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Symmetry breaking according to (adapted from) Wikipedia
Symmetry breaking is a phenomenon where fluctuations in a
system at criticality determine which branch of a furcation is
taken. The transition takes the system from a disorderly state into
a more ordered state.
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The jellium model

Model was introduced by Wigner(38); C. Herring called it the
jellium; also known as the 1-component plasma.
Consists of L electrons in a neutralizing uniform positively
charged background.
The thermodynamic limit exists (L→∞), and in 1D,
symmetry breaking is known: Kunz(74), Brascamp-Lieb(75),
Aizenman-Martin(80), Aizenman-Goldstein-Lebowitz(01).
Roughly, particles split up into neutral “cells” leading to a
one-parameter family of Gibbs equilibrium states.
This periodicity is an example of the “Wigner lattice”.
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The 1D Wigner lattice

Shifted by Tθθ
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The quasi-one dimensional case

We consider charges in [−π, π]× R

−L/2 L/2
−π

π
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AGL theorem

Theorem (Aizenman, Goldstein, Lebowitz)
Let ν(dω) be a translation-invariant point process on R with
NI(ω) the number of points in I. If

lim|I|→∞ Var(NI) <∞ ,

then ν is not mixing, and has a decomposition

ν =

∫ 1

0
νθ dθ ,

into mutually singular measures.
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Connection between NI and the electric field

The number of particles up to x , starting from the left, has a
connection with the electric field at x :

E (x) = x −N[−L/2,x ](ω)

One can think of E (x) as the charge imbalance at x .
Aizenman-Martin(80) showed that E (0) has a bounded
variance as L→∞.
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The charge imbalance function and total energy

The total energy U is given by

1
2

∫
E (x)2dx .

*The Gibbs measure 1
Z e−βU(ω).

−L/2 L/2

E (x)
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The charge imbalance function and total energy

The total energy U is given by

1
2

∫
E (x)2dx .

*The Gibbs measure 1
Z e−βU(ω).

A picture of the total energy

−L/2 L/2

E (x)
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Symmetry breaking via tight fluctuations

To prepare for the quasi-1D case, we will give a picture of

Bounded Variance in 1D
P(E (0) > cλ) decays like e−cλ3 as L→∞ and thus

lim
L→∞

Var(E (0)) <∞.

The probability bound comes from analyzing 1
Z e
−βU using the

“Markov property” for the electric field:

UA + UB = UA∪B.
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Finite strip energy difference estimate

We compare a high energy event with a low energy event:

λ

3λ

E (x)

−` r0

` ≥ 2λ

improved energy
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Energy of the quasi-1D system

Energy via a potential decomposition

U(ω) =
1
2

∫
L
|E 1(x ;ω)|2 dx +

∑
1≤j<k≤L

V2(zj − zk)

The energy of the quasi-1D system differs from that of its 1D
projection only in the V2-component.
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The quasi-1D charge imbalance function, E 1(x)

−L/2 L/2
−π

π

−L/2 L/2

E 1(x)
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Two complications from V2-interactions

Markov property
Instead of UA∪B = UA + UB we get:

UA∪B(ω) = UA(ωA) + UB(ωB) +
∑

V2(ωA, ωB).

Finite strip estimate
The energy gap for high and low energy configs is now bounded
below by a 1D part plus V2-energy for −` < xi , xj < r , which may
be negative.
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Rod replacements

We replace bad particles with rods similar to smearing charges
introduced by Onsager(39) (we use rods instead of balls):
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An additional energy change by moving the rod

0 x

N(x)

−l r

λ

−λ
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Two complications

Rod replacements are not bijective!

Problem: A rod replacement couples many bad configurations to just
one good one.

Solution: Let B̂ be the nonempty set of indices of bad particles

P (bad) =
∑
B̂⊂N

P
(
{B(ω) = B̂}

)
≤
∑
B̂⊂N

C ′e−
∑

k∈B̂(Ck2)P (good)

≤C ′
∏

k∈N
(1+ e−Ck2

)

P (good) .

The End Thanks for your attention!
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