JOINT PROGRAM EXAM REAL ANALYSIS FALL 1997

Instructions: Instructions: You may take up to $3\frac{1}{2}$ hours to complete the exam. Completeness in your answers is very important. Justify your steps by referring to theorems by name, when appropriate, or by providing a brief theorem statement. An essentially complete and correct solution to one problem will gain more credit, than solutions to two problems each of which is "half correct".

Notation: Throughout the exam, \mathbb{R} stands for the set of real numbers.

- 1. For a measurable subset E of \mathbb{R}^n , prove or disprove:
 - (a) If E has Lebesgue measure 0, then its closure has Lebesgue measure 0.
 - (b) If the closure of E has Lebesgue measure 0, then E has Lebesgue measure 0.
- 2. (i) Prove that convergence in L¹ implies convergence in measure. (Give a precise statement, then prove it.)
 (ii) Letter success to a²
 - (ii) Is the converse true?
- 3. Denote the ternary Cantor set in [0,1] by C. Let $f:[0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 0, & x \in C \\ x^2, & x \notin C. \end{cases}$$

Prove that f is a Lebesgue measurable function.

4. Show that the hyperelliptic integral

$$\int_{2}^{\infty} \frac{xdx}{\sqrt{(x^2 - \varepsilon^2)(x^2 - 1)(x - 2)}}$$

converges to the elliptic integral

$$\int_{2}^{\infty} \frac{dx}{\sqrt{(x^2 - 1)(x - 2)}}$$

when ε tends to zero.

5. Show that

6. Evaluate

$$\left(\int_0^1 \frac{x^{1/2} dx}{(1-x)^{1/3}}\right)^3 \le \frac{8}{5}.$$
$$\sum_{n=0}^\infty \int_{1/2}^\infty (1-\mathrm{e}^{-t})^n \mathrm{e}^{-t^2} dt.$$

7. Either give an example of the specified mathematical object or quote a theorem that proves that no such object can exist.

(i) A sequence f_n of functions converging to 0 uniformly on [0, 1], but such that $\int_0^1 f_n dm \ge 1$ for all n (here m denotes the Lebesgue measure).

(ii) A sequence f_n of functions converging to 0 uniformly on \mathbb{R} , but such that

(ii) A sequence f_n of random converging to a uniformly on x, such such that ∫_ℝ f_ndm ≥ 1 for all n (here m denotes the Lebesgue measure).
(iii) A sequence f_n of positive functions converging pointwise to a function f such that lim inf ∫₀¹ f_n < ∫₀¹ f.
8. Let Σ denote the σ-algebra of subsets of ℝ generated by the set {0} (i.e. Σ is

the smallest σ -algebra in $2^{\mathbb{R}}$, which contains $\{0\}$).

(i) Prove that every $E \in \Sigma$ is Lebesgue measurable.

Let μ denote the restriction of the Lebesgue measure m (on \mathbb{R}) to Σ [i.e. $\forall E \in$ $\Sigma: \mu(E) = m(E)$. It is easy to show (you do not have to!) that μ is a measure on Σ .

(ii) Determine the dimension of $L^2(\mathbb{R}, \mu)$.

Help: Σ is so 'small' that one can list its elements.