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1. Motivation
Central limit theorem:

Let Xi,---, X, be independent, identically distributed random
variables with mean m and variance o°.

vn (X‘ + — X0 _ m> — N(0,02)

Xt d X e & where ¢ ~ N(0,02).

n vn’
The above convergence is in the sense of distribution
F, — N(0,02) in distribution
a
P(Fn < a) —>/ Po(X)dx V acR

1

_ X
e 202,
2o

where  ¢q(x) =



Other examples of multiple 1t6 integral Fj

Fom [ ot t)dBy - By
[0,7]9

where q is an fixed positive integer, (B;, t > 0) is a standard
Brownian motion, f, is a sequence of deterministic functions
such that
f2(t,- -, tg)dt; - - dity
[0,T]9



Convergence in density of multiple integrals

Are there f,(x) such that
a

—00

and
fa(X) — ¢o(Xx)7?

Tool: Malliavin calculus



2. (Nonlinear) Wiener functionals
Q = Cp([0, T],R) = The set of all continuous functions w
starting at 0 (w(0) = 0).

It is a Banach space with the sup norm [|w|| = supg<;< 7 w(1)]-
F be the o-algebra generated by the open sets

P is the canonical Wiener measure on (€, F) such that
B : Q — R defined by Bi(w) = w(t) is the standard Brownian
motion.

A functional from Q — R is called a Wiener functional.

Example
1.8, 2. []|BiPat
3. sUpg<i<T |Btl

4. I{SUPogr§T|Bt|}



5. ] f(t)dBy, where f: [0, T] = Rst. [ P(t)dt < oo

6. multiple It6-Wiener integral
ln(fn) - ‘f[o T]” fn(t’] PR tn)dBt1 tt dBtn’ Whel’e fn . [O’ T]n — R |S

symmetric and / f2(ty,- - ty)dty - dty < 0.
[0, 7]

7. Xty ax; = b(Xt)dt + U(Xt)dBt.

8. Functionals of the form F = f( fo hi(t)dBt, ..., fo hn(t)dB) is
dense in L2(Q, F, P),

where f can be the sets of all polynomials, smooth functions of
polynomial growth, smooth functions of compact supports

hi,ho,--- By, is ONB of L2([0, T])



It6-Wiener’s chaos expansion theorem:

Any F € L2(Q, F, P) can be written as

F=>I(f),
n=0
where

fn S L2([0, T]n) and ln(fn) — / fn(t‘] Ty tn)dBt1 ce dBtn .
(0,717

Exercises: 1. Find the chaos expansion for lsupy- < 1Bi|<e)

2. Find the chaos expansion of x;, where
ax; = b(Xt)dt + U(Xt)dBt , Xp = X.



Analysis of functionals F : Q — R

Nonlinear functional analysis Gateaux derivatives, Frechet
derivatives etc
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Nonlinear functional analysis on a Banach space with a
measure (infinite dimensional harmonic analysis)

Gaussian measure (Lebesgue measure does not exist in
infinite dimensions)



Why Malliavin derivative?
Xty ,dxy = b(Xt)dt + O'(Xt)dBt.
Xy, : © — RY is not continuous.

Example: [, (B2dB} — B2dB})



Malliavin, P.

Stochastic calculus of variation and hypoelliptic operators.
Proceedings of the International Symposium on Stochastic
Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto,
1976), pp. 195-263, Wiley, New York-Chichester-Brisbane,
1978.



3. Malliavin derivative

Let (B;; t > 0) be a standard Brownian motion.

Given F = f( | hy(t)dBy, ..., [} hn(t)dBy), where
hy,ho,---  hp,--- are continuous functions of t and constitute
an orthonormal basis of L2([0, T])

n T T
DtF—IZ_;g;i(/O h1(t)dBt,...,/O hn(t)dBy)hi(t).

The derivative operator D is a closable and unbounded operator



T p/2
IDF| , = E(IFP) + E ( /0 |DeFPP dt)
Higher order derivatives
IDFllkp

DkP



If F = Iy(f,), then

DiF = Z qlg(fq(-, 1))

q=1

DiF = o o,(1),

where 07 is the ungiue maximum point of B; over [0, T]

chain rule, Dig(F) = g'(F)D:F



Malliavin calculus can be developed for general Gaussian
processes, for Poisson processes, Lévy processes



H = L2([0, T])

Denote by ¢ the adjoint operator of D, characterized by the
following duality relation:

E(6(u)F) = E((DF,u)y) forany F € Djp.
The operator ¢ is called the divergence operator.

Example

If f € L2([0, T]), then 6(h) = [, h(t)dB

For F = f( fo hy(t)dB;, ..., fo hn(t)dBt), where
hi,ho,--- , hp,--- is an Orthonormal basis of L2([0, T]), fis C®
with compact support.

Write y
h=aihy+---+aphy+ h.



.
E [/0 h(t)dB:F

E

E [(DF, h)y] .

(Zn; ai/OThi(t)dBf+/0T/"1(t)dB,>
T T

f(/0 h1(t)dBt,...,/0 hn(t)d3,>

(2m)~"/2 ;na,. / xif(xq,- -

_(zw)—n/zl;a,/w f(xq,- -

n
Z 0
—n/2
(27T) n/ 2- ai/na)(if(x1’...




Ornstein-Uhlenbeck operator

§DF = —LF.



Meyer’s inequality

Coll Fllkp < 107+ L)*/2Fllp < Coll Fllkp-



Interpolation inequality (Decreusefond-Hu-Ustiinel)
For all 1 < p < oo, we have

2
r(1/2)

1/2 1/2
11+ L)V2F|p < IFI2 10+ L) VLY.

Combined with Meyer’s inequality

1/2 1/2
IVFllo < ColllFllp + IFllg I V2 Fll5 )



Lemma

16 ()l < Co (IEUlly + 1 Dull o sy ) -



Lemma

Let F be a random variable in the space D' and suppose that

H DD:HQ belongs to the domain of the operator  in L2 (). Then
H

the law of F has a continuous and bounded density given by

DF
1 0| ——=
{F>x}
) <||DF||'%,>

p(x)=E




Proof

p(x) = [ dx(y)p(y)dy = E (6x(F))

d
= E <dy1{y>x}‘y—F>

[(D (1tFsxy) s DFY——%

|DF|%,
DF
= E [1(F2x0 ()
[ |DF[%,

=

I
m




Another formula

d
p(x) = E<dy1{y>X}’y_F>
1

- E {<D (1iroxy) U>H<DF;U>H]

= E [1{/—'>x}‘S <(DFL,IU>;./>} .



Nualart, D.
The Malliavin calculus and related topics, 2nd edition.

Springer (2006)



For any smooth function of compact support g

.9 1m0 (5, )
- /9 d"5<<DFu> )]
- E D/ g(x




We need more

Since E§(u) =0
Lemma

Let F be a random variable and let u € D9 (H) with g > 1.
Then for the conjugate pairp and q (i.e. 3 + 1 =1),

IE [panyd ()] | < (PUFT > 1%1)2 16 (U)o



Denote

DF —LF
w=IDF|*, u==" v=—"

Go=1, Gki1=06(Gku)



Lemma

For any integer m > 1 and any real numberp > 1. Let F be a
random variable such that F € D™ and E || DF ||’ < cc. Then,
F has a density f of class C>°. Moreover,

(%) = (1) E[1(Fs . Grar]



1
du

62 — Dydy

63 — 36,Dy6, + D36,

54 — 662Dydy + 46,D25,
—D36y + 3 (Dydu)?

65 — 1063Dy,6, + 262D25, — 56,D36,
+156, (Dy6,)? + D45, — 10D,6,D26,



Lemma

Fix an integer m. Suppose u € L?(Q, H) such that

DKoM € L2(Q), fork = 0,1,2,..., m. (For example,

u € D™2M(H), since E&% < ||ul|?:..4). Then we can recursively
define a sequence {Gy}f_, by Go = 1 and Gy.1 = §(Gyu).
Moreover, fork = 1,2, ..., m, we can write Gx as



(k/2]
Gk = Y ckids % (Dudu) + HODT,
i=0
where we denote by HODT (the Higher order derivative terms)
the sum of terms with derivatives of order bigger than 2, that is,



HODT = > By i1 08

foti++ik—1<k—1,
120, fp4++ik_1 21

(Dufsu)H <DL2,5U) Ip o (ngéu) k-1 .

sl 71



3. Main results

Theorem
The following are equivalent:

(i) limp oo E[FA] =3

(i) Forall1 <r<qg—1,liMyx ||fn ®r fn|| yo2a-n =0,
(iii) ||DFnl|Z, — pin L3(Q) as n — .
)

(iv) Fn converges in distribution to the normal law N(0,1) as

n— oo.



Nualart, David; Peccati, Giovanni.

Central limit theorems for sequences of multiple stochastic
integrals.

Ann. Probab. 33 (2005), no. 1, 177-93.
Nualart, D.; Ortiz-Latorre, S.

Central limit theorems for multiple stochastic integrals and
Malliavin calculus.

Stochastic Process. Appl. 118 (2008), no. 4, 614-628.



Theorem (Hu-Nualart 05)

Let Fx = Y77 In(fo.k). Suppose that

® limpy o0 limsupy oo >t npq N an,kufim =0;
e foreveryn> 1, limy_, n! Hf,,,kle_,@n = 02;
@ > % . 02=02<o0;
@ foralln>2,p=1,...,n—1,

iMoo [Tk ©p fn,kHi{@ﬂn—p) =0.

Then, F, — N(0,02) as k tends to infinity.



Hu, Y. Nualart, D.

Renormalized self-intersection local time for fractional Brownian
motion.

Ann. Probab. 33 (2005), no. 3, 948-983.



Main result

Theorem (Hu-Lu-Nualart)

Let {Fn = Iq(fn)} o be in the qth Wiener chaos such that
E[F2] -+ 1,asn— oo, (1)

and

2
im E ‘HDFnHi, - q‘ - 0. )
n—oo

Suppose sup,, E[|| DF,|| ;8] < co. Then, the density fg,(x) of
each F, exists P(F, < a) = [? fr,(X)dx V ae R and for any
p>1,

/R 1r,(X) — 6(x)Palx — 0.



Theorem (Hu-Lu-Nualart)

Let {Fn = Iq(fa)} ,c Satisfy the conditions (1)-(2) of previous
theorem. Suppose that

SUPE[||DFpll™] < co. 3)
n

Then the density fr,(x) of F, is smooth, and for any k > 0

/ 11599(x) — ¢ (x)[Px — 0.



4. Applications

To verify the existence of negative moments
Watanabe, S.; Bismut, J.M.; Stroock, D.; Ustiinel, A.S.; ...
Norris lemma (based on approach of Meyer, PA.)

Small ball techniques (Kuelbs, James; Li, Wenbo; Shao Qiman;
Chen Xia; ...)
E(VP) = ZE (V- pl{ cvety) HE(VT Pliys1y)

o0 m
< 1+ZnPPV<<1+ZnP< ) < .
n=2

New task: Need uniform estimate



Theorem (Hu-Lu-Nualart)
Let Fr = b(fr) withfr = > 2, A\ el @ €] .
Assume that \] satisfies

- 2 o 2
(i) limyo0 3277 ()‘T) = lim7o00 Ifrllhee = %

(i) M7 o 35224 () = 0;

(i) Jeg > 0s.t. foreach T € (0,0), there exists an integer
n=n(T)>4p+2 so that/n|\}| > 2z.

Then, each Fr admits a density fr, € C(R) and

XER

sup | =, (x) — () <cposo[i( ))%+‘EF%—U2‘].
i=1



Hoffmann-Jagensen, J.; Shepp, L. A.; Dudley, R. M.
On the lower tail of Gaussian seminorms.

Ann. Probab. 7 (1979), no. 2, 319-342.



Example 2

Fractional Ornstein-Uhlenbeck process
dX; = —6X;dt + odB}, X, is given

where B! is a fractional Brownian motion of Hurst parameter H.

Assume that H and ¢ are known, and we can continuously
observe X;. We want to estimate 6.

The least squares estmator is studied
Hu, Y. Nualart, D.

Parameter estimation for fractional Ornstein-Uhlenbeck
processes.

Statist. Probab. Lett. 80 (2010), 1030-1038.



The least squares estimator

5 I XeaXq . Jo X:aBY!
T = _—— = — —_—
7 Xgat 7 Xga

Theorem (Hu, Nualart 2010)
Suppose H € [}, 3). Then
07 — 0 almost surely
VT [§T - 9} £ N(0,602) (in distribution)

[(3— 4H)r(4H 1)
(2 —2H)r(2H) >

aﬁ:(4H—1)<1+



Proof

.
iy o XdBlT
T = P S
fo Xcdt/T
It is proved
;
X2dt
fOTt 02072"HIr(2H) almost surely
T H
X:dB
f°7t_t 0 almost surely .
This implies

57'—)0



It is also proved

T H
X;dB
fo\%f AN (0,91*4H045H) ,

where

oy = H?(4H —1)(T(2H)?
F(2H)(3 — 4H)I(4H — 1)
* (2= 2H) )

which implies R
97’ — 0



Use Malliavin calculus

Theorem

Let{F,,n > 1} be a sequence of random variables in the p-th
Wiener chaos, p > 2, such that lim,_,., E(F2) = 0. Then the
following conditions are equivalent:

(i) Fn converges in law to N(0,o?) as n tends to infinity.
(i) ||DF,||3, converges in L2 to a constant as n tends to infinity.

T ) .
M\};’Bﬁ indepsity (o, 91*4*’045,4) ,
2
g
fr(t,s) = -2 _e0lt-=sl,
r(t:s) 2T

Find the eigenvalues of the integral operator associated with
the above kernel.



Open problems:
VT [§T _ 9} Indensity  nio, 002
) Xl

\FT[é\T—Q} :Ufor\gt;dt
.
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