Linear Algebra and Numerical Linear Algebra

Time: Three and One Half Hours

September 12, 2002

Instructions: Do 7 of the 8 problems for full credit. Be sure to indicate which 7 are to be graded. Include all work for full credit. Write your social security number on each of your answer sheet.
A matrix $A \in \mathbb{C}^{n \times n}$ is said to be skew Hermitian if $A^* = -A$.

(a) Prove that if A is skew Hermitian and B is unitary equivalent to A, then B is also skew Hermitian.

(b) What special form does the Shur decomposition theorem take for a skew Hermitian matrix A?

(c) Prove that the eigenvalues of a skew Hermitian matrix are purely imaginary, i.e. they satisfy $\bar{\lambda} = -\lambda$.

Let A be a 13 \times 13 complex matrix with characteristic polynomial $C_A(x) = x^7(x - i)^6$, minimal polynomial $M_A(x) = x^4(x - i)^3$, and $\dim E_0 = 3$, $\dim E_i = 2$, where E_λ is the eigenspace corresponding to an eigenvalue λ of A. Find a Jordan canonical form of A.

(b) Let A be a 6 \times 6 complex matrix with $C_A(x) = (x^2 + 1)^3$, $\dim E_i = 2$ and $\dim E_{-i} = 1$. Find the minimal polynomial of A.

(a) Define the condition number, $\kappa(A)$, for a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, show that $\kappa(A) \geq 1$ and that $\kappa(AB) \leq \kappa(A)\kappa(B)$.

(b) Consider the linear system $Ax = b$. Let x^* be the exact solution, and let x_c be some computed approximate solution. Let $e = x^* - x_c$ be the error and $r = b - Ax_c$ be the residual for x_c. Show that

$$\left(\frac{1}{\kappa(A)}\right) \frac{\|r\|}{\|b\|} \leq \frac{\|e\|}{\|x^*\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}.$$

(c) Interpret the above inequality for $\kappa(A)$ close to 1 and for $\kappa(A)$ large.

Let $A \in \mathbb{C}^{n \times n}$ have two distinct eigenvalues λ_1 and λ_2. Prove that the following three statements are equivalent:

(a) A is diagonalizable,

(b) each column vector of $A - \lambda_2 I$ is in the eigenspace E_{λ_1},

(c) each column vector of $A - \lambda_2 I$ is in the eigenspace E_{λ_1} and each column vector of $A - \lambda_1 I$ is in the eigenspace E_{λ_2}.

2
Let A be a given $n \times n$ nonsingular matrix, and assume a splitting of the form $A = M - N$, where M is nonsingular. Let x be the solution of the problem $Ax = b$. Consider the iteration

$$Mx^{(k+1)} = b + Nx^{(k)}.$$

Show that the errors $e^{(k)} = x - x^{(k)}$ satisfy a relation of the form:

$$e^{(k+1)} = Ge^{(k)}$$

and that the residuals $r^{(k)} = b - Ax^{(k)}$ satisfy a relation of the form

$$r^{(k+1)} = Hr^{(k)}$$

for appropriate matrices G and H. How are G and H related? Prove that $\rho(H) < 1$ if and only if $\rho(G) < 1$, where $\rho(A)$ is the spectral radius of the matrix A.

Let $u \in \mathbb{R}^n$ be a given vector and

$$P = I - \frac{2}{uu^T}uu^T$$

be a Householder reflector matrix.

(a) Prove that P is orthogonal.

(b) Let x be given and let $x = v + w$ where v lies along the vector u and w is orthogonal to u. Show that $Px = -v + w$, and explain why P is called a ”reflector” matrix.

(c) For a given matrix A, explain briefly how to use Householder matrices to compute the decomposition $A = QR$ where Q is orthogonal and R is upper triangular.

Consider the 3 vectors

$$v_1 = \begin{pmatrix} 1 \\ \epsilon \\ 0 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ \epsilon \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \epsilon \end{pmatrix},$$

where $\epsilon \ll 1$.

(a) Use the Classical Gram-Schmidt method to compute 3 orthonormal vectors q_1, q_2 and q_3, making the approximation that $1 + \epsilon^2 \approx 1$ (that is replace any term containing ϵ^2 or smaller with zero, but retain terms containing ϵ). Are all the q_i ($i = 1, 2, 3$) pairwise orthogonal? If not, why not?

(b) Repeat (a) using the modified Gram-Schmidt orthogonalization process. Are the q_i ($i = 1, 2, 3$) pairwise orthogonal? If not, why not?
Consider the matrix
\[A = \begin{pmatrix} -2 & 11 \\ -10 & 5 \end{pmatrix}. \]

(a) Determine, a real SVD of \(A \) in the form \(A = U \Sigma V^T \).

(b) What are the 1-, 2-, \(\infty \)-, and Frobenius norms of \(A \)?

(c) Find \(A^{-1} \) not directly, but via the SVD.

(d) Find the eigenvalues \(\lambda_1, \lambda_2 \) of \(A \).

(e) Verify that \(\det A = \lambda_1 \lambda_2 \) and \(|\det A| = \sigma_1 \sigma_2 \), where \(\sigma_1 \) and \(\sigma_2 \) are singular values of \(A \).