Metric Entropy in Learning Theory and

Small Deviations

Thomas Kuhn

Universitat Leipzig, Germany

NSF/CBMS Regional Conference in Mathematical Sciences
"Small Deviation Probabilities: Theory and Applications”
University of Alabama in Huntsville, 4-8 June 2012



Outline of the talk

. Introduction to Learning Theory - some examples
. A formal model of learning
. Error analysis and entropy numbers

. Covering numbers of Gaussian RKHs and

small deviations of smooth Gaussian processes



1. A short introduction to Learning Theory



1. A short introduction to Learning Theory

@ Learning Theory
— goal: to approximate an unknown function (or some features
of a function) from data samples, possibly perturbed by noise
— Learning Theory relies on
— statistics (draw information from random samples)
— approximation theory
— functional analysis



1. A short introduction to Learning Theory

@ Learning Theory
— goal: to approximate an unknown function (or some features
of a function) from data samples, possibly perturbed by noise
— Learning Theory relies on
— statistics (draw information from random samples)
— approximation theory
— functional analysis

o Literature
— Monograph by Felipe Cucker and Ding-Xuan Zhou
"Learning Theory. An Approximation Theory Viewpoint”
Cambridge University Press 2007

— Survey Article by Felipe Cucker and Steve Smale
"On the mathematical foundations of learning”
Bull. Amer. Math. Soc. 39 (2002), 1-49.
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@ Example 1. Linear regression
— Let m data points (21,Y1); -, (Tm,Ym) € R? be given.
— We seek the line y = ax + b that fits best to the data.
— This line should minimize the quadratic error

m

Q(a,b) =Y (y; — ax; — b)*

=1

o Example 2. Curve fitting

— Assume a physical law is goverened by an unknown function f: R — R,
which can be parametrized by NV parameters, e.g.

f=rfa= Z;l:o a;x) = polynomial of degree < d, i.e. N=d+1

— exact measurements ~ y; = f(x;)
— noisy data ~ y; = f(x;) + £, where € is a r.v. of mean 0
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— We seek the coefficient vector a = (ag, a1, ..., a4) € R such that

m

> (fals) = yi)* — min.
i=1
— Noisy data. Let €, z € R, be a family of random variables with
Ee; = f(x). Then the y; are drawn randomly from e ;.

— Sometimes: z; chosen randomly from a probability px on R.
— More general starting point:
measure p on R x R capturing both px and e,.
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@ Example 3. Pattern recognition

X — matrices with entries in the interval [0, 1]
Interpretation: Each entry represents a pixel in a gray scale
of a digitized photograph of a handwritten letter A,B,...,Z.

Y ={y=())€R?®:\; >0,5 \j =1} with the interpretation
A1 = Prob(x = A), Ao = Prob(x = B), ..., \a¢ = Prob(z = Z)

— Goal: to learn the ideal function f: X — Y which associates to a
handwritten letter the vector y of probabilities.

—"Learning” f means to find a good approximation to f
within a given class.

— The approximation to f is constructed from a set of samples of
handwritten letters x, each with a label .

— Samples (z;,y;) are drawn randomly from a probability p on X x Y.

— In practice, p is concentrated around pairs (z,e;).

— The function f to be learned is the regression function f,.

Roughly speaking: f,(x) = average of the y-values of {z} x Y
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X — a compact metric space (e.g. a domain in R")
Y = RF — for simplicity k = 1
p — a probability measure on Z := X xY

(Least squares ) error of f: X — Y

E(f) =E(f,) = /Z (F(z) — )% dp

— The local error for input  and output y is (f(z) — y)2.
~ E(f) = average over X x Y of the local errors
— Problem. Which f minimizes the error £(f)?
px = marginal probability of p on X, i.e.

px(A)=p{(z,y) e X xY :z € A}) , AcCX.

p(.|x) = conditional probability w.r.to z on Y
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By Fubini we have for p-integrable g(z,y)

/Xxyg(f”’” dp = /X (/Y 9(z,y) dp(y\rc)) dpx (z).

The regression function f, : X — Y of f is defined as

f(x) = /Y ydp(yle)

General assumption. f, is bounded

Further notation.

2 o _ T 2 T
o2 (x) = /Y (v — f(2))? dplylz)

oi ::/XJQ(x)de =E(fp).

o, measures how well conditioned p is.
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Proposition. For every f: X — Y we have

E(f) = /X (F(2) — o) dpx + 2.

Proof. By definition of f, we have [, (f,(z) —y) dp(ylz) =0
for all x € X, whence

E(f) = / (@) o)+ fo(x) —y)2dp
- / () — fp(@))? dpx () + / (fo(x) — )2 dp
X

XxY

-~

—g2
=0,

+2. /X () - Fole)) /Y (fo(@) — y) dp(y]z) dpx ().

-~

=0

~ E(f)> 03 This lower bound for the error depends only on p.
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Sampling.

— Draw m pairs (x;,y;) independently according to p.
~sample zeZ™ | z=((x1,91), -, (Tm;Ym))

— Empirical mean of a r.v. £ w.r.to the sample z € Z™

m

By 6= > 6

i=1
— Empirical error of f w.r.to the sample z € Z™

m

Z(f(l“i) - yi)2

1
m <
=1

E(f) =

— For f: X — Y define the function
fy X xY =Y by fy(z,y):=f(z)-y.

A~ E(f)=Ef2 and &(f) =E.f2
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Hypothesis spaces and target functions.
Let C'(X) be the Banach space of continuous functions on X, eqquipped
with the sup- norm || f||cc = sup | f(z)]
zeX
Hypothesis space — a (typically compact) subset H of C(X)

Target function — any function fy € H that minimizes the error £(f)
over f € H, i.e. any optimizer of

i [ (£() — 9 dp.
Z

feH

We have E(f) = [ (f — fo)? JrO'Z ~  fy is also an optimizer of

iy [ (71, dpx
X

feH
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Lz(f) = LP,Z(f) = S(f) - gz(f)

Definition. We say, f : X — Y is M-bounded, if for some subset U C Z
with p(U) =1 and all (z,y) € U,

|f(z) —y| <M.

Proposition. For any two M-bounded functions and all z € U™,

‘Lz(fl) - Lz(f2)‘ < 4M - ||f1 - f2||oo .

Proof. From  (fi(x) ~ y)* ~ (falx) — y)*
= ((h@) =) = (£22) =) (1(2) = fale)  we get
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) = £ < [ (| =i+ |fale) =31 @) — @] dp

<M <M <lfi—f2lloo

A similar argument applies for z € U™,

‘gz(fl) - gz(fZ)’ < 2M - ||f1 - f2||oo

and by triangle inequality the proof is finished.

Consequences.
1. The error functions &,&,:H — R are continuous.

2. If H is a compact subset of C'(X) such that all f € H are M-bounded,
then the (not necessarily unique) minimizers f;; and f, exist.
If H is convex and compact, then fj is unique.)
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3. Error analysis and metric entropy

Recall = [x(f ())*dpx + o
Taking f fZ and usmg S|m||ar arguments as in the proof gives

E(f) = /X (fal@) — fr(@)) dpx

= sample error E1¢(fz)

+ /X () — fo(@))? dpx + 02

= approximation error £(f3)

— The sample error depends on p only through the sample z € Z™
~ bounds will hold only with a certain confidence

— The approximation error depends heavily on p through fp.
~ bounds will depend on parameters measuring the behaviour of f,

Goal. Show that under appropriate assumptions on p and H,
En(fz) becomes arbitrarily small with high probability as m — oc.
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Now SMALL DEVIATIONS come into play!

Hoeffding's inequality. Let & be a random variable on a probability space
Z with mean E¢ = o and [£(z) — u| < M for almost all z € Z. Then, for

all e >0,
P 1i§(z) >e| <e me?
— i) — > <exp|—=—= ) .
m = a P 7oz

Here P means the probability of all z = (z;) € Z™ satisfying the
respective inequality.

Proof. follows from Markov's inequality, Taylor's expansion of the
exponential function, and convexity of exp(cz).

Let f: X — Y be M-bounded , i.e. |f(z) —y| < M almost surely.
For the random variable ¢ = (f(z) —y)2 on Z = X x Y we have

EE=0 and ¢ < M2,
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We can apply Hoeffding's inequality to &, this gives — for any fixed f —a
bound on the defect function L, = E(f) — &,(f), where z € Z™.

P(Ly(f) 2 2) < exp (—;\i)

At this point METRIC ENTROPY shows up, in the form of covering
numbers.

Assume that H = By U ... U By and consider the events

A:{zeZm:supLz(f)ze} , Aj= {ZEZ’": sup Lz(f)ze}

fer f€B;

Then A = ngl A, whence P(A4) < Z§:1 P(A;), ie.

IP’(supL ) ZP( sup Ly( )

feM o \feB;
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Let now ¢ = N (H, g57) and choose fi, ..., f¢ such that the balls B; with
centers f; and radius g; cover H.

let U C Z be a subset of full measure such that

sup |f(x) —y| <M forallzeU.
feH

For all f € Bj and all z € U we have

[ La(f) = La(fi)| < AM - |[f = filloo < 4M - W

w\m

Triangle inequality gives: SUpPfep; L,(f) > e = Li(fj) > 5

and consequently we obtain from Hoeffding's inequality,

P(fgg_ L,(f) = 6) ( (f5) = ) < eXp( %) :



Putting everything together we get the following uniform bound for the
defect.
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Putting everything together we get the following uniform bound for the
defect.
Theorem. Let H be a compact M-bounded subset of C'(X). Then, for all
e>0andallme N,

2

PZGZM(?EELZU) < 6) >1 —N<H, 8LM) eXP<— g\;)-

The same technique gives similar bounds for the sample error.

e (i1 £2) 21~ V() 1] oo (- ).
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4. Covering numbers of Gaussian RKHSs and
small deviations of Gaussian random fields

@ The positive definite Gaussian kernel
K(z,y) = exp(=c?llz —y[l3) , w,ye(0,1]? , o>0,

generates a RKHS H, ([0, 1]¢) which is compactly embedded in
C([0,1]9). In particular, the unit ball in H, often serves as
hypothesis space H in learning theory. As shown before, covering
numbers are of central importance in the error analyis.

e Kiihn (J. Complexity 2011) The covering numbers A (g) of the unit
ball of H,([0,1]%), considered as a compact subset of C([0,1]%),
behave asymptotically like

1 1 d+1
log N (g) ~ (log 2)

— as €—0.
(1oglogé)'

The same is true, if we consider the unit ball as a subset of
L,([0,1]%), 2 < p < oc.
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2. Our proof uses an explicit description of an ONB in Gaussian
RKHSs, due to Steinwart/Hush/Scovel 2006.



@ Remarks.
1. This improves earlier results of Ding-Xuan Zhou 2002/2003.

He showed (log %)g < N(g) < (log 1)4*!

, . d
and conjectured that the correct bound is (log %)2+1 .

2. Our proof uses an explicit description of an ONB in Gaussian
RKHSs, due to Steinwart/Hush/Scovel 2006.

@ Application to smooth Gaussian processes.
Let X = X(¢),t € T, be a centered Gaussian process with values in
a Banach space E (mostly E'= Lg or C or Ly,). There is a close
connection between small deviation probabilities of X

P(X[g<e) , >0
and entropy numbers of operators S : H — E with
EeiXa) — o—lS"all?/2 . acFE.

(This relation between X and S can also be expressed by the
covariance structure of X.) Details of the small deviation — entropy
connection have been explained in the talks of Wenbo.
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The same estimates hold for all L,-norms with 2 < p < oco.

THANK YOU FOR YOUR ATTENTION!



