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– We seek the line y = ax+ b that fits best to the data.

– This line should minimize the quadratic error
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Example 2. Curve fitting

– Assume a physical law is goverened by an unknown function f : R→ R,
which can be parametrized by N parameters, e.g.

f = fa =
∑d

j=0 ajx
j = polynomial of degree ≤ d, i.e. N = d+ 1

– exact measurements y yi = f(xi)
– noisy data y yi = f(xi) + ε, where ε is a r.v. of mean 0
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– We seek the coefficient vector a = (a0, a1, ..., ad) ∈ R such that

m∑
i=1

(fa(xj)− yi)2 → min .

– Noisy data. Let εx, x ∈ R, be a family of random variables with
Eεx = f(x). Then the yi are drawn randomly from εxi .

– Sometimes: xi chosen randomly from a probability ρX on R.
– More general starting point:

measure ρ on R× R capturing both ρX and εx.
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X – matrices with entries in the interval [0, 1]
Interpretation: Each entry represents a pixel in a gray scale
of a digitized photograph of a handwritten letter A,B,...,Z.

Y =
{
y = (λj) ∈ R26 : λj ≥ 0,

∑
λj = 1

}
with the interpretation

λ1 = Prob(x = A), λ2 = Prob(x = B), ..., λ26 = Prob(x = Z)

– Goal: to learn the ideal function f : X → Y which associates to a
handwritten letter the vector y of probabilities.

– ”Learning” f means to find a good approximation to f
within a given class.

– The approximation to f is constructed from a set of samples of
handwritten letters x, each with a label y.

– Samples (xi, yi) are drawn randomly from a probability ρ on X × Y .
– In practice, ρ is concentrated around pairs (x, ej).
– The function f to be learned is the regression function fρ.

Roughly speaking: fρ(x) = average of the y-values of {x} × Y



2. A formal model of learning



2. A formal model of learning

X – a compact metric space (e.g. a domain in Rn)
Y = Rk – for simplicity k = 1
ρ – a probability measure on Z := X × Y



2. A formal model of learning

X – a compact metric space (e.g. a domain in Rn)
Y = Rk – for simplicity k = 1
ρ – a probability measure on Z := X × Y

(Least squares ) error of f : X → Y

E(f) = E(fρ) =
∫
Z
(f(x)− y)2 dρ



2. A formal model of learning

X – a compact metric space (e.g. a domain in Rn)
Y = Rk – for simplicity k = 1
ρ – a probability measure on Z := X × Y

(Least squares ) error of f : X → Y

E(f) = E(fρ) =
∫
Z
(f(x)− y)2 dρ

– The local error for input x and output y is (f(x)− y)2.

y E(f) = average over X × Y of the local errors

– Problem. Which f minimizes the error E(f)?



2. A formal model of learning

X – a compact metric space (e.g. a domain in Rn)
Y = Rk – for simplicity k = 1
ρ – a probability measure on Z := X × Y

(Least squares ) error of f : X → Y
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∫
Z
(f(x)− y)2 dρ

– The local error for input x and output y is (f(x)− y)2.

y E(f) = average over X × Y of the local errors

– Problem. Which f minimizes the error E(f)?

ρX = marginal probability of ρ on X, i.e.

ρX(A) = ρ({(x, y) ∈ X × Y : x ∈ A}) , A ⊂ X.

ρ( . |x) = conditional probability w.r.to x on Y
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g(x, y) dρ =
∫
X

(∫
Y
g(x, y) dρ(y|x)

)
dρX(x).

The regression function fρ : X → Y of f is defined as

fρ(x) =
∫
Y
y dρ(y|x) .

General assumption. fρ is bounded

Further notation.

σ2(x) :=
∫
Y

(y − f(x))2 dρ(y|x)

σ2
ρ :=

∫
X
σ2(x) dρX = E(fρ) .

σρ measures how well conditioned ρ is.
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Proof. By definition of fρ we have
∫
Y (fρ(x)− y) dρ(y|x) = 0

for all x ∈ X, whence

E(f) =
∫
Z
(f(x)−fρ(x) + fρ(x)− y)2 dρ

=
∫
X

(f(x)− fρ(x))2 dρX(x) +
∫
X×Y

(fρ(x)− y)2 dρ︸ ︷︷ ︸
=σ2

ρ

+ 2 ·
∫
X

(f(x)− fρ(x))
∫
Y

(fρ(x)− y) dρ(y|x)︸ ︷︷ ︸
=0

dρX(x) .

y E(f) ≥ σ2
ρ This lower bound for the error depends only on ρ.
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– Draw m pairs (xi, yi) independently according to ρ.
y sample z ∈ Zm , z = ((x1, y1), ..., (xm, ym))

– Empirical mean of a r.v. ξ w.r.to the sample z ∈ Zm

Ez ξ :=
1
m

m∑
i=1

ξ(zi)2

– Empirical error of f w.r.to the sample z ∈ Zm

Ez(f) :=
1
m

m∑
i=1

(f(xi)− yi)2

– For f : X → Y define the function

fY : X × Y → Y by fY (x, y) := f(x)− y .

y E(f) = E f2
Y and Ez(f) = Ezf

2
Y
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Let C(X) be the Banach space of continuous functions on X, eqquipped
with the sup- norm ‖f‖∞ = sup

x∈X
|f(x)|

Hypothesis space – a (typically compact) subset H of C(X)

Target function – any function fH ∈ H that minimizes the error E(f)
over f ∈ H, i.e. any optimizer of

min
f∈H

∫
Z
(f(x)− y)2 dρ .

We have E(f) =
∫
X(f − fρ)2 + σ2

ρ y fH is also an optimizer of

min
f∈H

∫
X

(f − fρ)2 dρX .
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Definition. We say, f : X → Y is M -bounded, if for some subset U ⊂ Z
with ρ(U) = 1 and all (x, y) ∈ U ,

|f(x)− y| ≤M .

Proposition. For any two M -bounded functions and all z ∈ Um,

|Lz(f1)− Lz(f2)| ≤ 4M · ‖f1 − f2‖∞ .

Proof. From (f1(x)− y)2 − (f2(x)− y)2

=
(
(f1(x)− y)− (f2(x)− y)

)
(f1(x)− f2(x) we get
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|E(f1)− E(f2)| ≤
∫
Z

(
|f1(x)− y|︸ ︷︷ ︸

≤M

+ |f2(x)− y|︸ ︷︷ ︸
≤M

)
|f1(x)− f2(x)|︸ ︷︷ ︸
≤‖f1−f2‖∞

dρ

A similar argument applies for z ∈ Um,

|Ez(f1)− Ez(f2)| ≤ 2M · ‖f1 − f2‖∞

and by triangle inequality the proof is finished.

Consequences.

1. The error functions E , Ez : H → R are continuous.

2. If H is a compact subset of C(X) such that all f ∈ H are M -bounded,
then the (not necessarily unique) minimizers fH and fz exist.
If H is convex and compact, then fH is unique.)
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Recall E(f) =
∫
X(f(x)− fρ(x))2 dρX + σ2

ρ.
Taking f = fz and using similar arguments as in the proof gives

E(fz) =
∫
X

(fz(x)− fH(x))2 dρX︸ ︷︷ ︸
= sample error EH(fz)

+
∫
X

(fH(x)− fρ(x))2 dρX + σ2
ρ︸ ︷︷ ︸

= approximation error E(fH)

– The sample error depends on ρ only through the sample z ∈ Zm
y bounds will hold only with a certain confidence

– The approximation error depends heavily on ρ through fρ.
y bounds will depend on parameters measuring the behaviour of fρ

Goal. Show that under appropriate assumptions on ρ and H,
EH(fz) becomes arbitrarily small with high probability as m→∞.
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Hoeffding’s inequality. Let ξ be a random variable on a probability space
Z with mean Eξ = µ and |ξ(z)− µ| ≤M for almost all z ∈ Z. Then, for
all ε > 0,

P

(
1
m

m∑
i=1

ξ(zi)− µ ≥ ε

)
≤ exp

(
−mε

2

2M2

)
.

Here P means the probability of all z = (zi) ∈ Zm satisfying the
respective inequality.

Proof. follows from Markov’s inequality, Taylor’s expansion of the
exponential function, and convexity of exp(cx).

Let f : X → Y be M -bounded , i.e. |f(x)− y| ≤M almost surely.

For the random variable ξ = (f(x)− y)2 on Z = X × Y we have

Eξ = 0 and |ξ| ≤M2 .
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At this point METRIC ENTROPY shows up, in the form of covering
numbers.

Assume that H = B1 ∪ ... ∪B` and consider the events

A =

{
z ∈ Zm : sup

f∈H
Lz(f) ≥ ε

}
, Aj =

{
z ∈ Zm : sup

f∈Bj
Lz(f) ≥ ε

}

Then A =
⋃`
j=1Aj , whence P(A) ≤

∑`
j=1 P(Aj), i.e.

P
(

sup
f∈H

Lz(f) ≥ ε
)
≤
∑̀
`=1

P
(

sup
f∈Bj

Lz(f) ≥ ε
)
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Let now ` = N
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)
and choose f1, ..., f` such that the balls Bj with

centers fj and radius ε
8M cover H.

let U ⊂ Z be a subset of full measure such that

sup
f∈H
|f(x)− y| ≤M for all z ∈ U .

For all f ∈ Bj and all z ∈ U we have

|Lz(f)− Lz(fj)| ≤ 4M · ‖f − fj‖∞ ≤ 4M · ε

8M
≤ ε

2
.

Triangle inequality gives: supf∈Bj Lz(f) ≥ ε =⇒ Lz(fj) ≥ ε
2

and consequently we obtain from Hoeffding’s inequality,

P
(

sup
f∈Bj

Lz(f) ≥ ε
)
≤ P

(
Lz(fj) ≥

ε

2

)
≤ exp

(
− mε2

8M4

)
.
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Putting everything together we get the following uniform bound for the
defect.

Theorem. Let H be a compact M -bounded subset of C(X). Then, for all
ε > 0 and all m ∈ N ,

Pz∈Zm
(

sup
f∈H

Lz(f) ≤ ε
)
≥ 1−N

(
H, ε

8M

)
exp

(
− mε2

8M4

)
.

The same technique gives similar bounds for the sample error.

Pz∈Zm
(
EH(fz) ≤ ε

)
≥ 1−

[
N
(
H, ε

16M

)
+ 1
]
exp

(
− mε2

32M4

)
.
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Kühn (J. Complexity 2011) The covering numbers N (ε) of the unit
ball of Hσ([0, 1]d), considered as a compact subset of C([0, 1]d),
behave asymptotically like

logN (ε) ∼
(
log 1

ε

)d+1(
log log 1

ε

)d as ε→ 0 .

The same is true, if we consider the unit ball as a subset of
Lp([0, 1]d) , 2 ≤ p <∞.



Remarks.
1. This improves earlier results of Ding-Xuan Zhou 2002/2003.

He showed (log 1
ε )

d
2 � N (ε) � (log 1

ε )
d+1

and conjectured that the correct bound is (log 1
ε )

d
2
+1 .

2. Our proof uses an explicit description of an ONB in Gaussian
RKHSs, due to Steinwart/Hush/Scovel 2006.
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Application to smooth Gaussian processes.
Let X = X(t), t ∈ T , be a centered Gaussian process with values in
a Banach space E (mostly E = L2 or C or L∞). There is a close
connection between small deviation probabilities of X

P (‖X‖E ≤ ε) , ε > 0

and entropy numbers of operators S : H → E with

Eei〈X,a〉 = e−‖S
′a‖2/2 , a ∈ E′ .

(This relation between X and S can also be expressed by the
covariance structure of X.) Details of the small deviation – entropy
connection have been explained in the talks of Wenbo.



Example. Let σ > 0 and d ∈ N. Consider the centered Gaussian
process Xσ,d = (Xσ,d(t)), t ∈ [0, 1]d with covariance structure

EXσ,d(t)Xσ,d(s) = exp
(
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