Chu Weijuan

Continuous state branching process

Small value probability for C-B-I

Reference

Small value probabilities for continuous state branching processes with immigration

Weijuan Chu

Department of Mathematics, Nanjing University

June 5, 2012

Continuous state branching process

Small value probabilities for continuous state branching processes with immigration

Chu Weijuan

Continuou state branching process Definition

Small value probability

Small value probability for C-B-I

Reference

 $Z = (Z_t : t \ge 0)$: defined on (Ω, \mathcal{F}) with a family of probabilities $(\mathbb{P}_x, x \ge 0)$,

satisfying

- $[0, \infty)$ -valued strong Markov process
- right continuous with left limit paths
- branching property: for any $\lambda, x, y \geq 0$,

$$\mathbb{P}_{x+y}e^{-\lambda Z_t} = \mathbb{P}_x e^{-\lambda Z_t} \mathbb{P}_y e^{-\lambda Z_t}, \tag{1.1}$$

Z with $Z_0 = x > 0$ is called a continuous state branching process starting from x.

Laplace transform of CSBP

Small value probabilities for continuou state branching processes with immigration

Chu Weijuan

Continuous state branching process
Definition
Small value probability
Small value frobability
C-B-I

Reference

$$\mathbb{P}_x e^{-\lambda Z_t} = e^{-xu_t(\lambda)}, \quad t \ge 0, \quad \lambda \ge 0, \quad x \ge 0, \quad (1.2)$$

where $u_t(\lambda)$ satisfies

$$u_0(\lambda) = \lambda, \qquad \frac{\partial}{\partial t} u_t(\lambda) + \psi(u_t(\lambda)) = 0,$$
 (1.3)

and

$$\psi(\lambda) = -m\lambda + \alpha\lambda^2 + \int_0^\infty \left(e^{-\lambda x} - 1 + \lambda x\right) \Pi(dx), \quad (1.4)$$

with m > 0, $\alpha \ge 0$, and

$$\int_{0}^{\infty} (x \wedge x^{2}) \Pi(dx) < \infty. \tag{1.5}$$

Chu Weijuan

Continuou state branching process Definition Small valu

Small value probability fo

Reference

 $\mathbb{E}Z_t = e^{mt}, \ e^{-mt}Z_t$ is a positive martingale.

D. R. Grey [G74]

$$e^{-mt}Z_t \to W \mathbb{P}_x - a.s. \& L^1 \Leftrightarrow \int_1^\infty (x \log x) \Pi(dx) < \infty.$$

Chu Weijuan

state
branching
process

Definition
Small value

Small value probability fo C-B-I

Keference

Define

$$\theta_t := \inf\{s > 0 : \int_0^s Z_u du > t\}$$

$$X_t := Z_{\theta_t}$$

then $(X_t, t \ge 0)$ is a Lévy process with $\log \mathbb{E}e^{-\lambda X_1} = \psi(\lambda)$. When

$$\psi(\lambda) = -a\lambda + \int_0^\infty (e^{-\lambda x} - 1)\Pi(\mathrm{d}x), \tag{1.6}$$

 $(X_t, t \ge 0)$ is called a subordinator.

Small value probability of CSBP

Small value probabilities or continuous state branching processes with immigration

Chu Weijuan

Continuous state branching process Definition Small value probability Small value probability for

Reference

定理

(Bingham [B76]) If ψ is not corresponding to a subordinator and $\int_{-\infty}^{\infty} 1/\psi(\lambda) d\lambda < \infty$, then

$$\mathbb{P}(W=0)=e^{-\gamma} \quad with \quad \gamma=\inf\{s\geq 0: \psi(s)=0\}. \eqno(1.7)$$

Write $\rho = -\psi'(\gamma)/m$, then

$$\mathbb{P}(0 < W \le x) \sim Cx^{\rho} \quad as \ x \to 0 + .$$

Chu Weijuan

state
branching
process
Definition
Small value
probability
Small value

Reference

Assume ψ is corresponding to a subordinator.

(i) If ψ has zero drift and finite Lévy measure $\Pi(0,\infty)=\alpha m$, then

$$\mathbb{P}_1(W \le \varepsilon) \sim \varepsilon^{\alpha} L(1/\varepsilon) \quad as \ \varepsilon \to 0^+$$

for some function L varying slowly as infinity. One can take L constant if and only if

$$\int_0^1 x^{-1} \Pi(\mathrm{d}x) < \infty.$$

(ii) If ψ has zero drift and infinity Lévy measure, then

$$-\log \mathbb{P}_1(W \leq \varepsilon) \sim L^*(1/\varepsilon) \quad as \ \varepsilon \to 0^+,$$

where L^* is a slowly varying function.

(iii) If ψ has drift a > 0, then

$$-\log \mathbb{P}_1(W \leq \varepsilon) \sim \varepsilon^{-a/(m-a)} L(1/\varepsilon) \quad as \ \varepsilon \to 0^+$$

for some function L slowly varying at infinity.

Continuous state branching process with immigration

for continuo state branching processes w immigratio

Chu Weijuan

Continuo state branching process

Small value probability for C-B-I

Tools S. V. of *W*

S. V. of *W* Reference $(\mathcal{Z}_t, \mathbb{P}_x : t \geq 0)$, the Laplace transform of \mathcal{Z} is given by

$$\mathbb{E}_x e^{-\lambda \mathcal{Z}_t} = \exp\left\{-xu_t(\lambda) - \int_0^t \varphi(u_s(\lambda))ds\right\}.$$
 (2.8)

where

$$\varphi(\lambda) = b\lambda + \int_0^\infty \left(1 - e^{-\lambda x}\right) n(dx), \tag{2.9}$$

with $b \ge 0$, and

$$\int_0^\infty (1 \wedge x) n(dx) < \infty. \tag{2.10}$$

 \mathcal{Z} is called a continuous state branching process with immigration starting from $x \geq 0$, and denoted as $CBI(\psi, \varphi)$.

Small value

Chu Weijuan

M. A. Pinsky (1972): Limit theorems for continuous state branching process with immigration. Bull. Amer. Math. Soci. 78, 242-244.

定理

 $e^{-mt}\mathcal{Z}_t$ has a finite and non-degenerate limit denoted by W iff

$$\int_{1}^{\infty} (x \log x) \Pi(dx) < \infty, \quad \int_{1}^{\infty} (\log x) n(dx) < \infty.$$

Tauberian Theorems

Small value probabilities or continuous state branching processes with immigration

Chu Weijuan

Continuou state branching process

Small value probability fo C-B-I

Definition
Tools
S. V. of W

Referenc

Assume V is a positive random variable.

(i)(Karamata Tauberian Theorem) For constants C > 0 and $\alpha > 0$ and a function L slowly varying at infinity,

$$\mathbb{E}e^{-\lambda V} \sim C\lambda^{-\alpha}L(\lambda) \qquad \lambda \to \infty,$$

if and only if

$$\mathbb{P}(V \le t) \sim \frac{C}{\Gamma(1+\alpha)} t^{\alpha} L(1/t) \qquad t \to 0^+.$$

Chu Weijuan

Continuou state branching process

Small value probability for C-B-I Definition **Tools** S. V. of W

Reference

(ii)(de Bruijn's Tauberian Theorem) Assume $0 \le \alpha < 1$ is a constant, L is a slowly varying function at infinity, and L^* is the conjugate slowly varying function to L defined in Bingham and Teugels [BT75]. Then

$$\log \mathbb{E}e^{-\lambda V} \sim -\lambda^{\alpha}/L(\lambda)^{1-\alpha} \qquad \lambda \to \infty, \tag{2.11}$$

if and only if

$$\log \mathbb{P}(V \le t) \sim -(1 - \alpha)\alpha^{\alpha/(1 - \alpha)} t^{-\alpha/(1 - \alpha)} L^*(t^{-1/(1 - \alpha)})$$
 as $t \to 0^+$. (2.12)

In particular, when $\alpha = 0$, then

$$\log \mathbb{E}e^{-\lambda V} \sim -1/L(\lambda)$$
 iff $\log \mathbb{P}(V \le t) \sim -L^*(t^{-1})$.

Small value probability of \mathcal{W}

Small value probabilities for continuous state branching processes with immigration

Chu Weijuan

Continuous state branching process Small valu

probability for C-B-I

Tools S. V. of W

_ _

定理

If the branching mechanism ψ is not corresponding to the Laplace exponent of a subordinator and $\int^{\infty} 1/\psi(\lambda)d\lambda < \infty$, then

$$\mathbf{P}_{x}e^{-\lambda W} = \exp\left\{-x\phi(\lambda) - \int_{0}^{\lambda} \frac{\varphi(\phi(t))}{t} dt\right\}$$
$$\sim C\lambda^{-\tau'} \quad as \ \lambda \to \infty,$$

for some constant C > 0 that is independent of λ , with $\tau' = \varphi(\gamma)/m$.

Small value

Chu Weijuan

(i) If ψ has zero drift and finite Lévy measure $\Pi(0,\infty) =$ αm , then

$$-\log \mathbb{P}_x(\mathcal{W} \le \varepsilon) \sim (2m)^{-1}b\alpha \cdot |\log \varepsilon|^2 + \alpha^{\beta}(m(\beta+1))^{-1} \mathbb{I}_{\{b=0\}} \cdot |\log \varepsilon|^{\beta+1},$$

(ii) If ψ has zero drift and infinity Lévy measure, then $-\log \mathbb{P}_x(\mathcal{W} \leq \varepsilon) \sim m^{-1}b \cdot R_1^*(1/\varepsilon)$

$$+\mathbb{I}_{\{b=0\}}\cdot\left(xL^*(1/\varepsilon)+m^{-1}\cdot R_2^*(1/\varepsilon)\right).$$
 (iii) If ψ has drift $a>0$ and the initial value $x>0$, then

 $-\log \mathbb{P}_x(\mathcal{W} \leq \varepsilon) \sim (x + b/a)^{m/(m-a)} \cdot \varepsilon^{-a/(m-a)} L(1/\varepsilon)$

(iv) If
$$\psi$$
 has drift $a > 0$ and the initial value $x = 0$, then
$$-\log \mathbb{P}_0(\mathcal{W} \le \varepsilon) \sim (b/a)^{m/(m-a)} \cdot \varepsilon^{-a/(m-a)} L(1/\varepsilon) + m^{-m/(m-a\beta)} (m-a\beta)(a\beta)^{-1} \mathbb{I}_{\{b=0\}}$$

$$\cdot \varepsilon^{-a\beta/(m-a\beta)} L_2^* \left(\varepsilon^{-m/(m-a\beta)}\right)$$

Chu Weijuan

Continuous state branching process

Small value probability for C-B-I

Tools
S. V. of W.

Reference

Thank you!

Reference

for continuoustate
branching
processes withing
immigration

Chu Weijuan

Small value

•

anching ocess nall value obability fo

probability fo C-B-I Bingham N. H. and Teugels J. L. (1975). Duality for regularly varying functions. Quart. J. Math. Oxford (3) 26, 333-353.
N.H. Bingham (1976). Continuous branching processes

and spectral positivity. Stochastic Process. Appl. 4 217-242.

Bingham N. H., Goldie C. M. and Teugels J. L. (1987). Regular Variation. Cambridge: Cambridge Univ. Press.

D. R. Grey (1974): Asymptotic Behaviour of continuous time, continuous state-space branching processes. *J. Appl. Prob.* **11**, 669-677.

Appl. Prob. 11, 669-677.
M.A. Pinsky: Limit theorems for continuous state branching process with immigration. Bulletin of the American mathematical society Vol. 78,No. 2,March 1972.