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Introduction/Background

Inverse Problems

@ Inverse Problems are concerned with determining causes for a desired or an
observed effect.

o A:D(A) C X — X known self-adjoint, positive definite linear operator with
bounded inverse, X" separable Hilbert space.

e Linear inverse problem: find u from y, where y noisy observation of A~ 1u.

@ Model:

1
Y = A_lu + ﬁga (1)

\%{ additive noise.



Introduction/Background

Inverse Problems are lll-Posed - Deterministic Approach

@ Problem (1) ill-posed:

- existence of solution issues

- solutions do not depend continuously on the data

@ Tikhonov-Phillips Regularization: u approximated by minimizer of

2

1,1 10 |1F LA |
Jo(u):ZEH(Zl (y — A "u) +§HCO ul|

Ci: X — X, self-adjoint, possibly compact, positive definite linear operators.

. . . . 1. .
@ ) regularization parameter, appropriate function of noise level n™2 which shrinks
to zero as n — 0o to recover unknown u.



Introduction/Background

Bayesian Approach

Bayesian framework: assume £ ~ N(0,C;), C;: X — X selfadjoint positive
definite.

o Likelihood: for fixed u, y|u ~ N(A7tu,3Cy).

@ Prior: choose prior distribution for unknown u, encoding prior knowledge. Let
u~ N(0,7%Cy), Co: X — X selfadjoint positive definite trace class.

@ Posterior: in Bayesian Approach, solution of problem (1) is the distribution of uly,
called the posterior distribution 1i”.



Introduction/Background

Bayesian Approach via Precision Operators - Intuition

@ Link: Bayes rule:

P(uly) oc P(y|u)P(u)

@ Assume X = R9
' (u) o< exp (—nJy(u))

2 2

1

ey — A tu)

nJo(u) - =

L o
2 +2_72HCO .

@ This suggests that u|y; complete the square to find mean and covariance.



Main Result 1

Bayesian Approach via Precision Operators - Main Result 1

Work in infinite dimensional setting where we can show:

Theorem (Agapiou, Larsson, Stuart)

The posterior is Gaussian, 1 = N'(m, 2B, "), where
By=ATCITATT + 0C Y, A= —5

Bym = A"'Cly.

@ [3) depends on n and 7 only through .

@ Observation: m minimizer of Jy; posterior mean Tikhonov-Phillips solution of (1)!



Assumptions

Setting - Assumptions

S

o Hilbert Scale (X*®)ser, for X* = D(C, ?) with (u,v), = <C_%u, CO_%v> .
@ Assumptions
dsg € [0,1) s.t. tr(Cy) < 0o Vs > sp;
Cy ~ c{f, B> 0;

Al~ct (>0

@ We have
By = ACTP AT+ MG ~ G+ G
Assume A :=2( — 3+ 1> 0, i.e. prior regularizing.



Posterior Consistency/ Main Result 2

Posterior Consistency

@ Assume observations

yl=A " + %57 &~ N(0,C) J

ul € X fixed true solution.

@ This data model gives ,u{fn =W, —yt = N(m, 1B 1), where

Bym!l = A7lC J

@ AIM: Show that in small noise limit (n — o) posterior contracts to a Dirac
centered on the true solution.



Posterior Consistency/ Main Result 2

Posterior Consistency - Posterior Contraction

Assume u! € X7. Determine rate £, = £,(7, A, 55) such that

EVTMM{U Hu—uTH >M,,5,,}—>O VM, — oo, as n — 0.

@ Markov Inequality

i | R 2 i
B, {u o ol = Moeo} < s [ [lu— | ()
@ Since ,uyT — N(m', 1B 1), suffices to show
v Lt — il g 2
SPC:=E" |m —u'|| + tr(HBA ) < cer.

MISE posterior spread



Posterior Consistency/ Main Result 2

Posterior Consistency - Main result 2

@ Assume A > 1, i.e. sufficiently ill-posed inverse problem.

Theorem (Agapiou, Larsson, Stuart)

Assume u' € X7, ~v > 1. Under our assumptions, we have the following rates of
contraction, for appropriate choice of A = A(n) — 0:
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Posterior Consistency/ Main Result 2
Optimality

Diagonal Case: A1 = C{ and C; = Cg gives sharp rates.

Our operator similarity assumptions satisfied trivially.

o Assume Cp < diag{k—2}, u" € X". Compare rates of convergence for
(=03=1/2.
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Posterior Consistency/ Main Result 2

Main Result 2 - proof idea

@ Assumptions secure posterior spread bounded by MISE; suffices to bound MISE.

1
B)\mi\ _ A—lcl—lyT :A—lcl_lA—lui +ﬁ¢4_1cl_1€

Byl = <4_1C1_1.A—1uj +ACy

Sete:mi—uT

1
Bie = ﬁ,4—161—15 — Gyt




Posterior Consistency/ Main Result 2

Main Result 2 - proof idea

@ Testing against e, using norm equivalence and interpolation techniques

1 2
2 2 6y || £112 6
lell5 00+ Allell] < C(;)\ : HfHﬁ—HlA_i_)‘z i HUTH1_|_A(1_92))7

01,60, € [0, 1] chosen to make rhs finite.
@ Choose A = A\(n) optimally to get rates for two error norms on lhs.

@ Interpolate between two rates and take expectations to get the rate for MISE. [



Conclusions

Ongoing - Future Research

@ Same methodology applied in Pokern et al. in nonparametric drift estimation for
diffusion processes. Extension to an abstract setting which includes both cases as
examples;

@ Extension to non-Gaussian priors; Besov priors;

@ Extension to nonlinear inverse problems.



Conclusions
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