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Small Ball Probability

Let X be a random element. The small ball probability
studies the asymptotic behavior of P(‖X‖ < ε) as ε→ 0+,
where X is a random element. It is a typical rare event,
and lies at the center of probability research.
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Metric Entropy

Let K be a pre-compact compact in a space equipped with
metric ρ. The metric entropy of K is defined to be the
quantity log2N(ε,K, ρ) where N(ε,K, ρ) is the minimal
number of open balls of radius ε needed to cover K.

Example: If K is the set of all bounded increasing functions
f : [0, 1] 7→ [0, 1], then logN(ε,K, ‖ · ‖Lp) � ε−1 for all
1 ≤ p <∞, but logN(ε,K, ‖ · ‖L∞) =∞ for all 0 < ε < 1.

Roughly speaking, metric entropy is a geometric
quantification of the compactness of K under distance ρ. It
is a term purely in analysis, approximation theory, convex
geometry.
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Bracketing Entropy

Bracketing entropy logN[ ](ε,P, ρ):

N(ε,P, ρ) = minimum number of ε-brackets (under
distance ρ) needed to cover P,

An ε-bracket [f, f ] consists of all the functions g ∈ P such

that f ≤ g ≤ f , where ρ(f, f) ≤ ε.

Recall: Metric entropy logN(ε,P, ρ):

N(ε,P, ρ) = minimum number of ε-balls (under distance
ρ) needed to cover P
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Why Bracketing Entropy?

It is used in statistics to determined the convergence rate of
non-parametric density estimation.

• Optimal Rate rn is determined by (Le Cam (1973);
Birgé (1983):)

nr−2
n = logN[ ](1/rn,P, h).

• MLE Achieved Rate rn is determined by (Birgé and
Massart (1993))

√
nr−2
n =

∫ r−1
n

cr−2
n

logN[ ](ε,P, h)dε.
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where h is the Hellinger distance h, defined by

h(p̂n, p0) = ‖
√
p̂n −

√
p0‖L2(Q).

(Why Hellinger? Because it does not depend on Q.

Note that if logN[ ](ε,P, h) = ε−α, for α < 2, then both

Optimal rate and MLE Achieved Rate rn = n1/(2+α).
Thus, in this case, MLE is the best (one of the best).
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Relation Between the Two Entropies

Relation
N(ε,P, ρ) ≤ N[ ](2ε,P, ρ).

The reverse is not necessary true, unless ρ is L∞ distance.

Remarks

• The lower bound of metric entropy is typically more
difficult than upper bound;

• A powerful method of estimating metric entropy
upper bound is using Fourier series. This method can
no longer be used to to estimate Bracketing entropy;

• Duality is no longer available for bracketing entropy;
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• Convex hull relation for bracketing entropy is no
longer available.

• Relations with other quantities are also lost.
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Kuelbs-Li Connection

It was established in Kuelbs and Li (1993) and completed in
Li and Linde (1999) that the behavior of P(‖X‖ < ε) for
Gaussian random element X is determined up to a constant
by the metric entropy of the unit ball of the reproducing
kernel Hilbert space associated with X, and vice versa.
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Zoom in

Theorem If F is the convex hull of the functions K(·, ω),
ω ∈ Ω, where K(t, ·) are square-integrable functions on a
bounded set Ω in Rd, d ≥ 1. Let X(t) =

∫
Ω
K(t, x)dB(x),

t ∈ T , and B(x) is the d-dimensional Brownian sheet on Ω.
Then

logN(ε,F , ‖ · ‖2) ≥ Cε−
2α

2+α | log ε|
2β

2+α ;

for α > 0 and β ∈ R if and only if

logP
(

sup
t∈T
|X(t)| < ε

)
≤ −C ′ε−α| log ε|β

Furthermore, the relation also holds if “ ≤ ” and “ ≥ ” are
reversed.
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Zoom In—continue

logN(ε,F , ‖ · ‖2) ≥ C| log ε|β(log | log ε|)γ .

for β > 0 and γ ∈ R, if and only if

logP
(

sup
t∈T
|X(t)| < ε

)
≤ −C ′| log ε|β(log | log ε|)γ

Furthermore, the relation also holds if “ ≤ ” and “ ≥ ” are
reversed.
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A Simple Example

To experience the power of this connection, let us consider
the case where K(t, ·) = 1[0,t](·). In the case F is the set
of non-decreasing functions f on [0, 1] such that f(0) = 0
and 0 ≤ f ≤ 1. It is not trivial to show that
logN(ε,F , ‖ · ‖2) � ε−1. However, the corresponding

Gaussian process X(t) =
∫ 1

0
1[0,t](s)dB(s) = B(t) is just

the Brownian motion, and it is known that

logP( sup
t∈[0,1]

|B(t)| < ε) � −ε−2.

Applying the aforemention connection, we immediately
obtain

logN(ε,F , ‖ · ‖2) � ε−1.
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A Challenging Example

For t = (t1, t2, ..., td). If
K(t, ·) = 1[0,t1] ⊗ 1[0,t2] ⊗ · · · ⊗ 1[0,td], then F is class of

probability distributions on [0, 1]d, while B(t) is the
d-dimensional Brownian sheet. We have

logN(ε,Fd, ‖ · ‖2) � ε−1| log ε|β

if and only if

P( sup
t∈[0,1]d

|B(t)| < ε) � −ε−2| log ε|2β .

Through the result on the small ball probability of
Brownian sheets, we have

C1ε
−1| log ε|d−1+δ ≤ logN(ε,Fd, ‖ · ‖2) ≤ C2ε

−1| log ε|d−1/2,
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for some δ > 0. (Talagrand 1994, Dunker et al 1999; Blei
et al. 2007; Bylik and Lacey 2008). The exact rate is
unknown and the problem is related to discrepancy and
irregularity of distributions.
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A more representative example

Let F be the class of bounded completely monotone
function on [0,∞). That is, (−1)kf (k) ≥ 0 for all k ≥ 0.
By Bernstein’s Theorem, it is the Laplace transform of a
bounded measure. Thus, F is the closed convex hull of
K(t, ·), where K(t, s) = e−ts. The corresponding Gaussian
process X(t) on (0,∞) has covariance structure:

EX(t)X(s) = 1−e−t−s
t+s .

Note: It is the (unscaled) limit of m-times integrated
Brownian motion as m→∞. The scaled limit of m-times
integrated Brownian motion has covariance
EX(t)X(s) = 2st

t+s .–which is related to real zeros of random
polynomials—Dembo, Poonen, Shao and Zeitouni (2000)
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Metric Entropy Upper Bound

The idea

Because the functions in F is bounded by 1, and
non-negative, for every f, g ∈ F∫ ε2

0

|f(s)− g(s)|2ds ≤ ε2.

So, we only need to consider the interval [ε2, 1].

For s ≥ ε2, Because∫ ∞
T

e−stdµ(t) ≤ e−Tε
2

≤ ε

for T large enough, we only need to consider
∫ T

0
e−stdµ(t).
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Write the Taylor series of f ∈ F

f(s) =

∞∑
k=0

∫ ∞
0

(−1)k
(st)k

k!
dµ(t)

Because it converges fast, we only need to consider the
partial sum

N∑
k=0

∫ ∞
0

(−1)k
tk

k!
dµ(t) sk
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For polynomials of fixed degree, we can construct an ε-net
by hand. In order to do this correctly, we need to work on
the interval [2kε2, 2k+1ε2], for each k.

It is merely a problem of counting. On each interval, we
pick up exp(C| log ε|2).

There are roughly | log ε| such intervals, which gives us the
final estimate exp(C| log ε|3).
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How about Metric Entropy Lower Bound?

Metric entropy lower bound is typically difficult. However,
we can estimate the upper bound of the small ball
probability for the corresponding Gaussian process instead.
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Upper Bound of Small Ball Probability

P
(

sup
t≥0
|X(t)| < ε

)
≤ P( max

1≤i≤n
|X(δi)| < ε)

= (2π)−n/2(det Σ)−1/2

∫
max1≤i≤n |yi|≤ε

exp
(
−〈y,Σ−1y〉

)
dy1 · · · dyn

≤ (2π)−n/2(det Σ)−1/2(2ε)n

= (Cε)n(det Σ)−1/2. (1)

where the covariance matrix

Σ = (EX(δi)X(δj))1≤i,j≤n =

(
1− e−δi−δj
δi + δj

)
1≤i,j≤n

.
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A Direct Calculation

Choose {δi} = {δ, 2δ, ..., nδ}, where δ =
√

1/n. By direct
calculation, we have

det

(
1− e−iδ−jδ

iδ + jδ

)
1≤i,j≤n

= Dnδ
−n(1−e−δ)n

2

·
n∑
j=0

(
n

j

)2

e−jδ

where

Dn = det

(
1

i+ j

)
1≤i,j≤n

=
(1!2! · · · (n− 1)!)3n!

(n+ 1)! · · · (2n)!
.

For the optimal choice of n, we obtain

εn(det Σ)−1/2 � exp(−C| log ε|2).
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What can be improved?

The above calculation only gives us

logP
(

sup
t>0
|X(t)| < ε

)
≤ −C ′| log ε|2.

not | log ε|3. What can be improved? Recall

P
(

sup
t≥0
|Y (t)| < ε

)
≤ P( max

1≤i≤n
|Y (δi)| < ε)

= (2π)−n/2(det Σ)−1/2

∫
max1≤i≤n |yi|≤ε

exp
(
−〈y,Σ−1y〉

)
dy1 · · · dyn

≤ (2π)−n/2(det Σ)−1/2(2ε)n

= (Cε)n(det Σ)−1/2� exp(−C| log ε|2). (2)
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Optimal Choice of δi

It turns out that the first inequality needs to be improved,
not the second one! We choose {δi}ni=1 so that

δmp+q = 4p+m(m+ q), 0 ≤ p < m, 1 ≤ q ≤ m

for n = m2. With such a choice of δi, we are unable to
evaluate the determinant exactly. But a careful estimate
gives us

logP
(

sup
t>0
|X(t)| < ε

)
≤ −C ′′| log ε|3.

for the optimal choice of n.
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Remark

To prove the lower bound of the small ball probability is
more difficult. However, since it already follows from the
upper bound of metric entropy, we no longer need to worry
about it.
This example illustrate a typically use of the close
connection between small ball probability and metric
entropy in Hilbert space.
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Results

Theorem (Gao, Li and Wellner 2010) Let X(t), t > 0, be a
Gaussian process with covariance
EX(t)X(s) = (1− e−t−s)/(t+ s), then for 0 < ε < 1

logP
(

sup
t>0
|X(t)| < ε

)
� −| log ε|3.

Corollary: Let F be the class of completely monotone
functions on [0, 1], then

logN(ε,F , ‖ · ‖2) � | log ε|3.
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Zoom Out

The so-called convex hull problem asks the optimal
estimate for N(ε, conv(K), ‖ · ‖) given the rate of
N(ε,K, ‖ · ‖). When ‖ · ‖ is the Hilbert space norm, by
using the idea of Kuelbs-Li, together with duality of metric
entropy and Khatri-Sidak inequality, etc, we can prove:

Theorem (Gao 2004, Corollary 2.1)

logN(ε, cov(K), ‖ · ‖2) ≤ C inf
δ

(
I2(δ)

ε2
+N(δ,K, ‖ · ‖2)

)
,

where I(x) :=
∫ x

0

√
logN(ε,K, ‖ · ‖2)dt, provided that

N(ε/2,K, ‖ · ‖) ≥ CN(ε,K, ‖ · ‖2) for some C > 1.
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Some Corollaries

• If logN(ε, T, ‖ · ‖2) ≤ Cε−α logβ(1/ε) for some
0 < α < 2, and β ∈ R, then

logN(ε, conv(T ), ‖·‖2) ≤ Kε−2(log(1/ε))1−2/α(log log(1/ε))2β/α.

• By choosing δ = | log ε|−1/3 we immediately obtain
that if logN(ε,K, ‖ · ‖2) = O(ε−2| log ε|−β) for some
β > 2, then

logN(ε, conv(K), ‖ · ‖2) = O(ε−2(log | log ε|)2−β).
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Remarks

• This result, that is, if
logN(ε,K, ‖ · ‖2) = O(ε−2| log ε|−β) for some
β > 2, then

logN(ε, conv(K), ‖ · ‖2) = O(ε−2(log | log ε|)2−β)

was proved by Carl et al, 2012 and by Kley 2012
independently.

• These estimate are best possible. (Gao 2001, 2004,
2012)
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Critical Case

When logN(ε, T, ‖ · ‖2) = ε−2| log ε|−2,
I(x) :=

∫ x
0

√
logN(ε,K, ‖ · ‖2)dt =∞, the corresponding

Gaussian process is no longer bounded. Consequently,

logN(ε, cov(T ), ‖ · ‖2) ≤ C inf
η

(
η2

ε2
+N(I−1(η), T, ‖ · ‖2)

)
no longer holds. Gao 2012 proved that the following CKP
inequality of Carl et al 1999 is sharp in this case:√

logN(2ε, cov(T ), ‖ · ‖2) ≤ C

ε

∫ ∞
ε/2

√
logN(r, T, ‖ · ‖2)dr.

Remark Lifshits provided a simple proof of CKP inequality
using Gaussian techniques, which suggests that even
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Gaussian techniques remains powerful when the Dudley
integral diverges.
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Connection Between Metric Entropy and
Bracketing Entropy

Relation
N(ε,P, ρ) ≤ N[ ](2ε,P, ρ).

The reverse is not necessary true, unless ρ is L∞ distance.
However, when the functions are smooth, we have

Theorem Let F be a class of functions on [0, 1], and G be
the class of function on [0, 1] defined by
G = {

∫ x
0
f(t)dt : f ∈ F}. If logN(ε,F , ‖ · ‖1) ≤ φ(ε),

then for any probability measure Q on [0, 1]

logN[ ]

(
ε

φ(ε)
,G, ‖ · ‖p,Q

)
≤ Cφ(ε).
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Applications and Remarks

• By repeatedly using this theorem, we have

Theorem If Mm is the class of bounded m-monotone
functions, i.e. (−1)kf (k)(x) ≥ 0 for x > 0 and
0 ≤ k ≤ m, m > 1, then

logN[ ](ε,Mm, ‖ · ‖2) = ε1/m.

• High dimensional generalization and fractional
integral generalization are also available

• Not covered by the theorem: the class of high
dimensional distribution function.
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Bracketing entropy of high dimensional
distributions

In comparison with

logN(ε,Fd, ‖ · ‖2) ≤ C2ε
−1| log ε|d−1/2,

we have
Theorem

logN[ ](ε,Fd, ‖ · ‖p) ≤ C2ε
−1| log ε|2d−2,

for all 1 ≤ p <∞ and all d > 1.

Remark While I will working on the possible improvement, I
believe in the case d = 2, the correct rate is ε−1| log ε|2. In
other words, there is a different discrepancy for bracketing
entropy.
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Open Questions

• Any connection between logN(ε,F , ‖ · ‖p) and some
small ball probability?

• Any direct connection between logN[ ](ε,F , ‖ · ‖2)
and some small ball probability?

• Any connection between N[ ](ε,F , ‖ · ‖) and
N[ ](ε, conv(F), ‖ · ‖)

• Any duality theory on N[ ](ε,F , ‖ · ‖)?
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