Metric Entropy in Learning Theory and Small Deviations

Thomas Kühn

Universität Leipzig, Germany

NSF/CBMS Regional Conference in Mathematical Sciences "Small Deviation Probabilities: Theory and Applications" University of Alabama in Huntsville, 4-8 June 2012

Outline of the talk

- 1. Introduction to Learning Theory some examples
- 2. A formal model of learning
- 3. Error analysis and entropy numbers
- 4. Covering numbers of Gaussian RKHs and small deviations of smooth Gaussian processes

1. A short introduction to Learning Theory

1. A short introduction to Learning Theory

• Learning Theory

- goal: to approximate an unknown function (or some features of a function) from data samples, possibly perturbed by noise
- Learning Theory relies on
 - statistics (draw information from random samples)
 - approximation theory
 - functional analysis

1. A short introduction to Learning Theory

• Learning Theory

- goal: to approximate an unknown function (or some features of a function) from data samples, possibly perturbed by noise
- Learning Theory relies on
 - statistics (draw information from random samples)
 - approximation theory
 - functional analysis

• Literature

- Monograph by Felipe Cucker and Ding-Xuan Zhou

"Learning Theory. An Approximation Theory Viewpoint" Cambridge University Press 2007

- Survey Article by Felipe Cucker and Steve Smale "On the mathematical foundations of learning" Bull. Amer. Math. Soc. 39 (2002), 1–49.

- Let m data points $(x_1, y_1), ..., (x_m, y_m) \in \mathbb{R}^2$ be given.

- Let m data points $(x_1, y_1), ..., (x_m, y_m) \in \mathbb{R}^2$ be given.
- We seek the line y = ax + b that fits best to the data.

- Let m data points $(x_1, y_1), ..., (x_m, y_m) \in \mathbb{R}^2$ be given.
- We seek the line y = ax + b that fits best to the data.
- This line should minimize the quadratic error

$$Q(a,b) = \sum_{i=1}^{m} (y_i - ax_i - b)^2$$

- Let m data points $(x_1, y_1), ..., (x_m, y_m) \in \mathbb{R}^2$ be given.
- We seek the line y = ax + b that fits best to the data.
- This line should minimize the quadratic error

$$Q(a,b) = \sum_{i=1}^{m} (y_i - ax_i - b)^2$$

• Example 2. Curve fitting

- Let m data points $(x_1, y_1), ..., (x_m, y_m) \in \mathbb{R}^2$ be given.
- We seek the line y = ax + b that fits best to the data.
- This line should minimize the quadratic error

$$Q(a,b) = \sum_{i=1}^{m} (y_i - ax_i - b)^2$$

• Example 2. Curve fitting

- Assume a physical law is goverened by an unknown function $f : \mathbb{R} \to \mathbb{R}$, which can be parametrized by N parameters, e.g.

$$f = f_a = \sum_{j=0}^d a_j x^j$$
 = polynomial of degree $\leq d$, i.e. $N = d + 1$

- Let m data points $(x_1,y_1),...,(x_m,y_m)\in \mathbb{R}^2$ be given.
- We seek the line y = ax + b that fits best to the data.
- This line should minimize the quadratic error

$$Q(a,b) = \sum_{i=1}^{m} (y_i - ax_i - b)^2$$

• Example 2. Curve fitting

- Assume a physical law is goverened by an unknown function $f : \mathbb{R} \to \mathbb{R}$, which can be parametrized by N parameters, e.g.

$$f=f_a=\sum_{j=0}^d a_j x^j=$$
 polynomial of degree $\leq d$, i.e. $N=d+1$

- exact measurements $\frown y_i = f(x_i)$
- noisy data $\frown y_i = f(x_i) + \varepsilon$, where ε is a r.v. of mean 0

– We seek the coefficient vector $a=(a_0,a_1,...,a_d)\in\mathbb{R}$ such that

$$\sum_{i=1}^m (f_a(x_j) - y_i)^2 \to \min.$$

– We seek the coefficient vector $a = (a_0, a_1, ..., a_d) \in \mathbb{R}$ such that

$$\sum_{i=1}^{m} (f_a(x_j) - y_i)^2 \to \min .$$

- Noisy data. Let ε_x , $x \in \mathbb{R}$, be a family of random variables with $\mathbb{E}\varepsilon_x = f(x)$. Then the y_i are drawn randomly from ε_{x_i} .

– We seek the coefficient vector $a = (a_0, a_1, ..., a_d) \in \mathbb{R}$ such that

$$\sum_{i=1}^m (f_a(x_j) - y_i)^2 \to \min.$$

- Noisy data. Let ε_x , $x \in \mathbb{R}$, be a family of random variables with $\mathbb{E}\varepsilon_x = f(x)$. Then the y_i are drawn randomly from ε_{x_i} .
- Sometimes: x_i chosen randomly from a probability ρ_X on \mathbb{R} .
- More general starting point: measure ρ on $\mathbb{R} \times \mathbb{R}$ capturing both ρ_X and ε_x .

X – matrices with entries in the interval [0,1]Interpretation: Each entry represents a pixel in a gray scale of a digitized photograph of a handwritten letter A,B,...,Z.

Matrices with entries in the interval [0, 1]
 Interpretation: Each entry represents a pixel in a gray scale of a digitized photograph of a handwritten letter A,B,...,Z.

$$\begin{split} Y &= \left\{ y = (\lambda_j) \in \mathbb{R}^{26} : \lambda_j \geq 0, \sum \lambda_j = 1 \right\} \text{ with the interpretation} \\ \lambda_1 &= Prob(x = A), \lambda_2 = Prob(x = B), ..., \lambda_{26} = Prob(x = Z) \end{split}$$

M - matrices with entries in the interval [0, 1]
 Interpretation: Each entry represents a pixel in a gray scale of a digitized photograph of a handwritten letter A,B,...,Z.

$$\begin{split} Y &= \left\{ y = (\lambda_j) \in \mathbb{R}^{26} : \lambda_j \geq 0, \sum \lambda_j = 1 \right\} \text{ with the interpretation} \\ \lambda_1 &= Prob(x = A), \lambda_2 = Prob(x = B), ..., \lambda_{26} = Prob(x = Z) \end{split}$$

- Goal: to learn the ideal function $f: X \to Y$ which associates to a handwritten letter the vector y of probabilities.
- "Learning" f means to find a good approximation to f within a given class.

M - matrices with entries in the interval [0, 1]
 Interpretation: Each entry represents a pixel in a gray scale of a digitized photograph of a handwritten letter A,B,...,Z.

$$\begin{split} Y &= \left\{ y = (\lambda_j) \in \mathbb{R}^{26} : \lambda_j \geq 0, \sum \lambda_j = 1 \right\} \text{ with the interpretation} \\ \lambda_1 &= Prob(x = A), \lambda_2 = Prob(x = B), ..., \lambda_{26} = Prob(x = Z) \end{split}$$

- Goal: to learn the ideal function $f: X \to Y$ which associates to a handwritten letter the vector y of probabilities.
- "Learning" f means to find a good approximation to f within a given class.
- The approximation to f is constructed from a set of samples of handwritten letters x, each with a label y.
- Samples (x_i, y_i) are drawn randomly from a probability ρ on $X \times Y$.
- In practice, ρ is concentrated around pairs (x, e_j) .
- The function f to be learned is the regression function f_{ρ} .

Roughly speaking: $f_{\rho}(x) = \text{average of the } y\text{-values of } \{x\} \times Y$

X – a compact metric space (e.g. a domain in $\mathbb{R}^n)$ $Y=\mathbb{R}^k$ – for simplicity k=1

 ρ – a probability measure on $Z:=X\times Y$

 $\begin{array}{l} X \mbox{ - a compact metric space (e.g. a domain in \mathbb{R}^n)} \\ Y = \mathbb{R}^k \mbox{ - for simplicity } k = 1 \\ \rho \mbox{ - a probability measure on } Z := X \times Y \end{array}$

(Least squares) error of $f:X \to Y$

$$\mathcal{E}(f) = \mathcal{E}(f_{\rho}) = \int_{Z} (f(x) - y)^2 \, d\rho$$

X – a compact metric space (e.g. a domain in \mathbb{R}^n) $Y = \mathbb{R}^k$ – for simplicity k = 1 ρ – a probability measure on $Z := X \times Y$ (Least squares) error of $f : X \to Y$

$$\mathcal{E}(f) = \mathcal{E}(f_{\rho}) = \int_{Z} (f(x) - y)^2 \, d\rho$$

- The local error for input x and output y is $(f(x) y)^2$. $\bigcirc \mathcal{E}(f) = \text{average over } X \times Y \text{ of the local errors}$
- Problem. Which f minimizes the error $\mathcal{E}(f)$?

X – a compact metric space (e.g. a domain in \mathbb{R}^n) $Y = \mathbb{R}^k$ – for simplicity k = 1 ρ – a probability measure on $Z := X \times Y$ (Least squares) error of $f : X \to Y$

$$\mathcal{E}(f) = \mathcal{E}(f_{\rho}) = \int_{Z} (f(x) - y)^2 \, d\rho$$

- The local error for input x and output y is $(f(x) - y)^2$.

 $\curvearrowright \mathcal{E}(f) = \operatorname{average}$ over $X \times Y$ of the local errors

– Problem. Which f minimizes the error $\mathcal{E}(f)$?

 $\rho_X =$ marginal probability of ρ on X, i.e.

$$\rho_X(A) = \rho(\{(x, y) \in X \times Y : x \in A\}) \quad , \quad A \subset X.$$

 $\rho(\,.\,|x) = \text{conditional probability w.r.to } x \text{ on } Y$

By Fubini we have for ρ -integrable g(x,y)

$$\int_{X \times Y} g(x, y) \, d\rho = \int_X \left(\int_Y g(x, y) \, d\rho(y|x) \right) d\rho_X(x).$$

By Fubini we have for ρ -integrable g(x,y)

$$\int_{X \times Y} g(x, y) \, d\rho = \int_X \left(\int_Y g(x, y) \, d\rho(y|x) \right) d\rho_X(x).$$

The regression function $f_{\rho}: X \to Y$ of f is defined as

$$f_{\rho}(x) = \int_{Y} y \, d\rho(y|x) \, .$$

General assumption. f_{ρ} is bounded

By Fubini we have for ρ -integrable g(x,y)

$$\int_{X \times Y} g(x, y) \, d\rho = \int_X \left(\int_Y g(x, y) \, d\rho(y|x) \right) d\rho_X(x).$$

The regression function $f_{\rho}: X \to Y$ of f is defined as

$$f_{\rho}(x) = \int_{Y} y \, d\rho(y|x) \, .$$

General assumption. f_{ρ} is bounded Further notation.

$$\sigma^2(x) := \int_Y (y - f(x))^2 \, d\rho(y|x)$$
$$\sigma_\rho^2 := \int_X \sigma^2(x) \, d\rho_X = \mathcal{E}(f\rho) \, .$$

 σ_{ρ} measures how well conditioned ρ is.

Proposition. For every $f: X \to Y$ we have

$$\mathcal{E}(f) = \int_X (f(x) - f_\rho(x))^2 \, d\rho_X + \sigma_\rho^2 \, .$$

Proposition. For every $f: X \to Y$ we have

$$\mathcal{E}(f) = \int_X (f(x) - f_\rho(x))^2 \, d\rho_X + \sigma_\rho^2 \, .$$

Proof. By definition of f_{ρ} we have $\int_{Y} (f_{\rho}(x) - y) d\rho(y|x) = 0$ for all $x \in X$, whence

$$\begin{split} \mathcal{E}(f) &= \int_{Z} (f(x) - f_{\rho}(x) + f_{\rho}(x) - y)^{2} d\rho \\ &= \int_{X} (f(x) - f_{\rho}(x))^{2} d\rho_{X}(x) + \underbrace{\int_{X \times Y} (f_{\rho}(x) - y)^{2} d\rho}_{=\sigma_{\rho}^{2}} \\ &+ 2 \cdot \int_{X} (f(x) - f_{\rho}(x)) \underbrace{\int_{Y} (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x)) (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_{X} (f(x) - f_{\rho}(x) (f(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \cdot \underbrace{\int_$$

Proposition. For every $f: X \to Y$ we have

$$\mathcal{E}(f) = \int_X (f(x) - f_\rho(x))^2 \, d\rho_X + \sigma_\rho^2 \, .$$

Proof. By definition of f_{ρ} we have $\int_{Y} (f_{\rho}(x) - y) d\rho(y|x) = 0$ for all $x \in X$, whence

$$\begin{split} \mathcal{E}(f) &= \int_{Z} (f(x) - f_{\rho}(x) + f_{\rho}(x) - y)^{2} d\rho \\ &= \int_{X} (f(x) - f_{\rho}(x))^{2} d\rho_{X}(x) + \underbrace{\int_{X \times Y} (f_{\rho}(x) - y)^{2} d\rho}_{=\sigma_{\rho}^{2}} \\ &+ 2 \cdot \int_{X} (f(x) - f_{\rho}(x)) \underbrace{\int_{Y} (f_{\rho}(x) - y) d\rho(y|x)}_{=0} d\rho_{X}(x) \, . \end{split}$$

 $\sim \mathcal{E}(f) \geq \sigma_{\rho}^2$ This lower bound for the error depends only on ρ .

Sampling.

- Draw m pairs (x_i, y_i) independently according to ρ . \curvearrowright sample $\mathbf{z} \in Z^m$, $\mathbf{z} = ((x_1, y_1), ..., (x_m, y_m))$

Sampling.

- Draw m pairs (x_i, y_i) independently according to ρ . \curvearrowright sample $\mathbf{z} \in Z^m$, $\mathbf{z} = ((x_1, y_1), ..., (x_m, y_m))$

– Empirical mean of a r.v. ξ w.r.to the sample $\mathbf{z} \in Z^m$

$$\mathbb{E}_{\mathbf{z}}\,\xi := \frac{1}{m}\sum_{i=1}^m \xi(z_i)^2$$

– Empirical error of f w.r.to the sample $\mathbf{z} \in Z^m$

$$\mathcal{E}_{\mathbf{z}}(f) := \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

Sampling.

- Draw m pairs (x_i, y_i) independently according to ρ . \frown sample $\mathbf{z} \in Z^m$, $\mathbf{z} = ((x_1, y_1), ..., (x_m, y_m))$

– Empirical mean of a r.v. ξ w.r.to the sample $\mathbf{z} \in Z^m$

$$\mathbb{E}_{\mathbf{z}}\xi := \frac{1}{m}\sum_{i=1}^{m}\xi(z_i)^2$$

– Empirical error of f w.r.to the sample $\mathbf{z} \in Z^m$

$$\mathcal{E}_{\mathbf{z}}(f) := \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

– For $f: X \to Y$ define the function

$$f_Y: X imes Y o Y$$
 by $f_Y(x,y) := f(x) - y$.
 $\sim \quad \mathcal{E}(f) = \mathbb{E} f_Y^2$ and $\mathcal{E}_{\mathbf{z}}(f) = \mathbb{E}_{\mathbf{z}} f_Y^2$

Hypothesis spaces and target functions.

Let C(X) be the Banach space of continuous functions on X, equipped with the sup- norm $\|f\|_{\infty} = \sup_{x \in X} |f(x)|$

Hypothesis spaces and target functions.

Let C(X) be the Banach space of continuous functions on X, equipped with the sup- norm $\|f\|_{\infty} = \sup_{x \in X} |f(x)|$

Hypothesis space – a (typically compact) subset \mathcal{H} of C(X)

Target function – any function $f_{\mathcal{H}} \in \mathcal{H}$ that minimizes the error $\mathcal{E}(f)$ over $f \in \mathcal{H}$, i.e. any optimizer of

$$\min_{f \in \mathcal{H}} \int_Z (f(x) - y)^2 \, d\rho \, .$$

Hypothesis spaces and target functions.

Let C(X) be the Banach space of continuous functions on X, equipped with the sup- norm $\|f\|_{\infty} = \sup_{x \in X} |f(x)|$

Hypothesis space – a (typically compact) subset \mathcal{H} of C(X)

Target function – any function $f_{\mathcal{H}} \in \mathcal{H}$ that minimizes the error $\mathcal{E}(f)$ over $f \in \mathcal{H}$, i.e. any optimizer of

$$\min_{f \in \mathcal{H}} \int_Z (f(x) - y)^2 \, d\rho \, .$$

We have $\mathcal{E}(f) = \int_X (f-f_
ho)^2 + \sigma_
ho^2 \quad \curvearrowright \quad f_\mathcal{H}$ is also an optimizer of

$$\min_{f \in \mathcal{H}} \int_X (f - f_\rho)^2 \, d\rho_X \, .$$

$$L_{\mathbf{z}}(f) = L_{\rho,\mathbf{z}}(f) = \mathcal{E}(f) - \mathcal{E}_{\mathbf{z}}(f)$$

$$L_{\mathbf{z}}(f) = L_{\rho, \mathbf{z}}(f) = \mathcal{E}(f) - \mathcal{E}_{\mathbf{z}}(f)$$

Definition. We say, $f: X \to Y$ is *M*-bounded, if for some subset $U \subset Z$ with $\rho(U) = 1$ and all $(x, y) \in U$,

$$|f(x) - y| \le M \,.$$

$$L_{\mathbf{z}}(f) = L_{\rho,\mathbf{z}}(f) = \mathcal{E}(f) - \mathcal{E}_{\mathbf{z}}(f)$$

Definition. We say, $f: X \to Y$ is *M*-bounded, if for some subset $U \subset Z$ with $\rho(U) = 1$ and all $(x, y) \in U$,

$$|f(x) - y| \le M \,.$$

Proposition. For any two *M*-bounded functions and all $\mathbf{z} \in U^m$,

$$|L_{\mathbf{z}}(f_1) - L_{\mathbf{z}}(f_2)| \le 4M \cdot ||f_1 - f_2||_{\infty}.$$

$$L_{\mathbf{z}}(f) = L_{\rho, \mathbf{z}}(f) = \mathcal{E}(f) - \mathcal{E}_{\mathbf{z}}(f)$$

Definition. We say, $f: X \to Y$ is *M*-bounded, if for some subset $U \subset Z$ with $\rho(U) = 1$ and all $(x, y) \in U$,

$$|f(x) - y| \le M \,.$$

Proposition. For any two *M*-bounded functions and all $\mathbf{z} \in U^m$,

$$|L_{\mathbf{z}}(f_1) - L_{\mathbf{z}}(f_2)| \le 4M \cdot ||f_1 - f_2||_{\infty}.$$

Proof. From
$$(f_1(x) - y)^2 - (f_2(x) - y)^2$$

= $((f_1(x) - y) - (f_2(x) - y))(f_1(x) - f_2(x))$ we get

$$|\mathcal{E}(f_1) - \mathcal{E}(f_2)| \le \int_Z \left(\underbrace{|f_1(x) - y|}_{\le M} + \underbrace{|f_2(x) - y|}_{\le M} \right) \underbrace{|f_1(x) - f_2(x)|}_{\le ||f_1 - f_2||_{\infty}} d\rho$$

$$|\mathcal{E}(f_1) - \mathcal{E}(f_2)| \le \int_Z \left(\underbrace{|f_1(x) - y|}_{\le M} + \underbrace{|f_2(x) - y|}_{\le M} \right) \underbrace{|f_1(x) - f_2(x)|}_{\le ||f_1 - f_2||_{\infty}} d\rho$$

A similar argument applies for $\mathbf{z} \in U^m$,

$$|\mathcal{E}_{\mathbf{z}}(f_1) - \mathcal{E}_{\mathbf{z}}(f_2)| \le 2M \cdot ||f_1 - f_2||_{\infty}$$

and by triangle inequality the proof is finished.

$$|\mathcal{E}(f_1) - \mathcal{E}(f_2)| \le \int_Z \left(\underbrace{|f_1(x) - y|}_{\le M} + \underbrace{|f_2(x) - y|}_{\le M} \right) \underbrace{|f_1(x) - f_2(x)|}_{\le \|f_1 - f_2\|_{\infty}} d\rho$$

A similar argument applies for $\mathbf{z} \in U^m$,

$$|\mathcal{E}_{\mathbf{z}}(f_1) - \mathcal{E}_{\mathbf{z}}(f_2)| \le 2M \cdot ||f_1 - f_2||_{\infty}$$

and by triangle inequality the proof is finished.

Consequences.

- 1. The error functions $\mathcal{E}, \mathcal{E}_{\mathbf{z}} : \mathcal{H} \to \mathbb{R}$ are continuous.
- If H is a compact subset of C(X) such that all f ∈ H are M-bounded, then the (not necessarily unique) minimizers f_H and f_z exist. If H is convex and compact, then f_H is unique.)

Recall
$$\mathcal{E}(f) = \int_X (f(x) - f_\rho(x))^2 d\rho_X + \sigma_\rho^2$$
.

Recall $\mathcal{E}(f) = \int_X (f(x) - f_{\rho}(x))^2 d\rho_X + \sigma_{\rho}^2$. Taking $f = f_z$ and using similar arguments as in the proof gives

$$\begin{aligned} \mathcal{E}(f_{\mathbf{z}}) &= \underbrace{\int_{X} (f_{\mathbf{z}}(x) - f_{\mathcal{H}}(x))^2 \, d\rho_X}_{= \text{ sample error } \mathcal{E}_{\mathcal{H}}(f_{\mathbf{z}})} \\ &+ \underbrace{\int_{X} (f_{\mathcal{H}}(x) - f_{\rho}(x))^2 \, d\rho_X + \sigma_{\rho}^2}_{= \text{ approximation error } \mathcal{E}(f_{\mathcal{H}})} \end{aligned}$$

Recall $\mathcal{E}(f) = \int_X (f(x) - f_{\rho}(x))^2 d\rho_X + \sigma_{\rho}^2$. Taking $f = f_z$ and using similar arguments as in the proof gives

$$\begin{aligned} \mathcal{E}(f_{\mathbf{z}}) &= \underbrace{\int_{X} (f_{\mathbf{z}}(x) - f_{\mathcal{H}}(x))^2 \, d\rho_X}_{= \text{ sample error } \mathcal{E}_{\mathcal{H}}(f_{\mathbf{z}})} \\ &+ \underbrace{\int_{X} (f_{\mathcal{H}}(x) - f_{\rho}(x))^2 \, d\rho_X + \sigma_{\rho}^2}_{= \text{ approximation error } \mathcal{E}(f_{\mathcal{H}})} \end{aligned}$$

- The sample error depends on ρ only through the sample $z \in Z^m$ \frown bounds will hold only with a certain confidence
- The approximation error depends heavily on ρ through $f\rho$. \sim bounds will depend on parameters measuring the behaviour of f_{ρ}

Recall $\mathcal{E}(f) = \int_X (f(x) - f_{\rho}(x))^2 d\rho_X + \sigma_{\rho}^2$. Taking $f = f_z$ and using similar arguments as in the proof gives

$$\begin{aligned} \mathcal{E}(f_{\mathbf{z}}) &= \underbrace{\int_{X} (f_{\mathbf{z}}(x) - f_{\mathcal{H}}(x))^2 \, d\rho_X}_{= \text{ sample error } \mathcal{E}_{\mathcal{H}}(f_{\mathbf{z}})} \\ &+ \underbrace{\int_{X} (f_{\mathcal{H}}(x) - f_{\rho}(x))^2 \, d\rho_X + \sigma_{\rho}^2}_{= \text{ approximation error } \mathcal{E}(f_{\mathcal{H}})} \end{aligned}$$

- The sample error depends on ρ only through the sample $z \in Z^m$ \frown bounds will hold only with a certain confidence
- The approximation error depends heavily on ρ through $f\rho$. \sim bounds will depend on parameters measuring the behaviour of f_{ρ}

Goal. Show that under appropriate assumptions on ρ and \mathcal{H} , $\mathcal{E}_{\mathcal{H}}(f_{\mathbf{z}})$ becomes arbitrarily small with high probability as $m \to \infty$.

Hoeffding's inequality. Let ξ be a random variable on a probability space Z with mean $\mathbb{E}\xi = \mu$ and $|\xi(z) - \mu| \leq M$ for almost all $z \in Z$. Then, for all $\varepsilon > 0$,

$$\mathbb{P}\left(rac{1}{m}\sum_{i=1}^{m}\xi(z_i)-\mu\geqarepsilon
ight)\leq\exp\left(-rac{marepsilon^2}{2M^2}
ight)\,.$$

Here \mathbb{P} means the probability of all $z = (z_i) \in Z^m$ satisfying the respective inequality.

Hoeffding's inequality. Let ξ be a random variable on a probability space Z with mean $\mathbb{E}\xi = \mu$ and $|\xi(z) - \mu| \leq M$ for almost all $z \in Z$. Then, for all $\varepsilon > 0$,

$$\mathbb{P}\left(rac{1}{m}\sum_{i=1}^{m}\xi(z_i)-\mu\geqarepsilon
ight)\leq\exp\left(-rac{marepsilon^2}{2M^2}
ight)\,.$$

Here \mathbb{P} means the probability of all $z = (z_i) \in Z^m$ satisfying the respective inequality.

Proof. follows from Markov's inequality, Taylor's expansion of the exponential function, and convexity of $\exp(cx)$.

Hoeffding's inequality. Let ξ be a random variable on a probability space Z with mean $\mathbb{E}\xi = \mu$ and $|\xi(z) - \mu| \leq M$ for almost all $z \in Z$. Then, for all $\varepsilon > 0$,

$$\mathbb{P}\left(rac{1}{m}\sum_{i=1}^{m}\xi(z_i)-\mu\geqarepsilon
ight)\leq\exp\left(-rac{marepsilon^2}{2M^2}
ight)\,.$$

Here \mathbb{P} means the probability of all $z = (z_i) \in Z^m$ satisfying the respective inequality.

Proof. follows from Markov's inequality, Taylor's expansion of the exponential function, and convexity of $\exp(cx)$.

Let $f:X\to Y$ be M-bounded , i.e. $|f(x)-y|\leq M$ almost surely. For the random variable $\xi=(f(x)-y)^2$ on $Z=X\times Y$ we have

$$\mathbb{E}\xi = 0$$
 and $|\xi| \le M^2$.

$$\mathbb{P}\Big(L_{\mathbf{z}}(f) \geq \varepsilon\Big) \leq \exp\left(-\frac{m\varepsilon^2}{2M^4}\right)$$

$$\mathbb{P}\Big(L_{\mathbf{z}}(f) \geq \varepsilon\Big) \leq \exp\left(-\frac{m\varepsilon^2}{2M^4}\right)$$

At this point METRIC ENTROPY shows up, in the form of covering numbers.

$$\mathbb{P}\Big(L_{\mathbf{z}}(f) \geq \varepsilon\Big) \leq \exp\left(-\frac{m\varepsilon^2}{2M^4}\right)$$

At this point METRIC ENTROPY shows up, in the form of covering numbers.

Assume that $\mathcal{H} = B_1 \cup ... \cup B_\ell$ and consider the events

$$A = \left\{ \mathbf{z} \in Z^m : \sup_{f \in \mathcal{H}} L_{\mathbf{z}}(f) \ge \varepsilon \right\} \quad , \quad A_j = \left\{ \mathbf{z} \in Z^m : \sup_{f \in B_j} L_{\mathbf{z}}(f) \ge \varepsilon \right\}$$

$$\mathbb{P}\Big(L_{\mathbf{z}}(f) \geq \varepsilon\Big) \leq \exp\left(-\frac{m\varepsilon^2}{2M^4}\right)$$

At this point METRIC ENTROPY shows up, in the form of covering numbers.

Assume that $\mathcal{H} = B_1 \cup ... \cup B_\ell$ and consider the events

$$A = \left\{ \mathbf{z} \in Z^m : \sup_{f \in \mathcal{H}} L_{\mathbf{z}}(f) \ge \varepsilon \right\} \quad , \quad A_j = \left\{ \mathbf{z} \in Z^m : \sup_{f \in B_j} L_{\mathbf{z}}(f) \ge \varepsilon \right\}$$

Then $A = \bigcup_{j=1}^{\ell} A_j$, whence $\mathbb{P}(A) \leq \sum_{j=1}^{\ell} \mathbb{P}(A_j)$, i.e.

$$\mathbb{P}\Big(\sup_{f\in\mathcal{H}}L_{\mathbf{z}}(f)\geq\varepsilon\Big)\leq\sum_{\ell=1}^{\ell}\mathbb{P}\Big(\sup_{f\in B_{j}}L_{\mathbf{z}}(f)\geq\varepsilon\Big)$$

Let now $\ell = \mathcal{N}\left(\mathcal{H}, \frac{\varepsilon}{8M}\right)$ and choose $f_1, ..., f_\ell$ such that the balls B_j with centers f_j and radius $\frac{\varepsilon}{8M}$ cover \mathcal{H} .

let $U \subset Z$ be a subset of full measure such that

$$\sup_{f \in \mathcal{H}} |f(x) - y| \le M \quad \text{for all } z \in U \,.$$

Let now $\ell = \mathcal{N}\left(\mathcal{H}, \frac{\varepsilon}{8M}\right)$ and choose $f_1, ..., f_\ell$ such that the balls B_j with centers f_j and radius $\frac{\varepsilon}{8M}$ cover \mathcal{H} .

let $U \subset Z$ be a subset of full measure such that

$$\sup_{f \in \mathcal{H}} |f(x) - y| \le M \quad \text{for all } z \in U \,.$$

For all $f \in B_j$ and all $z \in U$ we have

$$|L_{\mathbf{z}}(f) - L_{\mathbf{z}}(f_j)| \le 4M \cdot ||f - f_j||_{\infty} \le 4M \cdot \frac{\varepsilon}{8M} \le \frac{\varepsilon}{2}.$$

Let now $\ell = \mathcal{N}\left(\mathcal{H}, \frac{\varepsilon}{8M}\right)$ and choose $f_1, ..., f_\ell$ such that the balls B_j with centers f_j and radius $\frac{\varepsilon}{8M}$ cover \mathcal{H} .

let $U \subset Z$ be a subset of full measure such that

$$\sup_{f \in \mathcal{H}} |f(x) - y| \le M \quad \text{for all } z \in U \,.$$

For all $f \in B_j$ and all $z \in U$ we have

$$|L_{\mathbf{z}}(f) - L_{\mathbf{z}}(f_j)| \le 4M \cdot ||f - f_j||_{\infty} \le 4M \cdot \frac{\varepsilon}{8M} \le \frac{\varepsilon}{2}$$

Triangle inequality gives: $\sup_{f \in B_j} L_{\mathbf{z}}(f) \ge \varepsilon \Longrightarrow L_{\mathbf{z}}(f_j) \ge \frac{\varepsilon}{2}$ and consequently we obtain from Hoeffding's inequality,

$$\mathbb{P}\Big(\sup_{f\in B_j} L_{\mathbf{z}}(f) \ge \varepsilon\Big) \le \mathbb{P}\Big(L_{\mathbf{z}}(f_j) \ge \frac{\varepsilon}{2}\Big) \le \exp\left(-\frac{m\varepsilon^2}{8M^4}\right).$$

Putting everything together we get the following uniform bound for the defect.

Theorem. Let $\mathcal H$ be a compact M-bounded subset of C(X). Then, for all $\varepsilon>0$ and all $m\in N$,

$$\mathbb{P}_{z \in Z^m} \left(\sup_{f \in \mathcal{H}} L_{\mathbf{z}}(f) \le \varepsilon \right) \ge 1 - \mathcal{N} \left(\mathcal{H}, \frac{\varepsilon}{8M} \right) \exp \left(- \frac{m\varepsilon^2}{8M^4} \right).$$

Putting everything together we get the following uniform bound for the defect.

Theorem. Let \mathcal{H} be a compact M-bounded subset of C(X). Then, for all $\varepsilon > 0$ and all $m \in N$,

$$\mathbb{P}_{z\in Z^m}\Big(\sup_{f\in\mathcal{H}}L_{\mathbf{z}}(f)\leq\varepsilon\Big)\geq 1-\mathcal{N}\Big(\mathcal{H},\frac{\varepsilon}{8M}\Big)\exp\Big(-\frac{m\varepsilon^2}{8M^4}\Big)\,.$$

The same technique gives similar bounds for the sample error.

$$\mathbb{P}_{z\in Z^m}\left(\mathcal{E}_{\mathcal{H}}(f_{\mathbf{z}})\leq \varepsilon\right)\geq 1-\left[\mathcal{N}\left(\mathcal{H},\frac{\varepsilon}{16M}\right)+1\right]\exp\left(-\frac{m\varepsilon^2}{32M^4}\right).$$

4. Covering numbers of Gaussian RKHSs and small deviations of Gaussian random fields

- 4. Covering numbers of Gaussian RKHSs and small deviations of Gaussian random fields
- The positive definite Gaussian kernel

$$K(x,y) = \exp(-\sigma^2 \|x - y\|_2^2) \quad , \quad x,y \in [0,1]^d \quad , \quad \sigma > 0,$$

generates a RKHS $H_{\sigma}([0,1]^d)$ which is compactly embedded in $C([0,1]^d)$. In particular, the unit ball in H_{σ} often serves as hypothesis space \mathcal{H} in learning theory. As shown before, covering numbers are of central importance in the error analyis.

- 4. Covering numbers of Gaussian RKHSs and small deviations of Gaussian random fields
- The positive definite Gaussian kernel

$$K(x,y) = \exp(-\sigma^2 \|x - y\|_2^2) \quad , \quad x,y \in [0,1]^d \quad , \quad \sigma > 0,$$

generates a RKHS $H_{\sigma}([0,1]^d)$ which is compactly embedded in $C([0,1]^d)$. In particular, the unit ball in H_{σ} often serves as hypothesis space \mathcal{H} in learning theory. As shown before, covering numbers are of central importance in the error analyis.

• Kühn (J. Complexity 2011) The covering numbers $\mathcal{N}(\varepsilon)$ of the unit ball of $H_{\sigma}([0,1]^d)$, considered as a compact subset of $C([0,1]^d)$, behave asymptotically like

$$\log \mathcal{N}(\varepsilon) \sim \frac{\left(\log \frac{1}{\varepsilon}\right)^{d+1}}{\left(\log \log \frac{1}{\varepsilon}\right)^d} \quad \text{as} \quad \varepsilon \to 0 \,.$$

The same is true, if we consider the unit ball as a subset of $L_p([0,1]^d)$, $2 \le p < \infty$.

• Remarks.

1. This improves earlier results of Ding-Xuan Zhou 2002/2003.

He showed $(\log \frac{1}{\varepsilon})^{\frac{d}{2}} \preceq \mathcal{N}(\varepsilon) \preceq (\log \frac{1}{\varepsilon})^{d+1}$

and conjectured that the correct bound is $(\log \frac{1}{\varepsilon})^{\frac{d}{2}+1}$.

2. Our proof uses an explicit description of an ONB in Gaussian RKHSs, due to Steinwart/Hush/Scovel 2006.

• Remarks.

1. This improves earlier results of Ding-Xuan Zhou 2002/2003.

He showed $(\log \frac{1}{\varepsilon})^{\frac{d}{2}} \preceq \mathcal{N}(\varepsilon) \preceq (\log \frac{1}{\varepsilon})^{d+1}$

and conjectured that the correct bound is $(\log \frac{1}{\varepsilon})^{\frac{d}{2}+1}$.

2. Our proof uses an explicit description of an ONB in Gaussian RKHSs, due to Steinwart/Hush/Scovel 2006.

• Application to smooth Gaussian processes.

Let $X = X(t), t \in T$, be a centered Gaussian process with values in a Banach space E (mostly $E = L_2$ or C or L_{∞}). There is a close connection between small deviation probabilities of X

$$\mathbb{P}\left(\|X\|_E \le \varepsilon\right) \quad , \quad \varepsilon > 0$$

and entropy numbers of operators $S: H \to E$ with

$$\mathbb{E}e^{i\langle X,a\rangle} = e^{-\|S'a\|^2/2} \quad , \quad a \in E' \,.$$

(This relation between X and S can also be expressed by the covariance structure of X.) Details of the small deviation – entropy connection have been explained in the talks of Wenbo.

• Example. Let $\sigma > 0$ and $d \in \mathbb{N}$. Consider the centered Gaussian process $X_{\sigma,d} = (X_{\sigma,d}(t))$, $t \in [0,1]^d$ with covariance structure

$$\mathbb{E} X_{\sigma,d}(t) X_{\sigma,d}(s) = \exp\left(-\sigma^2 \|t - s\|_2^2\right) \quad , \quad t, s \in [0,1]^d \, .$$

• Example. Let $\sigma > 0$ and $d \in \mathbb{N}$. Consider the centered Gaussian process $X_{\sigma,d} = (X_{\sigma,d}(t))$, $t \in [0,1]^d$ with covariance structure

$$\mathbb{E} X_{\sigma,d}(t) X_{\sigma,d}(s) = \exp\left(-\sigma^2 \|t - s\|_2^2\right) \quad , \quad t, s \in [0,1]^d$$

• Kühn (J. Complexity 2011)

The small deviation probabilities under the sup-norm satisfy

$$-\log \mathbb{P}\left(\sup_{t\in[0,1]^d} |X_{\sigma,d}(t)| \le \varepsilon\right) \sim \frac{\left(\log \frac{1}{\varepsilon}\right)^{d+1}}{\left(\log \log \frac{1}{\varepsilon}\right)^d}.$$

The same estimates hold for all L_p -norms with $2 \le p < \infty$.

• Example. Let $\sigma > 0$ and $d \in \mathbb{N}$. Consider the centered Gaussian process $X_{\sigma,d} = (X_{\sigma,d}(t))$, $t \in [0,1]^d$ with covariance structure

$$\mathbb{E} X_{\sigma,d}(t) X_{\sigma,d}(s) = \exp\left(-\sigma^2 \|t - s\|_2^2\right) \quad , \quad t,s \in [0,1]^d$$

• Kühn (J. Complexity 2011)

The small deviation probabilities under the sup-norm satisfy

$$-\log \mathbb{P}\left(\sup_{t\in[0,1]^d} |X_{\sigma,d}(t)| \le \varepsilon\right) \sim \frac{\left(\log \frac{1}{\varepsilon}\right)^{d+1}}{\left(\log \log \frac{1}{\varepsilon}\right)^d}.$$

The same estimates hold for all L_p -norms with $2 \le p < \infty$.

THANK YOU FOR YOUR ATTENTION!