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Part I: Simple Observations and Some Notation.

Notation. (i) B is a real linear space, B a σ-field of subsets of B, and
q(·) a semi-norm on B such that for all x ∈ B and r ≥ 0

x + rU ∈ B,
where U = {x ∈ B : q(x) < 1}.

(ii) If A ⊆ B and x ∈ B we define the q-distance from A to x to be

dq(x ,A) = inf
a∈A

q(x − a).

Remark.Typically B is a real separable Banach space with norm q(·)
and B the Borel subsets of B, or B = D[0,T ] where D[0,T ] denotes
usual cadlag space of functions with

q(x) = sup
t∈[0,T ]

|x(t)|,

and B the σ-field generated by the mappings {x(t) : t ∈ [0,T ]}.
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Large Values Observation à la Strassen. Let X ,X1,X2, · · · be
identically distributed B-valued random vectors such that for some
α > 0, c ≡ cq,X > 0 and r →∞

(1) log P(q(X ) ≥ r) ∼ −crα.

Then, for every ε > 0, (1) implies

(2) P(Xn ∈ (
log n

c
)

1
α (1 + ε)(U eventually) = 1,

and if the random vectors are independent (1) also implies

(3) P(Xn ∈ (
log n

c
)

1
α (1− ε)Uc i .o.) = 1,
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Remarks.
(i) Check details using the Borel-Cantelli Lemma. Exponential tails in
(2) are crucial for cutoff.

(ii) (2) implies an upper bound on the "rate of growth" in the sense that

P(lim sup
n→∞

dq((
c

log n
)

1
α Xn,U) = 0) = P(lim sup

n→∞
(

c
log n

)
1
α q(Xn) ≤ 1) = 1.

(iii) (2) and (3) combine to give this rate, i.e.

(4) P(lim sup
n→∞

(
c

log n
)

1
α q(Xn) = 1) = 1.
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Remarks Continued.
(iv) Too Simple? Obviously, and here are some reasons.

(a) Among your favorite stochastic processes, when do you know (1)?

(b) The i.i.d. sample model is quite restrictive since one is frequently
interested in the limiting behavior for scaled samples of a fixed
process.

(c) If X is a stochastic process with continuous sample paths, say on
[0,T ], and q is the sup-norm on C[0,T ], then (4) determines the rate
of growth for the largest absolute values of a typical path from the
sample, but what about other properties of the path?
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Small Values Observation à la Chung-Wichura. Let X ,X1,X2, · · ·
be identically distributed B-valued random vectors such that for for
some β > 0,d ≡ dq,X > 0 and r ↓ 0,

(5) log P(q(X ) < r) ∼ −dr−β .

Then, for every ε > 0, (5) implies

(6) P(Xn ∈ (
d

log n
)

1
β (1− ε)Uc eventually) = 1,

and if the random vectors are independent (5) also implies

(7) P(Xn ∈ (
d

log n
)

1
β (1 + ε)U i .o.) = 1.
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Remarks.
(i) Check details using the Borel-Cantelli Lemma. Exponential tails in
(5) are crucial for cutoff.

(ii) (6) implies a lower bound on the "rate of escape from zero" in the
sense that

P( lim
n→∞

dq((
log n

d
)

1
β Xn,Uc) = 0) = P(lim inf

n→∞
(
log n

d
)

1
β q(Xn) ≥ 1) = 1.

(iii) (6) and (7) combine to give this rate, i.e.

(8) P(lim inf
n→∞

(
log n

d
)

1
β q(Xn) = 1) = 1.
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Remarks Continued.
(iv) Too Simple? Obviously! Why?

(a) Among your favorite stochastic processes, when do you know (5)?
Here things are even harder!

(b) The i.i.d. sample model is quite restrictive since one is frequently
interested in the limiting behavior for scaled samples of a fixed
process.

(c) If X is a stochastic process with continuous sample paths, say on
[0,T ], and q is the sup-norm on C[0,T ], then (8) determines the rate
of escape from the zero function for the largest absolute values of a
typical path from the sample, but what about other properties of the
path?
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Part II: Gaussian i.i.d. Samples and Examples.

Notation.

B is a real separable Banach space with norm q(·) and topological
dual space B∗.

X is a centered B-valued Gaussian random vector with µ = L(X ).

Hµ ⊆ B is the Hilbert space such µ is determined by considering the
pair (E ,Hµ) as an abstract Wiener space.

Hµ is the completion of the range of the map S : B∗ → B given by the
Bochner integral

Sf =

∫
B

xf (x)dµ(x), f ∈ B∗,

and the completion is in the inner product norm

〈Sf ,Sg〉 =

∫
B

f (x)g(x)dµ(x), f ,g ∈ B∗.



Small and Large Value Probabilities and Related Limit Theorems

Notation Continued.

K is the unit ball of Hµ. For ε > 0, K ε = K + εU.

If X is given by standard Brownian motion on B = C[0,T ], then

K = {x ∈ C[0,T ] : x(t) =

∫ t

0
g(s)ds, t ∈ [0,T ],

∫ T

0
g2(s)ds ≤ 1}.

{αk : k ≥ 1} is a sequence in B∗, orthonormal in L2(µ), such that
{Sαk : k ≥ 1} is a CONS in Hµ, and define for d ≥ 1 the linear
operators taking B → B

Πd (x) =
d∑

k=1

α(x)Sαk and Qd (x) = x − Πd (x).
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Rates of Clustering Theorem-[GK]. Let X ,X1,X2, · · · be identically
distributed B-valued centered Gaussian random vectors, and assume
{dn} is a sequence of integers such that

dn ≥ inf{m ≥ 1 : E [q(Qm(X ))]/m ≤ (ΓL2n)/(2Ln)
1
2 },

where Γ = supx∈K q(x). If εn = (γdnL2n)/Ln and γ > 3Γ, then

P(Xn/(2Ln)
1
2 ∈ K εn eventually) = 1.
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Some Corollaries and Comments.

Corollary 1. Let X be given by standard Brownian motion on
B = C[0,T ] with q(·) the sup-norm on B, and assume

εn = γ(L2n/Ln)
2
3

Then, for X ,X1,X2, · · · identically distributed and γ > 0 sufficiently
large

P(Xn/(2Ln)
1
2 ∈ K εn eventually) = 1.
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Comments. (i) If V = {x ∈ C[0,T ] :
∫ T

0 x2(s)ds ≤ 1}, then for
Brownian motion samples as in Corollary 1 and γ > 0 sufficiently
large

P(Xn/(2Ln)
1
2 ∈ K + εnV eventually) = 1,

where εn = γ(L2n)
1
3 /(Ln)

2
3 . Here εn is smaller since V is larger than

U, and our choice of dn depends on small ball probabilities and the
approximation properties of the operators Πd in the different norms.
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(ii) Scaled Samples of Brownian Paths,[GK]. If {W (t) : t ≥ 0} is
sample continuous Brownian motion,

Xn(t) = W (nt)/n
1
2 ,0 ≤ t ≤ T ,n ≥ 1,

and
εn = γ(L3n)/L2n)

2
3 ,

then for γ > 0 sufficiently large

P(Xn/(2L2n)
1
2 ∈ K εn eventually) = 1.

(iii) The results in (ii) are close to being optimal in that [KG] proved for
all γ, θ > 0 and εn = γ/(L2n)

2
3 +θ

P(Xn/(2L2n)
1
2 ∈ K εn i .o.) = 0.
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(iv)Other examples. Similar results hold for Brownian sheets,
fractional Brownian motions, and other Gaussian processes.
If εn = ε, Strassen’s ground breaking result for BM and partial sum
processes of i.i.d. random variables initiated this type of investigation.
Bolthausen-1978 studied rates for the Brownian motion case using
special properties of Brownian motion, as Borel (1975), used below,
was not a universal part of probability at that stage of the game.
(v) A Universal Rate and a First Approach to Proofs. The Rates of
Clustering Theorem always holds for εn = γ/(Ln)

1
2 and γ > 0

sufficiently large. Actually γ > 0 is sufficient, but the argument we
give here is only an instructive beginning. The main tool is a result of
C. Borell, which also makes a link to small deviation probabilities, and
implies

P(X/r ∈ K + aU) ≥ Φ(r + α),

where Φ is the N(0,1) c.d.f. and Φ(α) = P(X ∈ raU). Hence for
r = rn = (2Ln)

1
2 , a = εn = γ/(Ln)

1
2 we have

P(X ∈ (2Ln)
1
2 K +

√
2γU) ≥ Φ((2Ln)

1
2 + α),

where Φ(α) = P(
√

2γU).
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Comment (v) Continued. Taking γ > 0 sufficiently large that
P(
√

2γU) > 1
2 we have α > 0 and hence

pn ≡ P(X /∈ (2Ln)
1
2 K +

√
2γU) ≤ 1− Φ((2Ln)

1
2 + α),

which implies

pn ≤ C(Ln)−
1
2 exp{−(

√
2Ln + α)2/2}.

Hence
∑

n≥1 pn <∞ for α > 0, and the Borel-Cantelli lemma
complete the proof.
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(vi) Another Universal Result, [GK] . Let B be a separable Banach
space. If X ,X1,X2, · · · are i.i.d. centered B-valued Gaussian random
vectors,

Gn = {X1/(2Ln)
1
2 , · · · ,Xn/(2Ln)

1
2 },

and εn = γ/Ln
1
2 for γ > 0, then

P(Gn ⊆ K εn eventually) = 1,

and
P(K ⊆ Gεn

n eventually) = 1.

(vii) If x ∈ K , then determining constants bn such that

P(0 < lim inf
n→∞

bndq(x ,
Xn

(2Ln)
1
2

) <∞) = 1

has been studied in a series of papers by [C], [deA], [KG], and [KLT].
These rates again depend on the small ball probabilities of X , and
there are different rates for points with ||x ||µ = 1. The points
{Sf : f ∈ B∗, ||Sf ||µ = 1} are approached slowest.
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Part III: Small Value Probabilities and Limit Theorems

Let {X (t) : t ≥ 0} be a stochastic process with cadlag paths in
D[0,∞), X (0) = 0, and for t ≥ 0,n ≥ 1, define

ηn(t) = M(nt)/(dαn/L2n)
1
α ,

where
M(t) = sup

0≤s≤t
|X (s)|.

The parameter α is typically related to the scaling parameter of the
process {X (t) : t ≥ 0}, and

dα = lim
ε→0+

εα log P( sup
0≤s≤1

|X (s)| ≤ ε).

LetM denote the functions f : [0,∞)→ [0,∞] such that f (0) = 0, f is
right continuous on (0,∞), non-decreasing, and such that
limt→∞ f (t) =∞. Also define

Kα = {f ∈M :

∫ ∞
0

f−α(s)ds ≤ 1}.
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The topology onM is that of weak convergence, i.e. pointwise
convergence at all continuity points of the limit function. This topology
is metrizable and separable, and if {fn} is a sequence of points inM,
then C({fn}) denotes the cluster set of {fn}, i.e. all possible
subsequential limits of {fn} in the weak topology. If A ⊆M we write
{fn} A if {fn} is relatively compact inM and C({fn}) = A.
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Then, in [CKL] and [KL] we have for X = {X (t) : t ≥ 0}:

(i) If X is a symmetric stable process with stationary independent
increments of index α ∈ (0,2], then

P({ηn} Kα) = 1.

(ii) If X is a fractional Brownian motion process with parameter
γ ∈ (0,1), then for α = 1/γ

P({ηn} Kα) = 1.

(iii) Similar results hold for Levy’s stochastic area process [KL], partial
sum processes built from i.i.d. random variables [R], and also for
multigenerational samples of a super critical Galton-Watson
branching process [KV]. In this last case the situation is a triangular
array, and at each stage n the process is built from the nth generation,
i.e. we do not scale a single generation.
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(iv) In all of these results we see that with probability one

lim inf
n→∞

ηn(1) = lim inf
n→∞

sup
0≤t≤1

M(nt)/(dαn/L2n)
1
α = 1.

Why? Suppose lim infn→∞ ηn(1) ≤ d < 1 and ηn  Kα on
Ω0,P(Ω0) > 0. Then, for ω ∈ Ω0 there are random subsequences
{nk} such that limk→∞ ηnk (1) = lim infn→∞ ηn(1) ≤ d < 1, and
selecting possibly an additional subsequence nkr we also have ηnkr

converges to an f ∈ Kα. Since the ηn and f are increasing, right
continuous functions we have from above that f (t) ≤ d < 1 except
possibly for countably many t ∈ (0,1) where f is discontinuous. Thus∫ ∞

0
f−α(s)ds ≥

∫ 1

0
d−αds > 1,

which is a contradiction to P(Ω0) > 0. Hence with probability one

lim inf
n→∞

ηn(1) ≥ 1.
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(iv continued) To see
lim inf
n→∞

ηn(1) = 1,

we take d > 1 and define f (0) = 0, f (t) = d ,0 < t < 1 + δ,
f (t) =∞, t ≥ 1 + δ. Then, for δ > 0 sufficiently small f ∈ Kα, and f is
continuous at t = 1. Hence, with probability one

lim inf
n→∞

ηn(1) ≤ d ,

and since d > 1 was arbitrary our assertion follows.

(v) Note that the small value observations made earlier are applied,
not to X itself here, but to the increasing paths formed from X to
define the process M.
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Something about the Proofs.

To minimize notation we restrict ourselves to X being standard
Brownian motion, but the proofs follows similar lines in other
situations. However, the details vary, and often require adjustments
that are not always immediate.

The proof follows from three facts.

(I) P(C({ηn}) ⊆ Kα) = 1.

(II) P({ηn} is relatively compact inM) = 1.

(III) P(Kα ⊆ C({ηn})) = 1.
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Let m ≥ 1, τ > 0, and assume 0 < t1 < t2 < · · · < tm. Then, except for
a slight variation when f jumps to infinity at some finite point, a typical
neighborhood of f ∈M is of the form

Nf ,τ = {g ∈M : f (tj )− τ < g(tj ) < f (tj ) + τ,1 ≤ j ≤ m}.
The necessary probability estimate in order to apply Borel-Cantelli
arguments in this setting are as follows.

Proposition. Let {X (t) : t ≥ 0} be a standard Brownian motion. Fix
sequences {ti}m

i=0, {ai}m
i=1, and {bi}m

i=1, where 0 = t0 < t1 < · · · < tm,
ai < bi ,1 ≤ i ≤ m, and b1 ≤ b2,≤ · · · ≤ bm. Then,

lim sup
ε→0+

ε2 log P(aiε ≤ M(ti ) ≤ biε,1 ≤ i ≤ m) ≤ −π
2

8

m∑
i=1

(ti − ti−1)/b2
i .

In addition, if we assume a1 < b1 ≤ a2 < b2 ≤ · · · ,≤ am < bm, then

lim inf
ε→0+

ε2 log P(aiε ≤ M(ti ) ≤ biε,1 ≤ i ≤ m) ≥ −π
2

8

m∑
i=1

(ti − ti−1)/b2
i ,

where π2

8 is the small ball probability constantfor Brownian motion.
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Since the sums in the previous proposition are Riemann sums for the
function f which is the center of the neighborhood Nf ,τ , taking ε > 0
small and refining the partition by increasing m we see that the limit
set should be

{f ∈M :

∫ ∞
0

f−2(t)dt ≤ 1},

and this is the set K2 of our theorem for the Brownian motion
process. Of course, there are many details that have been ignored in
this quick picture.



Small and Large Value Probabilities and Related Limit Theorems

Part IV: Partial Sum Process Results for Supercritical Branching.

Let {ξn,j , j ≥ 1,n ≥ 1} denote a double array of non-negative integer
valued i.i.d. random variables defined on the probability space
(Ω,F ,P), and having probability distribution {pj : j ≥ 0}, i.e.
P(ξ1,1 = k) = pk . Then, {Zn : n ≥ 0} denotes the Galton-Watson
process initiated by a single ancestor Z0 ≡ 1. It is iteratively defined
on (Ω,F ,P) for n ≥ 1 by

Zn =

Zn−1∑
j=1

ξn,j .

Let m = E(Z1) ∈ (1,∞). This is the supercritical case, and the
probability that the process becomes extinct, namely q, is less than
one. The complement of the set ∪∞n=1{Zn = 0} is the so called
survival set, and is denoted by S, P(S) = 1− q, and Zn →∞ a.s. on
S. Also, q = 0 if and only if p0 = 0, and we assume the offspring
variance σ2 = Var(Z1) ∈ (0,∞).
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On the set {Zn−1 > 0} define Xn,Zn−1 (0) = 0, and for 0 < t ≤ 1 set

Xn,Zn−1 (t) =
1

σ
√

Zn−1
{
btZn−1c∑

j=1

(ξn,j −m) + cn,Zn−1 (t)},

where cn,Zn−1 (t) = (tZn−1 − btZn−1c))(ξn,btZn−1c+1 −m).

On {Zn−1 = 0} we define Xn,Zn−1 (t) = 0 for 0 ≤ t ≤ 1. Hence
Xn,Zn−1 (·) denotes an element of the space of continuous functions on
[0,1] that vanish at zero with sup-norm given by q(·).
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The analogue of Strassen’s result for these processes is the
following:

Theorem.[KV] Assume E(Z 2
1 (L(Z1))r ) <∞ for some r > 4, and that

K denotes the limit set for the Strassen type LIL for Brownian motion.
Then

P( lim
n→∞

dq(
Xn,Zn−1

(2Ln)
1
2
,K ) = 0) = 1.

In addition, if S denotes the survival set of the process, then

P(C({
Xn,Zn−1

(2Ln)
1
2
}) = K |S) = 1.
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The maximal process and limit set used in connection to our
Chung-Wichura law of the logarithm in this setting are

Mn,Zn−1 (t) = sup
0≤s≤t

|Xn,Zn−1 (s)|, 0 ≤ t ≤ 1,

K2 = {f ∈M :

∫ 1

0
f−2(s)ds ≤ 1},

and we recall d2 = π2

8 .
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The Chung-Wichura law in this setting is:

Theorem. Assume E(Z 2
1 (L(Z1))r ) <∞ for some r > 4, and that S

denote the survival set of the process. Then,

P({

√
Ln
d2

Mn,Zn−1 (·) K2|S) = 1.
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Remarks.
(1) Complete analogues of the above type were proved for r(n)
generations of the branching chain,1 ≤ r(n) ≤ n, r(n)→∞,
and the limit sets are given by

K∞ = {(f1, f2, · · · ) ∈ (K × K × · · · ) :
∑
k≥1

∫ 1

0
(f ′k (s))2ds ≤ 1},

and

K∞ = {(h1,h2, · · · ) ∈ (K2 ×K2 × · · · ) :
∞∑

k=1

∫ 1

0
h−2

k (s)ds ≤ 1},

which is somewhat surprising as these are the limits one would
expect if the successive generations were totally independent.
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(2) The fact that r > 4 in the moment assumption in these theorems
results from the use of standard estimates for the Prokhorov distance
in the classical invariance theorem. That these estimates are
essentially best possible can be seen from work of Borovkov and also
Sahanenko. Thus an attempt at reducing r > 4 to , say r > 1, would
seem to require a substantially different approach than what we use
here. In particular, in the setting of functional limit theorems of high
dimension, the difficulties imposed when working with partial sums
from successive generations of a branching process make many
typical LIL arguments along subsequences unavailable.
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(3) Using these methods one can prove analogues of these results for
triangular arrays of independent random variables under a variety of
conditions. For example, such results hold as long as the row lengths
have length n8+δ, the random variables are identically distributed with
three moments, and the rows are independent, but there are other
conditions that suffice as well. The additional assumption that the
rows of the triangular array have some form of independence is
necessary to show that the cluster set formed is all of the relevant
limit set. In the supercritical branching process model no additional
assumptions need be made, and although the rows are not
independent, there is enough asymptotic independence when
combined with the conditional Borel-Cantelli lemma to allow a proof.
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