Malliavin calculus and convergence in density

Yaozhong Hu

Department of Mathematics The University of Kansas

Thursday June 7, 2012 at NSF/CBMS Conference University of Alabama in Huntsville This is a joint ongoing work with

Fei Lu

David NUALART

Outline

- 1. Motivation
- 2. (nonlinear) Wiener functionals
- 3. Malliavin calculus
- 4. Main results
- 5. Applications

1. Motivation

Central limit theorem:

Let X_1, \dots, X_n be independent, identically distributed random variables with mean m and variance σ^2 .

$$\begin{split} \sqrt{n} \left(\frac{X_1 + \dots + X_n}{n} - m \right) &\longrightarrow N(0, \sigma^2) \\ \frac{X_1 + \dots + X_n}{n} - m &\approx \frac{\xi}{\sqrt{n}} \,, \quad \text{where } \, \xi \sim N(0, \sigma^2) \,. \end{split}$$

The above convergence is in the sense of distribution

$$F_n \to N(0, \sigma^2)$$
 in distribution

$$P(F_n \leq a) \rightarrow \int_{-\infty}^{a} \phi_{\sigma}(x) dx \quad \forall \ a \in \mathbb{R}$$

where
$$\phi_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}$$
.

Other examples of multiple Itô integral F_n

$$F_n = \int_{[0,T]^q} f_n(t_1,\cdots,t_q) dB_{t_1}\cdots dB_{t_q},$$

where q is an fixed positive integer, $(B_t, t \ge 0)$ is a standard Brownian motion, f_n is a sequence of deterministic functions such that

$$\int_{[0,T]^q} f_n^2(t_1,\cdots,t_q)dt_1\cdots dt_q$$

Convergence in density of multiple integrals

Are there $f_n(x)$ such that

$$P(F_n \le a) = \int_{-\infty}^a f_n(x) dx$$

and

$$f_n(x) \longrightarrow \phi_{\sigma}(x)$$
?

Tool: Malliavin calculus

2. (Nonlinear) Wiener functionals

 $\Omega = C_0([0,T],\mathbb{R})$ = The set of all continuous functions ω starting at 0 ($\omega(0) = 0$).

It is a Banach space with the sup norm $\|\omega\| = \sup_{0 \le t \le T} |\omega(t)|$.

 \mathcal{F} be the σ -algebra generated by the open sets

P is the canonical Wiener measure on (Ω, \mathcal{F}) such that $B_t: \Omega \to \mathbb{R}$ defined by $B_t(\omega) = \omega(t)$ is the standard Brownian motion.

A functional from $\Omega \to \mathbb{R}$ is called a Wiener functional.

Example

1.
$$B_t$$
 2. $\int_0^T |B_t|^p dt$

3.
$$\sup_{0 < t < T} |B_t|$$

4.
$$I_{\{\sup_{0 \le t \le T} |B_t|\}}$$

5.
$$\int_0^T f(t)dB_t$$
, where $f:[0,T]\to\mathbb{R}$ s.t. $\int_0^T f^2(t)dt<\infty$

6. multiple Itô-Wiener integral $I_n(f_n)=\int_{[0,T]^n}f_n(t_1,\cdots,t_n)dB_{t_1}\cdots dB_{t_n},$ where $f_n:[0,T]^n\to\mathbb{R}$ is symmetric and $\int_{[0,T]^n}f_n^2(t_1,\cdots,t_n)dt_1\cdots dt_n<\infty.$

7.
$$x_{t_0}$$
, $dx_t = b(x_t)dt + \sigma(x_t)dB_t$.

8. Functionals of the form $F = f(\int_0^T h_1(t)dB_t, ..., \int_0^T h_n(t)dB_t)$ is dense in $L^2(\Omega, \mathcal{F}, P)$,

where f can be the sets of all polynomials, smooth functions of polynomial growth, smooth functions of compact supports

$$h_1, h_2, \dots, h_n, \dots$$
 is ONB of $L^2([0, T])$

Itô-Wiener's chaos expansion theorem:

Any $F \in L^2(\Omega, \mathcal{F}, P)$ can be written as

$$F=\sum_{n=0}^{\infty}I_n(f_n)\,,$$

where

$$f_n \in L^2([0,T]^n)$$
 and $I_n(f_n) = \int_{[0,T]^n} f_n(t_1,\cdots,t_n) dB_{t_1}\cdots dB_{t_n}$.

Exercises: 1. Find the chaos expansion for $I_{\{\sup_{0 \le t \le |B_t| \le \varepsilon\}}$

2. Find the chaos expansion of x_t , where $dx_t = b(x_t)dt + \sigma(x_t)dB_t$, $x_0 = x$.

Analysis of functionals $F: \Omega \to \mathbb{R}$

Nonlinear functional analysis Gateaux derivatives, Frechet derivatives etc

Zeidler, E. Nonlinear functional analysis and its applications. I. Fixed-point theorems. Springer, 1986. xxi+897 pp.

Zeidler, E. Nonlinear functional analysis and its applications. II/A. Linear monotone operators. Springer, 1990. xviii+467 pp

Zeidler, E. Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operators. Springer, 1990. pp. i-xvi and 469-1202.

Zeidler, E. Nonlinear functional analysis and its applications. III. Variational methods and optimization. Springer, 1985. xxii+662 pp.

Zeidler, E. Nonlinear functional analysis and its applications. IV. Applications to mathematical physics. Springer, 1988. xxiv+975

Nonlinear functional analysis on a Banach space with a measure (infinite dimensional harmonic analysis)

Gaussian measure (Lebesgue measure does not exist in infinite dimensions)

Why Malliavin derivative?

$$x_{t_0}$$
, $dx_t = b(x_t)dt + \sigma(x_t)dB_t$.

 $x_{t_0}: \Omega \to \mathbb{R}^d$ is not continuous.

Example:
$$\int_0^T \left(B_t^2 dB_t^1 - B_t^2 dB_t^1\right)$$

Malliavin, P.

Stochastic calculus of variation and hypoelliptic operators. Proceedings of the International Symposium on Stochastic Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976), pp. 195-263, Wiley, New York-Chichester-Brisbane, 1978.

3. Malliavin derivative

Let $(B_t; t \ge 0)$ be a standard Brownian motion.

Given $F = f(\int_0^T h_1(t)dB_t, ..., \int_0^T h_n(t)dB_t)$, where $h_1, h_2, \cdots, h_n, \cdots$ are continuous functions of t and constitute an orthonormal basis of $L^2([0, T])$

$$D_t F = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \left(\int_0^T h_1(t) dB_t, ..., \int_0^T h_n(t) dB_t \right) h_i(t).$$

The derivative operator D is a closable and unbounded operator

$$||DF||_{1,p}^p = E(|F|^p) + E\left(\int_0^T |D_t F|^2 dt\right)^{p/2}$$

Higher order derivatives

$$\|DF\|_{k,p}$$

$$\mathbb{D}^{k,p}$$

If $F = I_q(f_q)$, then

$$D_t F = \sum_{q=1}^{\infty} q I_q(f_q(\cdot,t)).$$

If $F = \sup_{0 \le t \le T} B_t$, then

$$D_t F = I_{[0,\theta_T]}(t),$$

where θ_T is the unque maximum point of B_t over [0, T]

chain rule,
$$D_t g(F) = g'(F) D_t F$$

Malliavin calculus can be developed for general Gaussian processes, for Poisson processes, Lévy processes

$$H=L^2([0,T])$$

Denote by δ the adjoint operator of D, characterized by the following duality relation:

$$E(\delta(u)F) = E(\langle DF, u \rangle_H)$$
 for any $F \in \mathbb{D}_{1,2}$.

The operator δ is called the *divergence* operator.

Example

If
$$f \in L^2([0, T])$$
, then $\delta(h) = \int_0^T h(t) dB_t$

For $F = f(\int_0^T h_1(t)dB_t, ..., \int_0^T h_n(t)dB_t)$, where $h_1, h_2, \cdots, h_n, \cdots$ is an Orthonormal basis of $L^2([0, T])$, f is C^{∞} with compact support.

Write

$$h = \alpha_1 h_1 + \cdots + \alpha_n h_n + \tilde{h}$$
.

$$\mathbb{E}\left[\int_{0}^{T}h(t)dB_{t}F\right] = \mathbb{E}\left[\left(\sum_{i=1}^{n}\alpha_{i}\int_{0}^{T}h_{i}(t)dB_{t} + \int_{0}^{T}\tilde{h}(t)dB_{t}\right)\right]$$

$$f\left(\int_{0}^{T}h_{1}(t)dB_{t},...,\int_{0}^{T}h_{n}(t)dB_{t}\right)\right]$$

$$= (2\pi)^{-n/2}\sum_{i=1}^{n}\alpha_{i}\int_{\mathbb{R}^{n}}x_{i}f(x_{1},\cdots,x_{n})e^{-\frac{|x|^{2}}{2}}dx$$

$$= -(2\pi)^{-n/2}\sum_{i=1}^{n}\alpha_{i}\int_{\mathbb{R}^{n}}f(x_{1},\cdots,x_{n})\frac{\partial}{\partial x_{i}}e^{-\frac{|x|^{2}}{2}}dx$$

$$= (2\pi)^{-n/2}\sum_{i=1}^{n}\alpha_{i}\int_{\mathbb{R}^{n}}\frac{\partial}{\partial x_{i}}f(x_{1},\cdots,x_{n})e^{-\frac{|x|^{2}}{2}}dx$$

$$= \mathbb{E}\left[\langle DF,h\rangle_{H}\right].$$

Ornstein-Uhlenbeck operator

$$\delta DF = -LF$$
.

Meyer's inequality

$$c_p \|F\|_{k,p} \le \|(I+L)^{k/2}F\|_p \le C_p \|F\|_{k,p}$$
.

Interpolation inequality (Decreusefond-Hu-Üstünel)

For all $1 \le p < \infty$, we have

$$\|(I+L)^{1/2}F\|_{\rho} \leq \frac{2}{\Gamma(1/2)}\|F\|_{\rho}^{1/2}\|(I+L)V\|_{\rho}^{1/2}.$$

Combined with Meyer's inequality

$$\|\nabla F\|_{
ho} \leq C_{
ho}(\|F\|_{
ho} + \|F\|_{
ho}^{1/2} \|\nabla^{2}F\|_{
ho}^{1/2})$$

Lemma

$$\|\delta\left(u\right)\|_{L^{p}\left(\Omega\right)}\leq C_{p}\left(\|Eu\|_{H}+\|Du\|_{L^{p}\left(\Omega,H\otimes H
ight)}
ight).$$

Lemma

Let F be a random variable in the space $\mathbb{D}^{1,2}$ and suppose that $\frac{DF}{\|DF\|_H^2}$ belongs to the domain of the operator δ in $L^2(\Omega)$. Then the law of F has a continuous and bounded density given by

$$p(x) = E\left[\mathbf{1}_{\{F>x\}}\delta\left(\frac{DF}{\|DF\|_H^2}\right)\right].$$

Proof

$$\begin{split} \rho(x) &= \int_{\mathbb{R}} \delta_{x}(y) \rho(y) dy = E\left(\delta_{x}(F)\right) \\ &= E\left(\frac{d}{dy} \mathbf{1}_{\{y \geq x\}}\big|_{y = F}\right) \\ &= E\left[\langle D\left(\mathbf{1}_{\{F > x\}}\right), DF \rangle_{H} \frac{1}{\|DF\|_{H}^{2}}\right] \\ &= E\left[\mathbf{1}_{\{F > x\}} \delta\left(\frac{DF}{\|DF\|_{H}^{2}}\right)\right]. \end{split}$$

Another formula

$$\rho(x) = E\left(\frac{d}{dy}\mathbf{1}_{\{y\geq x\}}\big|_{y=F}\right) \\
= E\left[\langle D\left(\mathbf{1}_{\{F>x\}}\right), u\rangle_{H}\frac{1}{\langle DF, u\rangle_{H}}\right] \\
= E\left[\mathbf{1}_{\{F>x\}}\delta\left(\frac{u}{\langle DF, u\rangle_{H}}\right)\right].$$

Nualart, D.

The Malliavin calculus and related topics, 2nd edition.

Springer (2006)

For any smooth function of compact support g

$$\int_{\mathbb{R}} g(x)E\left[\mathbf{1}_{\{F>x\}}\delta\left(\frac{u}{\langle DF, u\rangle_{H}}\right)\right]dx$$

$$= E\left[\int_{-\infty}^{F} g(x)dx\delta\left(\frac{u}{\langle DF, u\rangle_{H}}\right)\right]$$

$$= E\left[\langle D\int_{-\infty}^{F} g(x)dx, \frac{u}{\langle DF, u\rangle_{H}}\rangle_{H}\right]$$

$$= E\left[\langle g(F)DF, \frac{u}{\langle DF, u\rangle_{H}}\rangle_{H}\right]$$

$$= \mathbb{E}\left[g(F)\right]$$

We need more

Since
$$E\delta(u) = 0$$

Lemma

Let F be a random variable and let $u \in \mathbb{D}^{1,q}(H)$ with q > 1. Then for the conjugate pair p and q (i.e. $\frac{1}{p} + \frac{1}{q} = 1$),

$$\left|E\left[\mathbf{1}_{\{F>x\}}\delta\left(u\right)\right]\right| \leq \left(P\left(|F|>|x|\right)\right)^{\frac{1}{p}} \left\|\delta\left(u\right)\right\|_{L^{q}(\Omega)}.$$

Denote

$$w = \|DF\|^2$$
, $u = \frac{DF}{w}$, $v = \frac{-LF}{w}$.
 $G_0 = 1$, $G_{k+1} = \delta(G_k u)$

Lemma

For any integer $m \ge 1$ and any real number p > 1. Let F be a random variable such that $F \in D^{m,p}$ and $E ||DF||_H^{-p} < \infty$. Then, F has a density f of class C^{∞} . Moreover,

$$f_F^{(k)}(x) = (-1)^k E[\mathbf{1}_{\{F>x\}} G_{k+1}].$$

$$\begin{array}{rcl} G_{0} & = & 1 \\ G_{1} & = & \delta_{u} \\ G_{2} & = & \delta_{u}^{2} - D_{u}\delta_{u} \\ G_{3} & = & \delta_{u}^{3} - 3\delta_{u}D_{u}\delta_{u} + D_{u}^{2}\delta_{u} \\ G_{4} & = & \delta_{u}^{4} - 6\delta_{u}^{2}D_{u}\delta_{u} + 4\delta_{u}D_{u}^{2}\delta_{u} \\ & & -D_{u}^{3}\delta_{u} + 3\left(D_{u}\delta_{u}\right)^{2} \\ G_{5} & = & \delta_{u}^{5} - 10\delta_{u}^{3}D_{u}\delta_{u} + 2\delta_{u}^{2}D_{u}^{2}\delta_{u} - 5\delta_{u}D_{u}^{3}\delta_{u} \\ & & + 15\delta_{u}\left(D_{u}\delta_{u}\right)^{2} + D_{u}^{4}\delta_{u} - 10D_{u}\delta_{u}D_{u}^{2}\delta_{u} \end{array}$$

Lemma

Fix an integer m. Suppose $u \in L^2(\Omega, H)$ such that $D_u^k \delta_u^m \in L^2(\Omega)$, for $k = 0, 1, 2, \ldots, m$. (For example, $u \in \mathbb{D}^{m,2m}(H)$, since $E \delta_u^2 \leq \|u\|_{\mathbb{D}^{1,2,H}}^2$). Then we can recursively define a sequence $\{G_k\}_{k=0}^m$ by $G_0 = 1$ and $G_{k+1} = \delta(G_k u)$. Moreover, for $k = 1, 2, \ldots, m$, we can write G_k as

$$G_k = \sum_{i=0}^{\left[k/2
ight]} c_{k,i} \delta_u^{k-2i} \left(D_u \delta_u
ight)^i + ext{HODT},$$

where we denote by *HODT* (the Higher order derivative terms) the sum of terms with derivatives of order bigger than 2, that is,

$$HODT = \sum_{\substack{i_0 + i_1 + \dots + i_{k-1} \le k-1, \\ i_l \ge 0, \ i_2 + \dots + i_{k-1} \ge 1}} a_{i_0, i_1, \dots, i_{k-1}} \delta_u^{i_0}$$

$$(D_u \delta_u)^{i_1} \left(D_u^2 \delta_u \right)^{i_2} \cdots \left(D_u^{k-1} \delta_u \right)^{i_{k-1}}.$$

3. Main results

Theorem

The following are equivalent:

- (i) $\lim_{n\to\infty} \mathbb{E}[F_n^4] = 3$,
- (ii) For all $1 \le r \le q-1$, $\lim_{n\to\infty} \|f_n \otimes_r f_n\|_{H^{\otimes 2(q-r)}} = 0$,
- (iii) $\|DF_n\|_H^2 \to p \text{ in } L^2(\Omega) \text{ as } n \to \infty.$
- (iv) F_n converges in distribution to the normal law N(0,1) as $n \to \infty$.

Nualart, David; Peccati, Giovanni.

Central limit theorems for sequences of multiple stochastic integrals.

Ann. Probab. 33 (2005), no. 1, 177-93.

Nualart, D.; Ortiz-Latorre, S.

Central limit theorems for multiple stochastic integrals and Malliavin calculus.

Stochastic Process. Appl. 118 (2008), no. 4, 614-628.

Theorem (Hu-Nualart 05)

Let $F_k = \sum_{n=1}^{\infty} I_n(f_{n,k})$. Suppose that

- $\lim_{N\to\infty} \limsup_{k\to\infty} \sum_{n=N+1}^{\infty} n! \left\| f_{n,k} \right\|_{H^{\otimes n}}^2 = 0;$
- for every $n \ge 1$, $\lim_{k \to \infty} n! \|f_{n,k}\|_{H^{\otimes n}}^2 = \sigma_n^2$;
- $\bullet \ \sum_{n=1}^{\infty} \sigma_n^2 = \sigma^2 < \infty;$
- for all $n \ge 2$, p = 1, ..., n 1, $\lim_{k \to \infty} \|f_{n,k} \otimes_p f_{n,k}\|_{H^{\otimes 2(n-p)}}^2 = 0.$

Then, $F_k \longrightarrow N(0, \sigma^2)$ as k tends to infinity.

Hu, Y. Nualart, D.

Renormalized self-intersection local time for fractional Brownian motion.

Ann. Probab. 33 (2005), no. 3, 948-983.

Main result

Theorem (Hu-Lu-Nualart)

Let $\{F_n = I_q(f_n)\}_{n \in \mathbb{N}}$ be in the qth Wiener chaos such that

$$E[F_n^2] \to 1$$
, as $n \to \infty$, (1)

and

$$\lim_{n\to\infty} \mathbb{E} \left| \|DF_n\|_H^2 - q \right|^2 \to 0.$$
 (2)

Suppose $\sup_n \mathbb{E}[\|DF_n\|_H^{-8}] < \infty$. Then, the density $f_{F_n}(x)$ of each F_n exists $P(F_n \le a) = \int_{-\infty}^a f_{F_n}(x) dx \quad \forall \ a \in \mathbb{R}$ and for any $p \ge 1$,

$$\int_{\mathbb{D}} |f_{F_n}(x) - \phi(x)|^p dx \to 0.$$

Theorem (Hu-Lu-Nualart)

Let $\{F_n = I_q(f_n)\}_{n \in \mathbb{N}}$ satisfy the conditions (1)-(2) of previous theorem. Suppose that

$$\sup_{n} \mathbb{E}[\|DF_n\|_H^{-m}] < \infty. \tag{3}$$

Then the density $f_{F_n}(x)$ of F_n is smooth, and for any $k \ge 0$

$$\int_{\mathbb{R}} |f_{F_n}^{(k)}(x) - \phi^{(k)}(x)|^p dx \to 0.$$

4. Applications

To verify the existence of negative moments

Watanabe, S.; Bismut, J.M.; Stroock, D.; Üstünel, A.S.; ...

Norris lemma (based on approach of Meyer, P.A.)

Small ball techniques (Kuelbs, James; Li, Wenbo; Shao Qiman; Chen Xia; ...)

$$\begin{split} \mathbb{E}(V^{-p}) &= \sum_{n=2}^{\infty} \mathbb{E}(V^{-p}I_{\{\frac{1}{n} \leq V < \frac{1}{n-1}\}}) + \mathbb{E}(V^{-p}I_{\{V \geq 1\}}) \\ &\leq 1 + \sum_{n=2}^{\infty} n^{p}P(V < \frac{1}{n-1}) \leq 1 + \sum_{n=2}^{\infty} n^{p}\left(\frac{1}{n-1}\right)^{m} < \infty \,. \end{split}$$

New task: Need uniform estimate

Theorem (Hu-Lu-Nualart)

Let
$$F_T = I_2(f_T)$$
 with $f_T = \sum_{i=1}^{\infty} \lambda_i^T e_i^T \otimes e_i^T$.

Assume that λ_i^T satisfies

(i)
$$\lim_{T\to\infty}\sum_{i=1}^{\infty}\left(\lambda_i^T\right)^2=\lim_{T\to\infty}\|f_T\|_{H^{\odot 2}}^2=\frac{\sigma^2}{2};$$

- (ii) $\lim_{T\to\infty}\sum_{i=1}^{\infty}\left(\lambda_{i}^{T}\right)^{4}=0$;
- (iii) $\exists \ \varepsilon_0 > 0 \ s.t.$ for each $T \in (0, \infty)$, there exists an integer $n = n(T) \ge 4p + 2$ so that $\sqrt{n} \left| \lambda_n^T \right| \ge 2\varepsilon_0$.

Then, each F_{T} admits a density $f_{F_{T}} \in C(\mathbb{R})$ and

$$\sup_{\mathbf{x}\in\mathbb{R}}\left|f_{F_T}(\mathbf{x})-\phi(\mathbf{x})\right|\leq C_{p,\sigma,\varepsilon_0}[(\sum_{i=1}^{\infty}\left(\lambda_i^T\right)^4)^{\frac{1}{2}}+\left|EF_T^2-\sigma^2\right|].$$

Hoffmann-Jøgensen, J.; Shepp, L. A.; Dudley, R. M.

On the lower tail of Gaussian seminorms.

Ann. Probab. 7 (1979), no. 2, 319-342.

Example 2

Fractional Ornstein-Uhlenbeck process

$$dX_t = -\theta X_t dt + \sigma dB_t^H$$
, X_0 is given

where B_t^H is a fractional Brownian motion of Hurst parameter H.

Assume that H and σ are known, and we can continuously observe X_t . We want to estimate θ .

The least squares estmator is studied

Hu, Y. Nualart, D.

Parameter estimation for fractional Ornstein-Uhlenbeck processes.

Statist. Probab. Lett. 80 (2010), 1030-1038.

The least squares estimator

$$\widehat{\theta}_{T} = -\frac{\int_{0}^{T} X_{t} dX_{t}}{\int_{0}^{T} X_{t}^{2} dt} = \theta - \sigma \frac{\int_{0}^{T} X_{t} dB_{t}^{H}}{\int_{0}^{T} X_{t}^{2} dt}$$

Theorem (Hu, Nualart 2010)

Suppose
$$H \in \left[\frac{1}{2}, \frac{3}{4}\right)$$
. Then

$$\begin{split} \widehat{\theta}_T &\to \theta \quad \text{almost surely} \\ \sqrt{T} \left[\widehat{\theta}_T - \theta \right] &\overset{\mathcal{L}}{\to} \textit{N}(0, \theta \sigma_H^2) \quad \textit{(in distribution)} \\ \sigma_H^2 &= (4H-1) \left(1 + \frac{\Gamma(3-4H)\Gamma(4H-1)}{\Gamma(2-2H)\Gamma(2H)} \right). \end{split}$$

Proof

$$\widehat{\theta}_T = \theta - \sigma \frac{\int_0^T X_t dB_t^H / T}{\int_0^T X_t^2 dt / T}$$

It is proved

$$\frac{\int_0^T X_t^2 dt}{T} \rightarrow \sigma^2 \theta^{-2H} H \Gamma(2H) \quad \text{almost surely}$$

$$\frac{\int_0^T X_t dB_t^H}{T} \rightarrow 0$$
 almost surely .

This implies

$$\widehat{\theta} \tau \to \theta$$

It is also proved

$$\frac{\int_0^T X_t dB_t^H}{\sqrt{T}} \stackrel{\mathcal{L}}{\to} N\left(0, \theta^{1-4H} \sigma^4 \delta_H\right),$$

where

$$\delta_{H} = H^{2}(4H-1)(\Gamma(2H)^{2} + \frac{\Gamma(2H)\Gamma(3-4H)\Gamma(4H-1)}{\Gamma(2-2H)})$$

which implies

$$\widehat{\theta}_{\mathcal{T}} \to \theta$$

Use Malliavin calculus

Theorem

Let $\{F_n, n \ge 1\}$ be a sequence of random variables in the p-th Wiener chaos, $p \ge 2$, such that $\lim_{n \to \infty} \mathbb{E}(F_n^2) = \sigma^2$. Then the following conditions are equivalent:

- (i) F_n converges in law to $N(0, \sigma^2)$ as n tends to infinity.
- (ii) $||DF_n||_{\mathcal{H}}^2$ converges in L^2 to a constant as n tends to infinity.

$$\frac{\int_0^T X_t dB_t^H}{\sqrt{T}} \quad \stackrel{\text{in density}}{\to} \quad N\left(0, \theta^{1-4H} \sigma^4 \delta_H\right),$$

$$f_T(t,s) = \frac{\sigma^2}{2\sqrt{T}} e^{-\theta|t-s|}.$$

Find the eigenvalues of the integral operator associated with the above kernel.

Open problems:

$$\sqrt{T} \left[\widehat{\theta}_T - \theta \right] \quad \stackrel{\text{in density}}{\to} \quad N(0, \theta \sigma_H^2)$$

$$\sqrt{T} \left[\widehat{\theta}_T - \theta \right] = \sigma \frac{\frac{\int_0^T X_t dB_t^H}{\sqrt{T}}}{\frac{\int_0^T X_t^2 dt}{T}}$$

THANK YOU