
Diverging Thermodynamic Derivatives Associated with 
Heterogeneous Chemical Equilibria in a Binary Liquid 

Mixture with a Consolute Point

James K. Baird
Department of Chemistry

University of Alabama in Huntsville
Huntsville, AL 35899



 
 

Goal: Test the applicability of the principle of critical point universality 
to metal oxide dissolution equilibria near the critical point of solution. 

 
Binary liquid mixture with a critical point of solution: (CH3)2CHCOOH  +  H2O

 
Liquid-Liquid Coexistence Curve for a Binary Liquid Mixture with an Upper 

Critical Solution Temperature 
 



Experimental Results 
SnO



8.00 

8.05 

8.10 

8.15 

8.20 

8.25 

3.15 3.2 3.25 3.3 3.35

ln
(s

/s
0 )

1/T,10-3 K-1

Tc= 301.65 K

Experimental Results
CuO



Experimental Reults
CoO



Application of the Principle of Critical Point Universality 
To the Calculation of the van’t Hoff Slope, ln / (1/ )s T   

 

I. Griffiths-Wheeler Classification of Thermodynamic Variables 
 
 (a) A “field” variable is a variable whose value is uniform across all phases
coexisting in equilibrium.  Examples are P , T ,   and G , which is a linear
combination of chemical potentials. 
 
 (b) A “density” variable is a variable whose value is different in each coexisting
phase.  Examples are H , V , X , and s , which is the solubility in ppm. 
 
Ref: R. B. Griffiths and J. C. Wheeler, Phys. Rev. A 2, 1047 (1970) 
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is the derivative of a density with respect to a field with no density

variables held fixed.  It should diverge strongly.  

II. Derivative of a Density with Respect to a Field with No Densities Held 
Fixed



III. Method for Determining the Number of Fixed Densities
(Gibbs Phase Rule)

• Gibbs Phase Rule  

f 

c 



number of  independent intensive variables (densities and fields)

number of independent chemical species

number of coexisting phases 



III. Method of Determining the Number of Independent Species
(Stoichiometry Matrix) 

Ref: S. R. Brinkley, J. Chem. Phys. 14, 563 (1946)

Rank of this stoichiometry matrix = 4

4 

3 2( )HA CH CHCOOH

3 2( )A CH CHCOO 



III. Method for Determining the Number of Independent Species
(Constraint Equations)

• Conservation of metal atoms and oxygen atoms.
• When metal oxide is in solubility equilibrium with the liquid, metal atoms are 

either in the solid or dissolved in the liquid as cations, while oxygen atoms 
are either in the solid or in the liquid in the form of water or hydronium ions.
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The difference between these two equations is
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• The liquid phase must be electrically neutral
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III. Method Determining the Number of Independent Species
(Final Result)

• Rank of stoichiometry matrix

• Number of constraint equations

• Calculation of number of independent species
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IV. Calculation of the Number of Independent  Intensive Variables
and the Number of Fixed Density Variables

2 

2f c   

2c 

2f c 

The two fixed intensive variables are accounted for by the temperature 
and the pressure, so there are no fixed density variables.  A strong critical
effect is expected.



Data Analysis and Interpretation
The van’t Hoff slope is: 
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(a) For the solubility equilibrium to be stable, 
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goes to positive infinity strongly as cT T . 

 

(b) The sign of 
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is thus opposite to that of H .  

(i) If the dissolution is endothermic ( 0)H  , 
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goes to negative  infinity 

strongly as cT T . 

(ii) If the dissolution is exothermic ( 0)H  , 
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goes to positive  infinity 

strongly as cT T . 
 
Ref:  Y. W. Kim and J. K. Baird, J. Phys. Chem. B 109, 17262 (2005)



Endothermic Dissolution 
MnO2 

 
Ref: Y. W. Kim and J. K. Baird, J. Phys. Chem. B  109, 17262 (2005). 



Exothermic Dissolution 
Al2O3



Summary

Metal Oxide Hsolution
Divergence in
( ln s / (1/T))

SnO negative positive
Al2O3 negative positive
CuO positive negative
CoO positive negative
NiO positive negative

MnO2 positive negative
Fe2O3 positive negative
In2O3 positive negative
Co3O4 positive negative



Conclusions

1.  Along the critical isopleth at temperatures a few degrees Centigrade or more above cT , 
a graph of solubility data in the form,  ln s  vs. 1/T ,  makes a straight line in agreement 
with the van’t Hoff equation. 
 
2.  Within the critical region, which extends about one degree Centigrade above cT , the 
van’t Hoff slope, ( ln / (1/ ))s T  , diverges towards positive infinity when dissolution is 
exothermic and towards negative infinity when dissolution is endothermic.   
 
3.  The requirement that there be no fixed density variables, i.e. 2f  , is guaranteed by 
constraint equations that express conservation of metal atoms, oxygen atoms, and charge. 
For dissolution in isobutyric acid + water, these constraint equations are satisfied by any 
ionic metal oxide, peroxide, or hydroxide. 
 
4.  In agreement with the principle of critical point universality, the observed departures 
of ( ln / (1/ ))s T   appear to be strong divergences in the Griffiths-Wheeler sense. 
 
Reference:   
 
B. Hu, J. K. Baird, R. D. Richey, and R. G. Reddy, J. Chem. Phys. 134, 154505 (2011). 
 
 
 


