Symmetry breaking in quasi-1D Coulomb systems

Michael Aizenman¹ Sabine Jansen² Paul Jung³

¹Princeton University

²Weierstrass Institute

³University of Alabama, Birmingham

June 4, 2012 NSF-CBMS Conference

Symmetry breaking according to (adapted from) Wikipedia

Symmetry breaking is a phenomenon where fluctuations in a system at criticality determine which branch of a furcation is taken. The transition takes the system from a disorderly state into a more ordered state.

- Model was introduced by Wigner(38); C. Herring called it the *jellium*; also known as the *1-component plasma*.
- Consists of *L* electrons in a neutralizing uniform positively charged background.
- The thermodynamic limit exists (L→∞), and in 1D, symmetry breaking is known: Kunz(74), Brascamp-Lieb(75), Aizenman-Martin(80), Aizenman-Goldstein-Lebowitz(01).
- Roughly, particles split up into neutral "cells" leading to a one-parameter family of Gibbs equilibrium states.
- This periodicity is an example of the "Wigner lattice".

- Model was introduced by Wigner(38); C. Herring called it the *jellium*; also known as the *1-component plasma*.
- Consists of *L* electrons in a neutralizing uniform positively charged background.
- The thermodynamic limit exists (L→∞), and in 1D, symmetry breaking is known: Kunz(74), Brascamp-Lieb(75), Aizenman-Martin(80), Aizenman-Goldstein-Lebowitz(01).
- Roughly, particles split up into neutral "cells" leading to a one-parameter family of Gibbs equilibrium states.
- This periodicity is an example of the "Wigner lattice".

- Model was introduced by Wigner(38); C. Herring called it the *jellium*; also known as the *1-component plasma*.
- Consists of *L* electrons in a neutralizing uniform positively charged background.
- The thermodynamic limit exists (L→∞), and in 1D, symmetry breaking is known: Kunz(74), Brascamp-Lieb(75), Aizenman-Martin(80), Aizenman-Goldstein-Lebowitz(01).
- Roughly, particles split up into neutral "cells" leading to a one-parameter family of Gibbs equilibrium states.
- This periodicity is an example of the "Wigner lattice".

- Model was introduced by Wigner(38); C. Herring called it the *jellium*; also known as the *1-component plasma*.
- Consists of *L* electrons in a neutralizing uniform positively charged background.
- The thermodynamic limit exists (L→∞), and in 1D, symmetry breaking is known: Kunz(74), Brascamp-Lieb(75), Aizenman-Martin(80), Aizenman-Goldstein-Lebowitz(01).
- Roughly, particles split up into neutral "cells" leading to a one-parameter family of Gibbs equilibrium states.
- This periodicity is an example of the "Wigner lattice".

- Model was introduced by Wigner(38); C. Herring called it the *jellium*; also known as the *1-component plasma*.
- Consists of *L* electrons in a neutralizing uniform positively charged background.
- The thermodynamic limit exists (L→∞), and in 1D, symmetry breaking is known: Kunz(74), Brascamp-Lieb(75), Aizenman-Martin(80), Aizenman-Goldstein-Lebowitz(01).
- Roughly, particles split up into neutral "cells" leading to a one-parameter family of Gibbs equilibrium states.
- This periodicity is an example of the "Wigner lattice".

The 1D Wigner lattice

The quasi-one dimensional case

We consider charges in $[-\pi,\pi]\times\mathbb{R}$

AGL Theorem Tight fluctuations for the electric field

Theorem (Aizenman, Goldstein, Lebowitz)

AGL theorem

Let $\nu(d\omega)$ be a translation-invariant point process on \mathbb{R} with $\mathcal{N}_{l}(\omega)$ the number of points in *I*. If

 $\lim_{|I|\to\infty} \operatorname{Var}(\mathcal{N}_I) < \infty$,

then $\boldsymbol{\nu}$ is not mixing, and has a decomposition

$$u = \int_0^1
u_ heta \, d heta \, ,$$

into mutually singular measures.

AGL Theorem Tight fluctuations for the electric field

Connection between \mathcal{N}_{l} and the electric field

• The number of particles up to x, starting from the left, has a connection with the electric field at x:

$$E(x) = x - \mathcal{N}_{[-L/2,x]}(\omega)$$

• One can think of E(x) as the charge imbalance at x.

Aizenman-Martin(80) showed that E(0) has a bounded variance as L → ∞.

AGL Theorem Tight fluctuations for the electric field

Connection between \mathcal{N}_{l} and the electric field

• The number of particles up to x, starting from the left, has a connection with the electric field at x:

$$E(x) = x - \mathcal{N}_{[-L/2,x]}(\omega)$$

- One can think of E(x) as the charge imbalance at x.
- Aizenman-Martin(80) showed that E(0) has a bounded variance as $L \to \infty$.

AGL Theorem Tight fluctuations for the electric field

Connection between \mathcal{N}_{l} and the electric field

• The number of particles up to x, starting from the left, has a connection with the electric field at x:

$$E(x) = x - \mathcal{N}_{[-L/2,x]}(\omega)$$

- One can think of E(x) as the charge imbalance at x.
- Aizenman-Martin(80) showed that E(0) has a bounded variance as $L \rightarrow \infty$.

AGL Theorem Tight fluctuations for the electric field

The charge imbalance function and total energy

The total energy U is given by

$$\frac{1}{2}\int E(x)^2 dx.$$

*The Gibbs measure $\frac{1}{Z}e^{-\beta U(\omega)}$.

AGL Theorem Tight fluctuations for the electric field

The charge imbalance function and total energy

The total energy U is given by

$$\frac{1}{2}\int E(x)^2 dx.$$

*The Gibbs measure $\frac{1}{Z}e^{-\beta U(\omega)}$.

AGL Theorem Tight fluctuations for the electric field

Symmetry breaking via tight fluctuations

To prepare for the quasi-1D case, we will give a picture of

Bounded Variance in 1D

 $\mathbb{P}(E(0) > c\lambda)$ decays like $e^{-c\lambda^3}$ as $L \to \infty$ and thus

 $\lim_{L\to\infty} \operatorname{Var}(E(0)) < \infty.$

• The probability bound comes from analyzing $\frac{1}{Z}e^{-\beta U}$ using the "Markov property" for the electric field:

 $U_A + U_B = U_{A \cup B}.$

AGL Theorem Tight fluctuations for the electric field

Symmetry breaking via tight fluctuations

To prepare for the quasi-1D case, we will give a picture of

Bounded Variance in 1D

 $\mathbb{P}(E(0) > c\lambda)$ decays like $e^{-c\lambda^3}$ as $L \to \infty$ and thus

 $\lim_{L\to\infty} \operatorname{Var}(E(0)) < \infty.$

• The probability bound comes from analyzing $\frac{1}{Z}e^{-\beta U}$ using the "Markov property" for the electric field:

$$U_A+U_B=U_{A\cup B}.$$

AGL Theorem Tight fluctuations for the electric field

Finite strip energy difference estimate

We compare a high energy event with a low energy event:

Relation with the 1D system Two complications

Energy of the quasi-1D system

Energy via a potential decomposition

$$U(\omega) = \frac{1}{2} \int_{\mathbb{L}} |E^{1}(x;\omega)|^{2} dx + \sum_{1 \leq j < k \leq L} V_{2}(z_{j} - z_{k})$$

The energy of the quasi-1D system differs from that of its 1D projection only in the V_2 -component.

Relation with the 1D system Two complications

The quasi-1D charge imbalance function, $E^1(x)$

Relation with the 1D system Two complications

Two complications from V_2 -interactions

Markov property

Instead of $U_{A\cup B} = U_A + U_B$ we get:

$$U_{A\cup B}(\omega) = U_A(\omega_A) + U_B(\omega_B) + \sum V_2(\omega_A, \omega_B).$$

Finite strip estimate

The energy gap for high and low energy configs is now bounded below by a 1D part plus V_2 -energy for $-\ell < x_i, x_j < r$, which may be negative.

Relation with the 1D system Two complications

Two complications from V_2 -interactions

Markov property

Instead of $U_{A\cup B} = U_A + U_B$ we get:

$$U_{A\cup B}(\omega) = U_A(\omega_A) + U_B(\omega_B) + \sum V_2(\omega_A, \omega_B).$$

Finite strip estimate

The energy gap for high and low energy configs is now bounded below by a 1D part plus V_2 -energy for $-\ell < x_i, x_j < r$, which may be negative.

Relation with the 1D system Two complications

Finite strip energy difference estimate

Again, we compare a high energy event with a low energy event:

Relation with the 1D system Two complications

Finite strip energy difference estimate

Relation with the 1D system Two complications

Rod replacements

We replace *bad particles* with *rods* similar to *smearing* charges introduced by Onsager(39) (we use rods instead of balls):

Relation with the 1D system Two complications

Rod replacements

We replace *bad particles* with *rods* similar to *smearing* charges introduced by Onsager(39) (we use rods instead of balls):

Relation with the 1D system Two complications

An additional energy change by moving the rod

Relation with the 1D system Two complications

An additional energy change by moving the rod

Relation with the 1D system Two complications

Rod replacements are not bijective!

Problem: A rod replacement couples *many* bad configurations to just *one* good one.

Solution: Let \hat{B} be the nonempty set of indices of bad particles

$$\begin{aligned} (\mathsf{bad}) &= \sum_{\hat{B} \subset \mathbb{N}} \mathbb{P}\left(\{B(\omega) = \hat{B}\}\right) \\ &\leq \sum_{\hat{B} \subset \mathbb{N}} C' e^{-\sum_{k \in \hat{B}} (Ck^2)} \mathbb{P}(\mathsf{good}) \\ &\leq C' \left(\prod_{k \in \mathbb{N}} (1 + e^{-Ck^2})\right) \mathbb{P}(\mathsf{good}) \end{aligned}$$

The End Thanks for your attention!

Relation with the 1D system Two complications

Rod replacements are not bijective!

Problem: A rod replacement couples *many* bad configurations to just *one* good one.

Solution: Let \hat{B} be the nonempty set of indices of *bad particles*

$$egin{aligned} (\mathsf{bad}) &= \sum_{\hat{B} \subset \mathbb{N}} \mathbb{P}\left(\{B(\omega) = \hat{B}\}
ight) \ &\leq \sum_{\hat{B} \subset \mathbb{N}} C' e^{-\sum_{k \in \hat{B}} (Ck^2)} \mathbb{P}\left(\mathsf{good}
ight) \ &\leq C'\left(\prod_{k \in \mathbb{N}} (1+e^{-Ck^2})
ight) \mathbb{P}\left(\mathsf{good}
ight). \end{aligned}$$

The End Thanks for your attention!

P

Relation with the 1D system Two complications

Rod replacements are not bijective!

Problem: A rod replacement couples *many* bad configurations to just *one* good one.

Solution: Let \hat{B} be the nonempty set of indices of *bad particles*

$$egin{aligned} (\mathsf{bad}) &= \sum_{\hat{B} \subset \mathbb{N}} \mathbb{P}\left(\{B(\omega) = \hat{B}\}
ight) \ &\leq \sum_{\hat{B} \subset \mathbb{N}} C' e^{-\sum_{k \in \hat{B}} (Ck^2)} \mathbb{P}\left(\mathsf{good}
ight) \ &\leq C'\left(\prod_{k \in \mathbb{N}} (1+e^{-Ck^2})
ight) \mathbb{P}\left(\mathsf{good}
ight). \end{aligned}$$

The End Thanks for your attention!

P