Posterior consistency of the Bayesian approach to linear ill-posed inverse problems

Sergios Agapiou

Mathematics Institute, University of Warwick, Coventry, UK

Joint work with Stig Larsson (Göteborg) and Andrew Stuart (Warwick)

NSF-CBMS Conference, Small Deviation Probabilities: Theory and Applications, 4-8 June 2012, University of Alabama in Huntsville

Inverse Problems

- Inverse Problems are concerned with determining causes for a desired or an observed effect.
- $\mathcal{A} : \mathcal{D}(\mathcal{A}) \subset \mathcal{X} \to \mathcal{X}$ known self-adjoint, positive definite linear operator with bounded inverse, \mathcal{X} separable Hilbert space.
- Linear inverse problem: find u from y, where y noisy observation of $\mathcal{A}^{-1}u$.
- Model:

$$y = \mathcal{A}^{-1}u + \frac{1}{\sqrt{n}}\xi,\tag{1}$$

 $\frac{1}{\sqrt{n}}\xi$ additive noise.

Inverse Problems are III-Posed - Deterministic Approach

- Problem (1) ill-posed:
 - existence of solution issues
 - solutions do not depend continuously on the data
- Tikhonov-Phillips Regularization: u approximated by minimizer of

$$J_0(u) := \frac{1}{2} \left\| \mathcal{C}_1^{-\frac{1}{2}}(y - \mathcal{A}^{-1}u) \right\|^2 + \frac{\lambda}{2} \left\| \mathcal{C}_0^{-\frac{1}{2}}u \right\|^2,$$

 $C_i : \mathcal{X} \to \mathcal{X}$, self-adjoint, possibly compact, positive definite linear operators.

• λ regularization parameter, appropriate function of noise level $n^{-\frac{1}{2}}$ which shrinks to zero as $n \to \infty$ to recover unknown u.

Bayesian Approach

Bayesian framework: assume $\xi \sim \mathcal{N}(0, C_1)$, $C_1 : \mathcal{X} \to \mathcal{X}$ selfadjoint positive definite.

- Likelihood: for fixed u, $y|u \sim \mathcal{N}(\mathcal{A}^{-1}u, \frac{1}{n}\mathcal{C}_1)$.
- Prior: choose *prior* distribution for unknown u, encoding prior knowledge. Let $u \sim \mathcal{N}(0, \tau^2 C_0), \ C_0 : \mathcal{X} \to \mathcal{X}$ selfadjoint positive definite trace class.
- Posterior: in Bayesian Approach, solution of problem (1) is the distribution of u|y, called the *posterior* distribution μ^{y} .

Bayesian Approach via Precision Operators - Intuition

• Link: Bayes rule:

 $P(u|y) \propto P(y|u)P(u)$

• Assume $\mathcal{X} = \mathbb{R}^d$,

$$\pi^{y}(u) \propto \exp\left(-nJ_{0}(u)
ight)$$

$$nJ_0(u) = \frac{n}{2} \left\| \mathcal{C}_1^{-\frac{1}{2}}(y - \mathcal{A}^{-1}u) \right\|^2 + \frac{1}{2\tau^2} \left\| \mathcal{C}_0^{-\frac{1}{2}}u \right\|^2$$

• This suggests that u|y; complete the square to find mean and covariance.

Bayesian Approach via Precision Operators - Main Result 1

Work in infinite dimensional setting where we can show:

Theorem (Agapiou, Larsson, Stuart) The posterior is Gaussian, $\mu^{y} = \mathcal{N}(m, \frac{1}{n}\mathcal{B}_{\lambda}^{-1})$, where $\mathcal{B}_{\lambda} = \mathcal{A}^{-1}\mathcal{C}_{1}^{-1}\mathcal{A}^{-1} + \lambda\mathcal{C}_{0}^{-1}$, $\lambda = \frac{1}{n\tau^{2}}$ $\mathcal{B}_{\lambda}m = \mathcal{A}^{-1}\mathcal{C}_{1}^{-1}y$.

• \mathcal{B}_{λ} depends on *n* and τ only through λ .

• Observation: *m* minimizer of J_0 ; posterior mean Tikhonov-Phillips solution of (1)!

Setting - Assumptions

• Hilbert Scale
$$(X^s)_{s\in\mathbb{R}}$$
, for $X^s = \mathcal{D}(\mathcal{C}_0^{-\frac{s}{2}})$ with $\langle u, v \rangle_s = \left\langle \mathcal{C}_0^{-\frac{s}{2}}u, \mathcal{C}_0^{-\frac{s}{2}}v \right\rangle$.

Assumptions

$$egin{aligned} \exists s_0 \in [0,1) \;\; ext{s.t.} \;\; ext{tr}(\mathcal{C}_0^{ ext{s}}) < \infty \;\; orall ext{s} > ext{s}_0; \ \mathcal{C}_1 \simeq \mathcal{C}_0^eta, \;\; eta \geq ext{0}; \ \mathcal{A}^{-1} \simeq \mathcal{C}_0^\ell, \;\; \ell > ext{0}. \end{aligned}$$

• We have

$$\mathcal{B}_{\lambda} = \mathcal{A}^{-1}\mathcal{C}_1^{-1}\mathcal{A}^{-1} + \lambda\mathcal{C}_0^{-1} \simeq \mathcal{C}_0^{2\ell-\beta} + \lambda\mathcal{C}_0^{-1}.$$

Assume $\Delta := 2\ell - \beta + 1 > 0$, i.e. prior regularizing.

Posterior Consistency

• Assume observations

$$y^{\dagger} = \mathcal{A}^{-1}u^{\dagger} + \frac{1}{\sqrt{n}}\xi, \quad \xi \sim \mathcal{N}(0, \mathcal{C}_1)$$

 $u^{\dagger} \in \mathcal{X}$ fixed true solution.

• This data model gives
$$\mu_{\lambda,n}^{y^\dagger} := \mu^y|_{y=y^\dagger} = \mathcal{N}(m_\lambda^\dagger, rac{1}{n}\mathcal{B}_\lambda^{-1})$$
, where

$$\mathcal{B}_\lambda m^\dagger_\lambda = \mathcal{A}^{-1} \mathcal{C}_1^{-1} y^\dagger$$

• AIM: Show that in small noise limit $(n \to \infty)$ posterior contracts to a Dirac centered on the true solution.

Posterior Consistency/ Main Result 2

Posterior Consistency - Posterior Contraction

Assume $u^{\dagger} \in X^{\gamma}$. Determine rate $\varepsilon_n = \varepsilon_n(\gamma, \Delta, s_0)$ such that

$$\mathbb{E}^{y^{\dagger}}\mu_{\lambda,n}^{y^{\dagger}}\left\{u:\left\|u-u^{\dagger}\right\|\geq M_{n}\varepsilon_{n}\right\}\rightarrow 0,\quad\forall M_{n}\rightarrow\infty,\text{ as }n\rightarrow\infty.$$

Markov Inequality

$$\mathbb{E}^{y^{\dagger}}\mu_{\lambda,n}^{y^{\dagger}}\left\{u:\left\|u-u^{\dagger}\right\|\geq M_{n}\varepsilon_{n}\right\}\leq\frac{1}{M_{n}^{2}\varepsilon_{n}^{2}}\mathbb{E}^{y^{\dagger}}\int\left\|u-u^{\dagger}\right\|^{2}\mu_{\lambda,n}^{y^{\dagger}}(du).$$

• Since $\mu_{\lambda,n}^{y^{\dagger}} = \mathcal{N}(m_{\lambda}^{\dagger}, \frac{1}{n}\mathcal{B}_{\lambda}^{-1})$, suffices to show $SPC := \underbrace{\mathbb{E}^{y^{\dagger}} \left\| m_{\lambda}^{\dagger} - u^{\dagger} \right\|^{2}}_{\text{MISE}} + \underbrace{\operatorname{tr}(\frac{1}{n}\mathcal{B}_{\lambda}^{-1})}_{\text{posterior spread}} \leq c\varepsilon_{n}^{2}.$

Posterior Consistency - Main result 2

• Assume $\Delta \geq 1$, i.e. sufficiently ill-posed inverse problem.

Theorem (Agapiou<u>, Larsson, Stuart)</u>

Assume $u^{\dagger} \in X^{\gamma}$, $\gamma \ge 1$. Under our assumptions, we have the following rates of contraction, for appropriate choice of $\lambda = \lambda(n) \rightarrow 0$:

$$\varepsilon_n = \begin{cases} n^{-\frac{\gamma}{2(\Delta+\gamma-1+s_0)}}, & \text{if } \gamma \in [1, \Delta+1] \\ n^{-\frac{\Delta+1}{2(2\Delta+s_0)}}, & \text{if } \gamma > \Delta+1. \end{cases}$$

Main Result 1

Assumptions

Posterior Consistency/ Main Result 2

Conclusions

Optimality

Diagonal Case: $\mathcal{A}^{-1} = \mathcal{C}_0^{\ell}$ and $\mathcal{C}_1 = \mathcal{C}_0^{\beta}$ gives sharp rates.

Our operator similarity assumptions satisfied trivially.

• Assume $C_0 \simeq \text{diag}\{k^{-2}\}$, $u^{\dagger} \in X^{\gamma}$. Compare rates of convergence for $\ell = \beta = 1/2$.

Main Result 2 - proof idea

• Assumptions secure posterior spread bounded by MISE; suffices to bound MISE.

$$\mathcal{B}_{\lambda} m_{\lambda}^{\dagger} = \mathcal{A}^{-1} \mathcal{C}_{1}^{-1} y^{\dagger} = \underbrace{\mathcal{A}^{-1} \mathcal{C}_{1}^{-1} \mathcal{A}^{-1} u^{\dagger}}_{\sqrt{n}} + \frac{1}{\sqrt{n}} \mathcal{A}^{-1} \mathcal{C}_{1}^{-1} \xi$$
$$\mathcal{B}_{\lambda} u^{\dagger} = \underbrace{\mathcal{A}^{-1} \mathcal{C}_{1}^{-1} \mathcal{A}^{-1} u^{\dagger}}_{1} + \lambda \mathcal{C}_{0}^{-1} u^{\dagger}.$$
Set $e = m_{\lambda}^{\dagger} - u^{\dagger}$

$$\mathcal{B}_{\lambda} e = rac{1}{\sqrt{n}} \mathcal{A}^{-1} \mathcal{C}_1^{-1} \xi - \lambda \mathcal{C}_0^{-1} u^{\dagger}.$$

Main Result 2 - proof idea

• Testing against *e*, using norm equivalence and interpolation techniques

$$\|e\|_{\beta-2\ell}^2 + \lambda \|e\|_1^2 \leq c(\frac{1}{n}\lambda^{-\theta_1} \|\xi\|_{\beta-\theta_1\Delta}^2 + \lambda^{2-\theta_2} \|u^{\dagger}\|_{1+\Delta(1-\theta_2)}^2),$$

 $heta_1, heta_2\in [0,1]$ chosen to make rhs finite.

- Choose $\lambda = \lambda(n)$ optimally to get rates for two error norms on lhs.
- ullet Interpolate between two rates and take expectations to get the rate for MISE. \Box

Ongoing - Future Research

- Same methodology applied in *Pokern et al.* in nonparametric drift estimation for diffusion processes. Extension to an abstract setting which includes both cases as examples;
- Extension to non-Gaussian priors; Besov priors;
- Extension to nonlinear inverse problems.

References - Further Reading

- S. Agapiou, S. Larsson and A. M. Stuart, *Posterior Consistency of the Bayesian Approach to Linear III-Posed Inverse Problems*, http://arxiv.org/abs/1203.5753.
- B. T. Knapik, A. W. van der Vaart, J. H. van Zanten, *Bayesian inverse problems with Gaussian priors*, Ann. Statist. 39 (2011), 2626-2657.
- Y. Pokern, A. M. Stuart and J. H. Van Zanten, *Posterior consistency via precision operators for nonparametric drift estimation in SDEs*, http://arxiv.org/abs/1202.0976.
- A. M. Stuart, *Inverse problems: a Bayesian perspective*, Acta Numer. 19 (2010), 451-559.