First passage times of Lévy processes over a one-sided moving boundary

Tanja Kramm joint works with F. Aurzada, M. Lifshits and M. Savov

TU Berlin

Huntsville, 06.06.2012

Outline

Statement of the problem

Brownian motion

- constant boundaries
- moving boundaries
- General Lévy processes
 constant boundaries
 moving boundaries
 - strictly stable Lévy processes
 moving boundaries

Conclusion

Outline

Statement of the problem

Brownian motion

constant boundaries moving boundaries

General Lévy processes
 constant boundaries
 moving boundaries

strictly stable Lévy processes
 moving boundaries

Conclusion

Given: $(A_t)_{t\geq 0}$ stochastic process with $A_0 = 0$. Goal: Find asymptotics of

$$\mathbb{P}\left[\sup_{0\leq t\leq T}A_t\leq 1\right]\approx \ ?\ ,\qquad \text{as }T\to\infty.$$

H 5

Statement of the problem

Given: $(A_t)_{t\geq 0}$ stochastic process with $A_0 = 0$. Goal: Find asymptotics of

$$\mathbb{P}\left[\sup_{0\leq t\leq T}A_t\leq 1\right]\approx \ ?\ ,\qquad \text{as }T\to\infty.$$

Here, we expect

$$\mathbb{P}\left[\sup_{0\leq t\leq T} A_t \leq 1\right] = T^{-\theta + o(1)}, \quad \text{as } T \to \infty$$

with $\theta > 0$, called survival exponent.

Tanja Kramm (TU Berlin)

Statement of the problem

The exit problem with a "moving boundary":

$$\mathbb{P}\left[\forall t \in [0, T] : A_t \leq \mathbf{F}(t)\right] = T^{-\theta + o(1)}$$

Question:

For which *F* does one get the same survival exponent as for $F \equiv 1$?

Statement of the problem

The exit problem with a "moving boundary":

$$\mathbb{P}\left[\forall t \in [0, T] : A_t \leq \mathbf{F}(t)\right] = T^{-\theta + o(1)}$$

Question: For which *F* does one get the same survival exponent as for $F \equiv 1$?

Outline

Statement of the problem

Brownian motion

- constant boundaries moving boundaries
- General Lévy processes
 constant boundaries
 moving boundaries
- strictly stable Lévy processes
 moving boundaries

Conclusion

BM: known results for constant boundaries

Let *B* be a Brownian motion.

Then,

$$\mathbb{P}\left[\sup_{0\leq t\leq T}B_t\leq 1\right]\sim \sqrt{\frac{2}{\pi}}\cdot T^{-1/2}, \quad \text{as } T\to\infty,$$

 \rightsquigarrow easily proved by the reflection principle.

H N

BM: known results for moving boundaries

Theorem (Uchiyama'80)

If F is continuous and F(0) > 0 and such that

J

$$\int_1^\infty t^{-3/2} |F(t)| \,\mathrm{d}t < \infty$$

then

$$\mathbb{P}\left[\forall 0 \leq t \leq T : B_t \leq F(t)\right] \approx T^{-1/2}.$$

The integral test is in some sense necessary.

Theorem (Uchiyama'80)

If F is continuous and F(0) > 0 and such that

$$\int_1^\infty t^{-3/2} |F(t)| \,\mathrm{d}t < \infty$$

then

$$\mathbb{P}\left[\forall 0 \leq t \leq T : B_t \leq F(t)\right] \approx T^{-1/2}.$$

The integral test is in some sense necessary.

- *F*(*t*) = √*t* does not satisfy the integral test, but
 F(*t*) = √*t*(log *t*)^{-γ}, γ > 1.
- Proof: comparison lemmas for Brownian non-exit probabilities and a "time-discretization" technique.

A B b 4 B b

Theorem (Uchiyama'80)

If F is continuous and F(0) > 0 and such that

$$\int_1^\infty t^{-3/2} |F(t)| \,\mathrm{d} t < \infty$$

then

$$\mathbb{P}\left[\forall 0 \leq t \leq T : B_t \leq F(t)\right] \approx T^{-1/2}.$$

The integral test is in some sense necessary.

- Novikov (1992) simplified the proof for the increasing boundary using martingale techniques.
- The proof for the decreasing boundary was simplified by Aurzada/K.'12+. The integral test above can be understood and interpreted as a repulsion effect of a Bessel-(3)-process.

3 + 4 = +

Outline

Statement of the problem

Brownian motion

- constant boundaries moving boundaries
- General Lévy processes
 constant boundaries
 moving boundaries
- strictly stable Lévy processes
 moving boundaries

Conclusion

LP: constant boundary

For the rest of the talk, we consider a Lévy process *X* with common Lévy triplet (b, σ, ν) .

$$\mathbb{P}\left[\sup_{0\leq t\leq T}X_t\leq 1\right],\quad\text{as }T\to\infty$$

is the subject of study of classical fluctuation theory.

LP: constant boundary

For the rest of the talk, we consider a Lévy process *X* with common Lévy triplet (b, σ, ν) .

$$\mathbb{P}\left[\sup_{0\leq t\leq T}X_t\leq 1
ight], \quad ext{as } T
ightarrow\infty$$

is the subject of study of classical fluctuation theory.

This problem is closely related to the behaviour of

$$\mathbb{P}\left[X_t > 0\right], \quad \text{as } t \to \infty.$$

lf

$$\mathbb{P}\left[X_t > \mathbf{0}\right] \to \rho, \qquad \text{as } t \to \infty$$

for some $\rho \in (0, 1)$ we say X satisfies Spitzer's condition with parameter $\rho \in (0, 1)$.

LP: constant boundary

For the rest of the talk, we consider a Lévy process *X* with common Lévy triplet (b, σ, ν) .

$$\mathbb{P}\left[\sup_{0\leq t\leq T}X_t\leq 1
ight], \quad ext{as } T
ightarrow\infty$$

is the subject of study of classical fluctuation theory.

This problem is closely related to the behaviour of

$$\mathbb{P}\left[X_t > 0\right], \quad \text{as } t \to \infty.$$

lf

$$\mathbb{P}\left[X_t > \mathbf{0}\right] \to \rho, \qquad \text{as } t \to \infty$$

for some $\rho \in (0, 1)$ we say X satisfies Spitzer's condition with parameter $\rho \in (0, 1)$.

 Similarly (and historically earlier), corresponding results for random walks.

Tanja Kramm (TU Berlin)

Theorem (e.g. Rogozin' 71)

The following assertions are equivalent for each $\rho \in (0, 1)$

• X satisfies Spitzer's condition with $\rho \in (0, 1)$.

$$\mathbb{P}\left[\sup_{0\leq t\leq T}X_t\leq x\right]\sim c(x)T^{-\rho}\ell(T)$$

with some slowly varying ℓ .

2

Theorem (Greenwood/Novikov'86)

Let X be a Lévy process that satisfies Spitzer's condition with $\rho \in (0, 1)$. Then

$$\mathbb{P}\left[\forall 0 \leq t \leq T : X_t \leq 1\right] = T^{-\rho + o(1)}$$

and,

4 D b 4 A b

Theorem (Greenwood/Novikov'86)

Let X be a Lévy process that satisfies Spitzer's condition with $\rho \in (0, 1)$. Then

$$\mathbb{P}\left[\forall 0 \leq t \leq T : X_t \leq 1\right] = T^{-\rho + o(1)}$$

and, for $\gamma < \rho$,

$$\mathbb{P}\left[\forall \mathbf{0} \leq t \leq T : X_t \leq \mathbf{1} + \mathbf{ct}^{\gamma}\right] = T^{-\rho + o(1)}.$$

Tanja Kramm (TU Berlin)

Moving boundaries for LP

Huntsville, 06.06.2012 13 / 23

< 3 > < 3</p>

Theorem (Aurzada/K./Savov'12+)

Let X be a Lévy process and $\gamma < 1/2$. If for some $\rho > 0$

$$\mathbb{P}\left[\forall 0 \leq t \leq T : X_t \leq 1\right] = T^{-\rho + o(1)}$$

and $\nu(-\infty,0) > 0$ then

$$\mathbb{P}\left[orall 0 \leq t \leq T: X_t \leq \mathbf{1} - \mathbf{c} \mathbf{t}^\gamma
ight] = T^{-
ho + o(1)}$$

and additionally $\nu(0,\infty) > 0$ then

$$\mathbb{P}\left[\forall \mathbf{0} \leq t \leq T : X_t \leq \mathbf{1} + \mathbf{ct}^{\gamma}\right] = T^{-\rho + o(1)}$$

Tanja Kramm (TU Berlin)

Moving boundaries for LP

• Change of measure (Girsanov transform):

 $\mathbb{P}\left[\forall t \leq T : X_t + f(t) \leq 1\right] \geq \mathbb{P}\left[\forall t \leq T : X_t + Z_t \leq 1\right] T^{o(1)} e^{-\frac{1}{2}|f'|_{L_2}^2},$

where *Z* is a suitable additive process compensating the function $f(t) = ct^{\gamma}$,

• Change of measure (Girsanov transform):

 $\mathbb{P}\left[\forall t \le T : X_t + f(t) \le 1\right] \ge \mathbb{P}\left[\forall t \le T : X_t + Z_t \le 1\right] T^{o(1)} e^{-\frac{1}{2}|f'|_{L_2}^2},$

where *Z* is a suitable additive process compensating the function $f(t) = ct^{\gamma}$, i.e. the triplet of *Z* is $(0, 0, f'(s)\mathbf{1}_{x \approx 1} ds d\nu(x))$.

• Change of measure (Girsanov transform):

 $\mathbb{P}\left[\forall t \le T : X_t + f(t) \le 1\right] \ge \mathbb{P}\left[\forall t \le T : X_t + Z_t \le 1\right] T^{o(1)} e^{-\frac{1}{2}|f'|_{L_2}^2},$

where *Z* is a suitable additive process compensating the function $f(t) = ct^{\gamma}$, i.e. the triplet of *Z* is $(0, 0, f'(s)\mathbf{1}_{x\approx 1} ds d\nu(x))$.

Homogenization:

$$\mathbb{P}\left[\forall t \leq T : X_t + Z_t \leq 1\right] = \mathbb{P}\left[\forall t \leq T : X_t + Z'_{f(t)} \leq 1\right],$$

where Z' is a Lévy martingale with finite exp. moments (indep. of f).

.

• Change of measure (Girsanov transform):

 $\mathbb{P}\left[\forall t \le T : X_t + f(t) \le 1\right] \ge \mathbb{P}\left[\forall t \le T : X_t + Z_t \le 1\right] T^{o(1)} e^{-\frac{1}{2}|f'|_{L_2}^2},$

where *Z* is a suitable additive process compensating the function $f(t) = ct^{\gamma}$, i.e. the triplet of *Z* is $(0, 0, f'(s)\mathbf{1}_{x\approx 1} ds d\nu(x))$. Homogenization:

Homogenization:

$$\mathbb{P}\left[\forall t \leq T : X_t + \frac{Z_t}{Z_t} \leq 1\right] = \mathbb{P}\left[\forall t \leq T : X_t + \frac{Z'_{f(t)}}{Z_{f(t)}} \leq 1\right],$$

where Z' is a Lévy martingale with finite exp. moments (indep. of f).

.

• Change of measure (Girsanov transform):

$$\mathbb{P}\left[\forall t \le T : X_t + f(t) \le 1\right] \ge \mathbb{P}\left[\forall t \le T : X_t + Z_t \le 1\right] T^{o(1)} e^{-\frac{1}{2}|f'|_{L_2}^2},$$

where *Z* is a suitable additive process compensating the function $f(t) = ct^{\gamma}$, i.e. the triplet of *Z* is $(0, 0, f'(s)\mathbf{1}_{x\approx 1} ds d\nu(x))$. • Homogenization:

$$\mathbb{P}\left[\forall t \leq T : X_t + Z_t \leq 1\right] = \mathbb{P}\left[\forall t \leq T : X_t + Z'_{f(t)} \leq 1\right]$$

where Z' is a Lévy martingale with finite exp. moments (indep. of f). This shows

$$\mathbb{P}\left[\forall t \leq T : X_t + \frac{Z'_{f(t)}}{Z} \leq 1\right] \succeq \mathbb{P}\left[\forall t \leq T : X_t + f(t)^{1/2} \leq 1\right]$$

• Change of measure (Girsanov transform):

 $\mathbb{P}\left[\forall t \le T : X_t + f(t) \le 1\right] \ge \mathbb{P}\left[\forall t \le T : X_t + Z_t \le 1\right] T^{o(1)} e^{-\frac{1}{2}|f'|_{L_2}^2},$

where *Z* is a suitable additive process compensating the function $f(t) = ct^{\gamma}$, i.e. the triplet of *Z* is $(0, 0, f'(s)\mathbf{1}_{x\approx 1} ds d\nu(x))$. • Homogenization:

$$\mathbb{P}\left[\forall t \leq T : X_t + Z_t \leq 1\right] = \mathbb{P}\left[\forall t \leq T : X_t + Z'_{f(t)} \leq 1\right],$$

where Z' is a Lévy martingale with finite exp. moments (indep. of f). This shows

$$\mathbb{P}\left[\forall t \leq T : X_t + Z'_{f(t)} \leq 1\right] \succeq \mathbb{P}\left[\forall t \leq T : X_t + \frac{f(t)^{1/2}}{1} \leq 1\right]$$
$$= \mathbb{P}\left[\forall t \leq T : X_t + \frac{ct^{\gamma/2}}{1} \leq 1\right]$$

A B b 4 B b

• Change of measure (Girsanov transform):

 $\mathbb{P}\left[\forall t \le T : X_t + f(t) \le 1\right] \ge \mathbb{P}\left[\forall t \le T : X_t + Z_t \le 1\right] T^{o(1)} e^{-\frac{1}{2}|f'|_{L_2}^2},$

where *Z* is a suitable additive process compensating the function $f(t) = ct^{\gamma}$, i.e. the triplet of *Z* is $(0, 0, f'(s)\mathbf{1}_{x\approx 1} ds d\nu(x))$. • Homogenization:

$$\mathbb{P}\left[\forall t \leq T : X_t + Z_t \leq 1\right] = \mathbb{P}\left[\forall t \leq T : X_t + Z'_{f(t)} \leq 1\right],$$

where Z' is a Lévy martingale with finite exp. moments (indep. of f). This shows

$$\mathbb{P}\left[\forall t \leq T : X_t + Z'_{f(t)} \leq 1\right] \succeq \mathbb{P}\left[\forall t \leq T : X_t + f(t)^{1/2} \leq 1\right]$$
$$= \mathbb{P}\left[\forall t \leq T : X_t + \frac{ct^{\gamma/2}}{ct} \leq 1\right]$$

• Iterating this such that $T^{\gamma/2^n} \approx 1$, one can estimate it by

 $\mathbb{P}\left[\forall t \leq T : X_t \leq 1\right]_{\leq t \leq t \leq T}$

• Change of measure (Girsanov transform):

 $\mathbb{P}\left[\forall t \leq T : X_t + f(t) \leq 1\right] \geq \mathbb{P}\left[\forall t \leq T : X_t + Z_t \leq 1\right] T^{o(1)} e^{-\frac{1}{2}|f'|_{L_2}^2},$

where *Z* is a suitable additive process compensating the function $f(t) = ct^{\gamma}$, i.e. the triplet of *Z* is $(0, 0, f'(s)\mathbf{1}_{x\approx 1} ds d\nu(x))$. • Homogenization:

$$\mathbb{P}\left[\forall t \leq T : X_t + Z_t \leq 1\right] = \mathbb{P}\left[\forall t \leq T : X_t + Z'_{f(t)} \leq 1\right],$$

where Z' is a Lévy martingale with finite exp. moments (indep. of f). This shows

$$\mathbb{P}\left[\forall t \leq T : X_t + Z'_{f(t)} \leq 1\right] \succeq \mathbb{P}\left[\forall t \leq T : X_t + f(t)^{1/2} \leq 1\right]$$
$$= \mathbb{P}\left[\forall t \leq T : X_t + ct^{\gamma/2} \leq 1\right]$$

• Iterating this such that $T^{\gamma/2^n} \approx 1$, one can estimate it by

 $\mathbb{P}\left[\forall t \leq T : X_t \leq 1
ight]$

Outline

Statement of the problem

Brownian motion

- constant boundaries moving boundaries
- General Lévy processes
 constant boundaries
 moving boundaries
 - strictly stable Lévy processes
 moving boundaries

Conclusion

for some $\rho \in (0, 1)$, that is X satisfies Spitzer's condition with parameter $\rho \in (0, 1)$.

We expect that these assumptions imply

$$\gamma < \max\left\{\frac{1}{2}, \frac{1}{\beta_{-}}\right\} \iff \mathbb{P}\left[\forall 0 \le t \le T : X_t \le 1 - t^{\gamma}\right] = T^{-\rho + o(1)}.$$

Conjecture for incresasing boundaries

for some $\rho \in (0, 1)$, that is *X* satisfies Spitzer's condition with parameter $\rho \in (0, 1)$.

We expect that these assumptions imply

$$\gamma < \max\left\{\frac{1}{2}, \frac{1}{\beta_+}\right\} \iff \mathbb{P}\left[\forall 0 \le t \le T : X_t \le 1 + t^{\gamma}\right] = T^{-\rho+o(1)}.$$

Recall that $\rho \le \frac{1}{\beta_+}$.

Recall that a strictly stable Lévy process with index $\alpha \in (0, 2)$ satisfies Spitzer's condition for some parameter $\rho \in [0, 1]$ and thus if $\rho \in (0, 1)$ then

$$\mathbb{P}\left[\forall 0 \leq t \leq T : X_t \leq 1\right] = T^{-\rho}.$$

Theorem (Aurzada/K./Lifshits'12+)

Let X be a strictly stable Lévy process with index $\alpha \in (0,2)$ and Spitzer's parameter $\rho \in (0,1)$. Then, we have for $\gamma < 1/\alpha$

$$\mathbb{P}\left[\forall \mathbf{0} \leq t \leq T : X_t \leq \mathbf{1} + \mathbf{ct}^{\gamma}\right] = T^{-\rho + o(1)}$$

and

$$\mathbb{P}\left[\forall \mathbf{0} \leq t \leq T : X_t \leq \mathbf{1} - \mathbf{ct}^{\gamma}\right] = T^{-\rho + o(1)}.$$

< ロ > < 同 > < 回 > < 回 >

Theorem (Aurzada/K./Lifshits'12+)

Let X be a strictly stable Lévy process with index $\alpha \in (0,2)$ and Spitzer's parameter $\rho \in (0,1)$. Then, we have for $\gamma < 1/\alpha$

$$\mathbb{P}\left[orall \mathbf{0} \leq t \leq T: X_t \leq \mathbf{1} + \mathbf{ct}^{\gamma}
ight] = T^{-
ho + o(1)}$$

and

$$\mathbb{P}\left[\forall \mathbf{0} \leq t \leq T : X_t \leq \mathbf{1} - \mathbf{ct}^{\gamma}\right] = T^{-\rho + o(1)}$$

Remark:

The Theorem is also proved for Lévy processes belonging to the domain of attraction of a strictly stable Lévy processes with index $\alpha \in (0, 2)$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Statement of the problem

Brownian motion

- constant boundaries moving boundaries
- General Lévy processes
 constant boundaries
 moving boundaries
- strictly stable Lévy processes
 moving boundaries

Conclusion

Conclusion

The survival exponent stays $ho \in (0, 1)$ (Spitzer's parameter) if

for general Lévy processes:

- decreasing boundaries: $f(t) = 1 t^{\gamma}$, $\gamma < \frac{1}{2}$, proved by Aurzada/K./Savov'12+
- 2 increasing boundaries: $f(t) = 1 + t^{\gamma}$, $\gamma < \max\{\frac{1}{2}, \rho\}$, proved by Greenwood/Novikov'86 and Aurzada/K./Savov'12+

4 3 > 4 3

Conclusion

The survival exponent stays $ho \in (0, 1)$ (Spitzer's parameter) if

for general Lévy processes:

- decreasing boundaries: $f(t) = 1 t^{\gamma}$, $\gamma < \frac{1}{2}$, proved by Aurzada/K./Savov'12+
- (2) increasing boundaries: $f(t) = 1 + t^{\gamma}$, $\gamma < \max\{\frac{1}{2}, \rho\}$, proved by Greenwood/Novikov'86 and Aurzada/K./Savov'12+

for strictly stable Lévy processes with index $\alpha \in (0, 2)$:

- decreasing boundaries: $f(t) = 1 t^{\gamma}$, $\gamma < \frac{1}{\alpha}$, proved by Aurzada/K./Lifshits'12+
- increasing boundaries: $f(t) = 1 + t^{\gamma}$, $\gamma < \frac{1}{\alpha}$, proved by Aurzada/K./Lifshits'12+

Recall $\rho \leq \frac{1}{\alpha}$.

э.

Thank you for your attention!

Tanja Kramm Technische Universität Berlin

Tanja Kramm (TU Berlin)

Moving boundaries for LP

Huntsville, 06.06.2012 23 / 23

3 > 4 3

Image: A matrix