 0) = P(| det(±1)| = 0) = P(| det(±1)| < 2n−1)

≤ (c + o(1))n.

•It is easy to show pn ≥ (1 + o(1))n2/2n−1.
•Komlós (1967): pn = o(1).
•Kahn, Komlós and Szemerédi (1995): c = 0.999.
•Tao and Vu (2007): c = 3/4
•Bourgain, Wood and Vu (2010+): c = 1/

√
2.

Conj: c = 1/2.
•Yes for i.i.d Gaussian under the formulation P(| det(gij)| < 2n−1)
by using the explicit distribution.
•Singularity: It is easy to show

P(| detMn| = 0) ≥ (1 + o(1))n2/2n−1.



The Smallest Singular Value

“The smallest singular value –the hard edge of the spectrum– is
generally more difficult and less amenable to analysis by classical
methods of random matrix theory than the largest singular value,
the ‘soft edge’. The difficulty especially manifests itself for square
matrices or almost square matrices.” —-Rudelson and Vershynin
(2010), Proceedings of ICM.
•Edelman (1988) and Szarek (1991): For i.i.d N(0, 1),

P
(

inf
x∈Sn−1

|Γx | ≤ cεn−1/2
)
≤ Cε.

•Litvak, Pajor, Rudelson, Tomczak-Jaegermann (2005): For
N = (1 + δ)n for some δ > 0,

P (sn(ΓN×n) ≤ c1N) ≤ exp(−c2N)

where γij are i.i.d symmetric r.v’s with certain assumptions on
moments.



•Adamczak, Guedon, Litvak, Pajor, Tomczak-Jaegermann (08, 12):

P
(

inf
x∈Sn−1

|Γx | ≤ cεn−1/2
)
≤ C min(nε, ε+ e−c

√
n) ≤ C ′ε| log ε|2

where Γ is an n × n matrix with independent columns drawn from
an isotropic log-concave probability measure.
•Conj: (AGLPT12) P

(
infx∈Sn−1 |Γx | ≤ cεn−1/2

)
≤ Cε.

•Rudelson and Vershynin (08, 10): For i.i.d (mean zero and
variance one) subgaussian matrix An×n,

P(smin(A) ≤ εn−1/2) ≤ Cε+ cn, ε ≥ 0

where constants C > 0 and 0 < c < 1 depend only on the
subgaussian moment of the entries.
•Part of the arguments in the above remarkable (and useful) result
are based on covering numbers or ε-net for spare or peaked sets.
•Litvak and Rivasplata (2012): Smallest singular value of sparse
random matrices.
•Open: Under suitable condition, find relative simple way to show
P(smin(A) ≤ n−logn) = o(1).



SVP: Gaussians vs Rademachers
•Three Permutation Problem: Let σi , i = 1, 2, 3 be three
permutations on [n]. Is it true that

P

 max
1≤i≤3

max
1≤m≤n

∣∣∣∣∣∣
m∑
j=1

εσi (j)

∣∣∣∣∣∣ ≤ c

 ≥ 1

2n

for some absolute constant c , independent of n?
Yes for N(0, 1) by the weak Gaussian correlation inequality, but No
for εi = ±1, Alantha Newman and Aleksandar Nikolov (2011+).
•Key point: There is no universality in general.
•Assume

∑n
i=1 u

2
i = 1. Is it true that

P

(∣∣∣∣∣
n∑

i=1

εiui

∣∣∣∣∣ ≤ 1

)
≥ 1

2
??

Yes for N(0, 1), but unknown for P(εi = ±1) = 1/2. The best
known lower bound is 3/8.



Littlewood-Offord Type Problems

Let a1, a2, · · · , an be vectors in Rd with |ai | ≥ 1 for all i . Let ηi be
i.i.d r.v’s with P(ηi = 0) = P(ηi = 1) = 1/2. Then

P

(∣∣∣∣∣
n∑

i=1

ηiai

∣∣∣∣∣ ≤ D

)
≤ c√

n
.

where D ≥ 1 is a given constant and c depends only on D.
A considerable literature has been devoted to this problem,
beginning with Erdos (1945). A variety of tools from extremal set
theory and geometry has been used, see Kleitman (1970), Griggs
(1980), Frankl and Füredi (1988).
•Inverse Littlewood-Offord type problems and applications to
singularity of random symmetric matrices, see Tao and Vu (2006,
book), Nguyen and Vu (2011), Nguyen (2011).



Slicing the Cube

A cube of dimension n and side 1 is cut by a hyperplane of
dimension n − 1 through its center. The usual n − 1 measure of
the intersection is bounded between 1 and

√
2. Hensley (1979) and

Ball (1988).
Thm: Let Uj be i.i.d uniform on [−a, a]. Then for any vector

v = (v1, · · · , vn) ∈ Rn with |v | =
(∑n

j=1 v
2
j

)1/2
1

(1 + a2|v |2)1/2
≤ P(|

n∑
j=1

vjUj | ≤ 1) ≤
√

2

(1 + a2|v |2)1/2

Open: Sharp bounds for εk or general symmetric Xj with EX 2
j = 1



Combinatorial Discrepancy
Let (V ,F) be a set system, where V = {1, · · · , n}. Such a
combinatorial structure is often called a hypergraph. The
discrepancy of a set system F ⊂ 2V is

disc(F) = min
χ

max
A∈F

∣∣∣∣∣∑
a∈A

χ(a)

∣∣∣∣∣
where χ ranges over “two-colorings” χ : V → {−1,+1}.
Thm: Any set system (V ,F) such that |V | = |F| = n has O(

√
n)

discrepancy. Some set systems have a matching lower bound.
Equivalently,

P

(
max
F∈F

∣∣∣∣∣∑
v∈F

εv

∣∣∣∣∣ ≤ C
√
n

)
≥ 1

2n

and

P

(
max
F∈F

∣∣∣∣∣∑
v∈F

εv

∣∣∣∣∣ ≤ c
√
n

)
= 0 <

1

2n

for some constants C > c > 0.



Beck-Fiala Conj. (1981): disc(F) ≤ Ct1/2 if |F| ≤ t.
Thm: Let A = (aij), where aij = 0 or 1, be a matrix of size n × n.
Then for some C > 0

P

 max
1≤m≤n

max
1≤k≤n

∣∣∣∣∣∣
m∑
i=1

k∑
j=1

aijεij

∣∣∣∣∣∣ ≤ C (log n)4

 ≥ 1

2n
.

• The Beck-Fiala conjecture implies C (log n)3 bound.
• There is a lower bound of Ω(log n) given in Beck (1981).
Open: Find the correct order of the lower ‘cut off’ function.
•For more details, see Alon and Spencer: The Probabilistic
Method (2000).
Open: Gaussian version.



The k Permutation Conjecture
Let σi , 1 ≤ i ≤ k be k-permutations on [n]. Then

P

(
max

1≤m≤k
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

εσm(i)

∣∣∣∣∣ ≤ c
√
k

)
≥ 1

2n

for some absolute constant c , independent of n.
The k-permutation Conj: disc= Ω(

√
k).

• disc≥ c
√
k via Hadamard matrix.

• disc≤ C (k log n) via the Partial coloring lemma.
• disc≤ C (

√
k log n) via the entropy method.

Gaussian k-permutation Conj: Under the Gaussian correlation
conj. and hk = Ω(

√
k).

P

(
max

1≤m≤k
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

ξσm(i)

∣∣∣∣∣ ≤ hk

)
≥

k∏
m=1

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

ξσm(i)

∣∣∣∣∣ ≤ hk

)

≥
k∏

m=1

exp(−cn/h2k) ≥ 1

2n

• hk = Ω(k) via the weaker Gaussian correlation inequality.



Balancing vectors
Consider an arbitrary pair of symmetric convex bodies, U and V in
Rn. Define β(U,V ) = βn(U,V ) as the smallest r > 0 satisfying
the following: for every sequence u1, · · · , un of vectors in U ⊂ Rn

there exists a choice of signs ε1, · · · , εn = ±1 such that∑n
i=1 εiui ∈ rV . And similarly, define α(U,V ) = αn(U,V ) as the

smallest r > 0 such that
∑m

i=1 εiui ∈ rV for all 1 ≤ m ≤ n.
Clearly, βn(U,V ) ≤ αn(U,V ).
Reformulation: βn(U,V ) is the smallest r > 0 such that for any
ui ∈ U, 1 ≤ i ≤ n,

P

(∥∥∥∥∥
n∑

i=1

εiui

∥∥∥∥∥
V

≤ r

)
≥ 1

2n

and αn(U,V ) is the smallest r > 0 such that for any ui ∈ U,
1 ≤ i ≤ n,

P

(
max

1≤m≤n

∥∥∥∥∥
m∑
i=1

εiui

∥∥∥∥∥
V

≤ r

)
≥ 1

2n

where ‖ · ‖V is the norm with the unit ball V in Rn.



Let Bn
p denote the unit Lp-ball in Rn.

• β(Bn
2 ,B

n
2 ) ≤

√
n, i.e. for any u1, · · · , un ∈ Rn with |ui |2 ≤ 1,

there exist η1, · · · , ηn = ±1 so that

|η1u1 + · · ·+ ηnun| ≤
√
n.

• Komlos Conjecture (197?): β(Bn
2 ,B

n
∞) ≤ C for some absolute

constant C > 0. It is well known that Komlos Conjecture would
imply Beck-Fiala Conjecture.
• Beck and Fiala (1981): β(Bn

1 ,B
n
∞) ≤ 2.

• Spencer (1985, 1986):

c
√
n ≤ β(Bn

∞,B
n
∞) ≤ α(Bn

∞,B
n
∞) ≤ C

√
n

β(Bn
2 ,B

n
∞) ≤ C log n

• Spencer Conj: α(Bn
p ,B

n
p ) ≤ Cn1/2+o(1) for 1 ≤ p <∞.

• Giannopoulos (1997): β(Bn
2 ,V ) ≤ 6 log n if γn(V ) ≥ 1/2 where

γn is the standard n-dimensional Gaussian measure with density
(2π)−n/2e−‖x‖

2
2/2.

• Banaszczyk (1998): β(Bn
2 ,V ) ≤ C if γn(V ) ≥ 1/2 and in

particular, β(Bn
2 ,B

n
∞) ≤ C

√
log n.

Open: All Conj. and results above hold for ξk .



Hadamard Conjecture:
There exists an Hadamard matrix Hn, or n by n matrix with every entry ±1 such that
HHT = nI for every n = 4m, m ≥ 1.

To restate the Hadamard Conjecture, let εij be i.i.d random
variables with P(εij = ±1) = 1/2, 1 ≤ i , j ≤ n. Then the
equivalent formulation of the Hadamard Conjecture is

P

(
max

1≤j 6=k≤n

∣∣∣∣∣
n∑

i=1

εijεik

∣∣∣∣∣ < 1

)
≥ 2−n

2
.

for n = 4m.
Gaussian Hadamard Conjecture: Let ξij , 1 ≤ i , j ≤ n, be i.i.d
standard normal random variables. Then

logP

(
max

1≤j 6=k≤n

∣∣∣∣∣
n∑

i=1

ξijξik

∣∣∣∣∣ < 1

)
≈ −n2.

The quest for proofs of these conjectures is likely to stimulate and
to challenge probabilists for years to come.



Random trigonometric polynomials

Salem and Zygmund (1954): Given complex numbers z1, · · · zn,
there exists a choice of + and − such that

sup
0≤t≤1

∣∣∣∣∣
n∑

k=1

±zke ikt
∣∣∣∣∣ ≤ C

(
log n

n∑
k=1

|zk |2
)1/2

where C is an absolute constant.
Kahane (1980): There is a polynomial

P(z) =
n∑

k=1

e iθk zk

such that

sup
|z|=1
|P(z)| ≤

√
n(1 + O(n−19/34(log n)1/2).

Open: Better estimate?



Some observations

•SVP appears naturally in many problems and they are one of the
basic type of probability estimates that are interesting, useful and
challenging.
•Are we good enough to find the precise order of the decay rate of
SVP?
•In many applications, we only need to find/use weaker estimates.
So we will present various alternative approaches to same type of
problem.



Applications of small deviation probabilities

• Chung’s law of the iterated logarithm
• Lower limits for empirical processes
• Rates of convergence of Strassen’s FLIL
• Rates of convergence of Chung type FLIL
• A Wichura type functional LIL
• Fractal Geometry for Gaussian random fields
• Metric entropy estimates
• Capacity in Wiener space
• Natural Rates of escape for infinite dimensional Brownian
motions
• Asymptotic evaluation of Laplace transform for large time
• Onsager-Machlup functionals
• Random fractal laws of the iterated logarithm
All are discussed in details in a survey paper of Li and Shao (2001).



Additional Relevant Topics
• Volume of Wiener sausage and fractional Brownian sausage
• Classical and average Kolmogorov widths
• Hypercontractivity and comparison of moments of iterated
maxima and minima
• Cascade relations for intersection exponents of planar Brownian
motion
• Estimates of principle eigenvalue of (fractional) Laplacian
• Exit time of Brownian motion from unbounded domain, principal
eigenvalue, heat equation
• Entropy and quantization of Gaussian measure
• Regularity of density for functionals of Gaussian processes
• Decaying turbulent transport
• Random sum of vectors
• Cube slicing
• Dvoretzky theorem in geometric functional analysis, negative
moments of a norm
• Hamiltonian and Partition Function
• The Wiener-Hopf Equation



• Longest increasing subsequences, longest common increasing
subsequences
• Determinant of random matrix
• Littlewood and Offord type problems
• Existence in random graphs.
• Combinatorial discrepancy.
• Hadamard conjecture.
• Most visit sites via isomorphism theorems
• Singularity of Burgers equation
• Galton-Watson tree and limit of positive Martingale.
• Gaussian free fields
• Singular values and conditional numbers
• Banach-Mazur distances and projection

• Etc. (please let me know)



References and Activities

Mikhail Lifshits maintains an excellent updated bibliography at
http://www.proba.jussieu.fr/pageperso/smalldev/
•This bibliography contains ”all” known published and not yet
published articles concerning estimates and asymptotic behaviour
of small deviation probabilities. Last update: Dec. 2011
•Everyone is encouraged to send corrections and new references.
•This site is devoted to the study of various small value problems in
mathematics. Special interest is paid to evaluating small deviation
probabilities for stochastic processes and their relationships with
metric entropy for operators, as well as applications in - but by no
means limited to - functional analysis, random graphs, discrepency
theory, geometry in Banach spaces, wavelet decompositions, fractal
geometry, quantization, coding theory.
•The articles on applications of small deviation theory (e.g. to the
laws of iterated logarithm or to quantization problems) are NOT
included unless they contain original small deviation results.



Small Value Theory

We believe a theory of small value phenomenon should be
developed and centered on:
• systematically studies of the existing techniques and applications
• applications of the existing methods to a variety of fields
• new techniques and problems motivated by current interests of
advancing knowledge.



Typical Small Value Behavior
To make precise the meaning of typical behaviors that positive
random variables take smaller values, consider a family of
non-negative random variables {Yt , t ∈ T} with index set T . We
are interested in evaluation E inft∈T Yt or its asymptotic behavior
as the size of the index set T goes to infinity.
Ex: The first passage percolation indexed by paths.
Ex: Random assignment type problems indexed by permutations.
Conj: (Li and Shao) For any centered Gaussian r.v’s (Xi )

n
i=1,

E min
1≤i≤n

|Xi | ≥ E min
1≤i≤n

|X̂i |

where X̂i are ind. centered Gaussian with E X̂ 2
i = EX 2

i .
Yes for n = 2, 3.
Gordon, Litvak, Schutt and Werner (2006):

2E min
1≤i≤n

|Xi | ≥ E min
1≤i≤n

|X̂i |



Expected Lengths of Minimum Spanning Tree (MST)
For a simple, finite, and connected graph G with vertex set V (G )
and edge set E (G ), we assign a non-negative i.i.d random length
ξe with distribution F to each edge e ∈ E (G ). The total length of
the MST is denoted by

LFMST (G ) = min
T

∑
e∈T

ξe =
∑

e∈MST (G)

ξe .

In particular, we use the notation E[LuMST (G )] for U(0, 1) and
E[LeMST (G )] for exp(1).
•Frieze (1985): For complete graph Kn on n vertices,

lim
n→∞

E[LeMST (Kn)] = lim
n→∞

E[LuMST (Kn)] = ζ(3) =
∞∑
k=1

k−3 = 1.202...

See related results in Steele (1987), Frieze and McDiarmid (1989),
Janson (1995). Pennose (1998), Beveridge, Frieze McDiarmid
(1998), Frieze, Ruszink and Thoma (2000), Fill and Steele (2004),
Gamarnik (2005).



Exact Formula

•Steele (2002):

E[LuMST (G )] =

∫ 1

0

(1− t)

t

Tx(G ; 1/t, 1/(1− t))

T (G ; 1/t, 1/(1− t))
dt,

where T (G : x , y) is the Tutte polynomial of G and Tx(G ; x , y) is
the partial derivative of T (G ; x , y) with respect to x .
•Li and X. Zhang (2009): For complete graph Kn,

0 < E[LeMST (Kn)]− E[LuMST (Kn)] =
ζ(3)

n
+ O

(
n−2 log2 n

)
.



Combinatorial Optimization
The TSP (travelling salesman problem, i.e. find the shortest route
through a set of points) is the paradigm problem in this area.
• Let Ln = minσ

∑n
i=1 |Xσ(i) − Xσ(i+1)| be the shortest tour of n

i.i.d uniform points {X1, · · · ,Xn} ⊂ [0, 1]d . Then
E Ln/n

(d−1)/d → β(d). Find “good” estimates on β(d).
• Does the Central Limit Theorem hold, i.e. does the length of the
optimal tour have a Normal distribution as n tends to infinity?
• Can one prove anything about the geometric structure of the
optimal tour?
• Two-sample matching: There is 0 < c0 < c1 <∞ such that

c0 ≤
EMn√
n log n

≤ c1, c0 ≤
EM∗n

n−1/2(log n)3/4
≤ c1

where
Mn = minσ

∑n
i=1 |Xi − Yσ(i)|, M∗n = minσ max1≤i≤n |Xi − Yσ(i)|

and {Xi} and {Yi} are i.i.d uniform samples on [0, 1]2. Show the
limiting constants exists.


