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Inverse Problems

Inverse Problems are concerned with determining causes for a desired or an
observed effect.

A : D(A) ⊂ X → X known self-adjoint, positive definite linear operator with
bounded inverse, X separable Hilbert space.

Linear inverse problem: find u from y , where y noisy observation of A−1u.

Model:

y = A−1u +
1√
n
ξ, (1)

1√
n
ξ additive noise.
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Inverse Problems are Ill-Posed - Deterministic Approach

Problem (1) ill-posed:

- existence of solution issues

- solutions do not depend continuously on the data

Tikhonov-Phillips Regularization: u approximated by minimizer of

J0(u) :=
1

2

∥∥∥C−1
2

1 (y −A−1u)
∥∥∥2

+
λ

2

∥∥∥C−1
2

0 u
∥∥∥2

,

Ci : X → X , self-adjoint, possibly compact, positive definite linear operators.

λ regularization parameter, appropriate function of noise level n−
1
2 which shrinks

to zero as n→∞ to recover unknown u.
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Bayesian Approach

Bayesian framework: assume ξ ∼ N (0, C1), C1 : X → X selfadjoint positive
definite.

Likelihood: for fixed u, y |u ∼ N (A−1u, 1
nC1).

Prior: choose prior distribution for unknown u, encoding prior knowledge. Let
u ∼ N (0, τ 2C0), C0 : X → X selfadjoint positive definite trace class.

Posterior: in Bayesian Approach, solution of problem (1) is the distribution of u|y ,
called the posterior distribution µy .
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Bayesian Approach via Precision Operators - Intuition

Link: Bayes rule:

P(u|y) ∝ P(y |u)P(u)

Assume X = Rd ,
πy(u) ∝ exp (−nJ0(u))

nJ0(u) =
n

2

∥∥∥C−1
2

1 (y −A−1u)
∥∥∥2

+
1

2τ 2

∥∥∥C−1
2

0 u
∥∥∥2

.

This suggests that u|y ; complete the square to find mean and covariance.
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Bayesian Approach via Precision Operators - Main Result 1

Work in infinite dimensional setting where we can show:

Theorem (Agapiou, Larsson, Stuart)

The posterior is Gaussian, µy = N (m, 1
nB
−1
λ ), where

Bλ = A−1C−1
1 A−1 + λC−1

0 , λ =
1

nτ 2

Bλm = A−1C−1
1 y .

Bλ depends on n and τ only through λ.

Observation: m minimizer of J0; posterior mean Tikhonov-Phillips solution of (1)!
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Setting - Assumptions

Hilbert Scale (X s)s∈R, for X s = D(C−
s
2

0 ) with 〈u, v〉s =
〈
C−

s
2

0 u, C−
s
2

0 v
〉
.

Assumptions

∃s0 ∈ [0, 1) s.t. tr(Cs
0) <∞ ∀s > s0;

C1 ' Cβ0 , β ≥ 0;

A−1 ' C`0, ` > 0.

We have
Bλ = A−1C−1

1 A−1 + λC−1
0 ' C

2`−β
0 + λC−1

0 .

Assume ∆ := 2`− β + 1 > 0, i.e. prior regularizing.
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Posterior Consistency

Assume observations

y † = A−1u† +
1√
n
ξ, ξ ∼ N (0, C1)

u† ∈ X fixed true solution.

This data model gives µy †

λ,n := µy |y=y † = N (m†λ,
1
nB
−1
λ ), where

Bλm†λ = A−1C−1
1 y †.

AIM: Show that in small noise limit (n→∞) posterior contracts to a Dirac
centered on the true solution.
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Posterior Consistency - Posterior Contraction

Assume u† ∈ X γ. Determine rate εn = εn(γ,∆, s0) such that

Ey †µy †

λ,n

{
u :
∥∥u − u†

∥∥ ≥ Mnεn

}
→ 0, ∀Mn →∞, as n→∞.

Markov Inequality

Ey †µy †

λ,n

{
u :
∥∥u − u†

∥∥ ≥ Mnεn

}
≤ 1

M2
nε

2
n

Ey †
∫ ∥∥u − u†

∥∥2
µy †

λ,n(du).

Since µy †

λ,n = N (m†λ,
1
nB
−1
λ ), suffices to show

SPC := Ey †
∥∥∥m†λ − u†

∥∥∥2︸ ︷︷ ︸
MISE

+ tr(
1
n
B−1
λ )︸ ︷︷ ︸

posterior spread

≤ cε2
n.
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Posterior Consistency - Main result 2

Assume ∆ ≥ 1, i.e. sufficiently ill-posed inverse problem.

Theorem (Agapiou, Larsson, Stuart)

Assume u† ∈ X γ, γ ≥ 1. Under our assumptions, we have the following rates of
contraction, for appropriate choice of λ = λ(n)→ 0:

εn =


n
− γ

2(∆+γ−1+s0), if γ ∈ [1,∆ + 1]

n
− ∆+1

2(2∆+s0), if γ > ∆ + 1.
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Optimality

Diagonal Case: A−1 = C`0 and C1 = Cβ0 gives sharp rates.

Our operator similarity assumptions satisfied trivially.

Assume C0 � diag{k−2}, u† ∈ X γ. Compare rates of convergence for
` = β = 1/2.
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Main Result 2 - proof idea

Assumptions secure posterior spread bounded by MISE; suffices to bound MISE.

Bλm†λ = A−1C−1
1 y † = A−1C−1

1 A−1u†︸ ︷︷ ︸ +
1√
n
A−1C−1

1 ξ

Bλu† = A−1C−1
1 A−1u†︸ ︷︷ ︸ +λC−1

0 u†.

Set e = m†λ − u†

Bλe =
1√
n
A−1C−1

1 ξ − λC−1
0 u†.
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Main Result 2 - proof idea

Testing against e, using norm equivalence and interpolation techniques

‖e‖2
β−2` + λ ‖e‖2

1 ≤ c(
1

n
λ−θ1 ‖ξ‖2

β−θ1∆ + λ2−θ2
∥∥u†∥∥2

1+∆(1−θ2)
),

θ1, θ2 ∈ [0, 1] chosen to make rhs finite.

Choose λ = λ(n) optimally to get rates for two error norms on lhs.

Interpolate between two rates and take expectations to get the rate for MISE.
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Ongoing - Future Research

Same methodology applied in Pokern et al. in nonparametric drift estimation for
diffusion processes. Extension to an abstract setting which includes both cases as
examples;

Extension to non-Gaussian priors; Besov priors;

Extension to nonlinear inverse problems.
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