Instructions: Completeness in answers is very important. Justify your steps by referring to theorems by name where appropriate. Include all work. Full credit will accrue from answering 5 of the 7 problems given. Indicate which solutions you want to be graded if you work on more than 5 problems.
1. Let $P_2(\mathbb{R})$ be the set of polynomials of degree less than or equal to 2, defined over the real line, and define
\[T : P_2(\mathbb{R}) \rightarrow P_2(\mathbb{R}) \]
according to
\[T(p) = q \]
where
\[q(x) = (1 - x)p'(x) \]
(a) Find a basis for the range and the null space of this transformation. Is it invertible?
(b) Find the characteristic polynomial, minimal polynomial and Jordan canonical form of T.

2. Let V be the vector space of all complex valued polynomials defined over the half line $[0, \infty)$.
(a) Show that
\[\langle f, g \rangle := \int_{0}^{\infty} f(x)\overline{g(x)}e^{-x} \, dx \]
is a complex inner product on V.
(b) Find an orthonormal set $\{f_0, f_1\}$ in V such that $\text{span}\{e_0, e_1\} = \text{span}\{f_0, f_1\}$, where $e_0(x) = 1$ and $e_1(x) = x$.

3. Suppose that A is a complex normal matrix. Prove that
(a) A and A^* have the same eigenvectors;
(b) if x and y are two eigenvectors of A corresponding to distinct eigenvalues, then x and y are orthogonal;
(c) if A is also upper-triangular, then A must be diagonal.

4. (a) Give a definition of the condition number, $K(A)$, of a matrix A with respect to the infinity norm.
(b) Compute the condition number of
\[A = \begin{pmatrix} 1 & 2 \\ 1.01 & 2 \end{pmatrix} \]
(c) Show that if \(B \) is singular, then
\[
\frac{1}{K(A)} \leq \frac{\|A - B\|}{\|A\|}
\]

(d) Use (c) to estimate \(K(A) \), where \(A \) is the matrix given in (b), and compare to the solution obtained in (b).

5. (a) Give an explanation of what is meant by the least squares solution of \(Ax = b \), where \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \).

(b) Find the least squares solution of the system
\[
\begin{pmatrix}
-1 & 1 \\
1 & -1 \\
1 & 1 \\
-1 & -1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
= \begin{pmatrix}
2 \\
0 \\
2 \\
0
\end{pmatrix}.
\]

(c) Also compute the norm of the minimal residual vector.

6. Let \(A \in \mathbb{R}^{n \times n} \) be given, and assume that all leading principal submatrices of \(A \) are nonsingular. Show that there exists a unique upper triangular matrix \(U \) and a unique unit lower triangular matrix \(L \), such that \(A = LU \). If \(A \) is nonsingular, but not all the leading principal submatrices are nonsingular, what is the result now? (You don’t have to prove this one, just explain it.)

7. Let \(A \in \mathbb{R}^{n \times n} \) be given, symmetric, and assume that the eigenvalues of \(A \) satisfy
\[
|\lambda_1| > |\lambda_2| \geq \ldots \geq |\lambda_{n-1}| \geq |\lambda_n|.
\]
Let \(z \in \mathbb{R}^n \) be given. Under what conditions on \(z \) does the following hold, theoretically? (Be sure to actually show that it holds!)
\[
\lim_{k \to \infty} \frac{z^T A^{k+1} z}{z^T A^k z} = \lambda_i
\]
Under what conditions on \(z \) does this hold, as a practical matter? Explain fully for full credit.