UNIVERSITY OF ALABAMA SYSTEM Joint Doctoral Program in Applied Mathematics Joint Program Exam: Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS

September 152005

Instructions: Do 7 of the 8 problems for full credit. Include all work. Write your student ID number on every page of your exam.

- 1. Let V be the vector space of all polynomial functions from \mathbb{R} to \mathbb{R} which have degree less than or equal to n-1. Let t_1, t_2, \dots, t_n , be any n distinct real numbers, and define linear functionals $L_i(p) = p(t_i)$ on V. Show that L_1, L_2, \dots, L_n are linearly independent.
- 2. For $C \in F^{m \times m}$, define $T_C(X) = CX$ for all $X \in F^{m \times n}$. Prove the following.
 - (a) The function T_C is a linear operator on the vector space $F^{m \times n}$.
 - (b) If $\operatorname{rank}(C) = r$, then $\operatorname{rank}(T_C) = nr$.
 - (c) The minimal polynomial of T_C is the same as the minimal polynomial of C.
 - (d) The linear operator T_C is diagonalizable if and only if C is diagonalizable.
- 3. Let $A, B \in \mathbb{R}^{n \times n}$ be two symmetric matrices. Prove or disprove that the non-zero eigenvalues of AB BA are pure imaginary.
- 4. Let V be an n-dimensional vector space over field of complex numbers \mathbb{C} , and let I be the identity operator on V. Prove: For linear operators S and T on V, there exist ordered bases α and β for V such that the matrix representation of S with respect to α is equal to the matrix representation of T with respect to β if and only if rank $(cI + S)^k = \operatorname{rank}(cI + T)^k$ for all $c \in \mathbb{C}$ and $k = 1, 2, \dots, n$.
- 5. Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Show that $\min\{\frac{\|\delta A\|_2}{\|A\|_2} \mid A + \delta A$ is singular} = $1/\kappa_2(A)$. (That is the relative distance to the nearest singular matrix is $1/\kappa_2(A)$.)
- 6. For any matrix $A = (a_{ij}), A \in \mathbb{R}^{n \times m}$ define

$$||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^m a_{ij}^2\right)^{1/2}$$

This is the Frobenius matrix norm. Show that if $Q \in \mathbb{R}^{n \times n}$ is orthogonal, then $||QA||_F = ||A||_F$. Then show that

$$||A||_F = (\sigma_1^2 + \dots + \sigma_r^2)^{1/2}$$

where σ_i are singular values of A.

7. Consider the linear least squares (LS) problem

$$\min_{x} \|b - Ax\|_{2}, \quad A = \begin{bmatrix} 3\\0\\4 \end{bmatrix}, \quad b = \begin{bmatrix} 10\\5\\5 \end{bmatrix}.$$
(1)

Compute the QR decomposition of A using the Householder reflections and then solve the LS problem (1) using the QR decomposition method.

8. Let $A, Q_0 \in \mathbb{R}^{m \times m}$. Define sequences of matrices Z_k, Q_k and R_k by

$$Z_k = AQ_{k-1}, \quad Q_k R_k = Z_k, \qquad k = 1, 2, \cdots,$$

where $Q_k R_k$ is an QR factorization of Z_k . Suppose $\lim_{k\to\infty} R_k = R_{\infty}$ exists, and $\lim_{k\to\infty} Q_k = Q_{\infty}$ exist. Determine the eigenvalues of A in terms of R_{∞} .