Novel Technology for Detecting Nucleic Acids (Better tools through Better Chemistry of Materials)

Krishnan Chittur, Ph.D.¹

¹Professor, Chemical Engineering, UAHuntsville

December 5, 2012

Chittur (UAHuntsville)

Detecting Nucleic Acids

MatSci Faculty Meeting (12-05-2012) 1/

DNA detection

Understand DNA/DNA binding, kinetics Make DNA detection robust, sensitive Jonas Boateng, PhD (2012)

Bioinformatics

How can we improve database searches through better understanding of protein/DNA/RNA sequences (*on going project, David Cavanaugh*)

Nucleic Acid Testing

Principles Source of infection (nucleic acid, genome) always present and is a necessary condition for pathologies due to infection

Uniqueness Unique sequences can be identified once the genome has been sequenced/known for the pathogens (viruses, bacteria, fungi)

Detection Approach Design complementary sequence to look for sequences *known* to be present in pathogens (bioinformatics, computer data mining) DNA

Chittur (UAHuntsville)

Detecting Nucleic Acids

MatSci Faculty Meeting (12-05-2012)

4 / 15 DNA

Nucleic Acid Testing

Difficult to detect, low concentrations, amplification needed (of targets or signal

Target Amplification

Polymerase Chain Reaction *molecular xeroxing, making multiple identical copies of nucleic acids not robust for clinical applications, lot of work being done*

Signal Amplification

Gold nanoparticles, Surface Enhancement of fluorescence, vibrational spectra *good, early promise, nothing clinical yet*

So, we came up with an idea ...

USP 7,291,459

Effect on Surface Chemical Spacing on DNA/DNA binding Biosensors and Bioelectronics, 2011, vol 26, pp 2566-2573

Chittur (UAHuntsville)

Chittur (UAHuntsville)

Detecting Nucleic Acids

MatSci Faculty Meeting (12-05-2012) 12 / 15

Engineered Surfaces

Spacing of functional groups allows for control of steric hindrance, allows for the lowering of detection limits

Structure and Function

Designing DNA probes that have specific sequences and structure allows for detecting multiple targets in complex solutions, including for medical diagnostics

Jonas Boateng (MWS Operon), Joel Peek (Microarrays Inc./HudsonAlpha), Robert Zahorchak (HudsonAlpha) (Jeffrey Dowell, Marc Pusey, Joseph Ng)