Joint Program Exam of May, 2003

in Real Analysis

Instructions:

You may take up to three and a half hours to complete this exam.

Work 7 out of the 9 problems. Full credit can be gained with 7 essentially complete and correct solutions.

Justify each of your steps by referring to theorems by name where appropriate, or by providing a brief theorem statement. You do not need to reprove the theorems you use.

For each problem you attempt, try to give a complete solution. A correct and complete solution to one problem will gain more credit than solutions to two problems, each of which is “half-correct”.

Notation:

\(\mathbb{R} \) denotes the set of real numbers, \(m(E) \) refers to the Lebesgue measure of the set \(E \subset \mathbb{R} \), “measurable” refers to Lebesgue measure and “a.e.” means almost everywhere with respect to Lebesgue measure.
Problem 1.
Give an example or prove non-existence of such.
(a) A subset of \mathbb{R} of measure zero, whose closure has positive measure.
(b) A sequence (f_n) of functions in $L^1[0, 1]$ such that $f_n \to 0$ pointwise and yet $\int_{[0,1]} f_n \, dm \to \infty$.

Problem 2.
(a) Let E be a measurable subset of \mathbb{R}^2. Suppose that, for a.e. $x \in \mathbb{R}$, the set $E_x \overset{def}{=} \{ y \in \mathbb{R} : (x, y) \in E \}$ has measure zero in \mathbb{R}. Prove that, for a.e. $y \in \mathbb{R}$, the set $E_y \overset{def}{=} \{ x \in \mathbb{R} : (x, y) \in E \}$ has measure zero in \mathbb{R}.
(b) Let A be a non-measurable subset of \mathbb{R}^2 whose intersection with the y-axis is not empty. Can the set $A_0 \overset{def}{=} \{ y \in \mathbb{R} : (0, y) \in A \}$ be measurable for some such A?

Problem 3.
Let $f \in L^1(\mathbb{R}) \cap L^{17}(\mathbb{R})$. Prove that $f \in L^5(\mathbb{R})$.

Problem 4.
Let $E = [0, \infty)$. Prove that $\lim_{n \to \infty} \int_E \frac{x}{1+x^n} \, dx$ exists, and find its value. Justify all your assertions.

Problem 5.
Let E be a measurable subset of \mathbb{R}, and let $f, f_k \in L^1(E)$, $k \in \mathbb{N}$. Suppose that $f_k \to f$ a.e. on E and $\|f_k\|_1 \to \|f\|_1$. Prove that then $f_k \to f$ in $L^1(E)$.

Problem 6.
Let $f \in L^1[0, 1]$. Prove that, for a.e. $x \in [0, 1]$, $\int_{[0,1]} \frac{f(y)}{\sqrt{|x-y|}} \, dm(y)$ exists and is finite.
Problem 7.
Let f be continuous and strictly increasing on $[0, 1]$. Suppose that $m(f(E)) = 0$ for every set $E \subset [0, 1]$ with $m(E) = 0$. Show that f is absolutely continuous.

Problem 8.
Let f be integrable on $[0, 1]$. Prove that there exists $c \in [0, 1]$ such that $\int_{[0,c]} f \, dm = \int_{[c,1]} f \, dm$.

Problem 9.
Let f be a Lebesgue measurable function on \mathbb{R}. Show that:

$$\int_{\mathbb{R}} |f|^3 \, dm = 3 \int_0^\infty t^2 m(\{|f| > t\}) \, dt.$$