LIBRA'S RADIO ASTRONOMY MOON MISSION

A FUTURE MISSION CONCEPT

Science Goals	Science Objectives			
Understand and probe the structure and evolution of the early universe	Determine the structure of neutral hydrogen. Determine when the first stars formed. Determine the physics of the epoch of reionization. Determine when the global transition between a neutral and ionized universe happen. Create a topographic map of the epoch of reionization. Detect and study early galaxy evolution. Explore the power spectrum of the 21-cm transitions.			
Understand the sun and its effects of the solar system	Trace coronal mass ejections as they propagate towards earth. Improve space weather predictions			
Observe interaction between the lunar regolith and high energy particles	Understand the origin and nature of ultra high energy cosmic rays. Detect ultra high energy cosmic rays.			

Science Payload				
	Lifetime: 5 years			
Lander	DALI: frequency range (40-150MHz), temperature sensitivity (10mK)			

Lander				
Mass	790.9 kg (w/o propellant)			
David	15 m ² GaAs triple junction solar cells			
Power	250 kg of batteries at 220W*hr/kg			
Communication	Ka-Band			
Propulsion	3 Aerojet MR-80B Main Thrusters			
	12 MR-106L and 4 MR-120 ACS Thrusters			
Functions	Collect data from LRA and relay data to orbiter.			
	Three burn maneuvers			
	Lifetime: 5 years			

Orbiter				
Mass	127 kg (w/o propellant)			
Douron	1.28 m ² QIOPTIQ Solar Relectors			
Power	20 VES-180 Batteries			
Communication	Ka-Band			
-	Relay data from lander on lunar surface to earth.			
Functions	Two burn maneuvers			
	Lifetime: 5 years			

LIBRA'S RADIO ASTRONOMY MOON MISSION A FUTURE MISSION CONCEPT

ManeuverPurposePerformed ByΔV (m/s)Isp (s)I1Correct trajectory after centaur jettisonOrbiter5031212Slow payload to allow entry into lunar orbitSolid Rocket Motor1080294.213Correct any solid rocket motor thrust vector misaligmentOrbiter3031214Push lander out of lunar orbitLander20231-20015Slow lander to allow for reasonable approach speedSolid Rocket Motor1699294.216Slow lander enough for minimum 9g landingLander76231-20017Divert to a suitable landing spot determined by ALHATLander19231-2001			0			CASE (
1Correct trajectory after centaur jettisonOrbiter503122Slow payload to allow entry into lunar orbitSolid Rocket Motor1080294.213Correct any solid rocket motor thrust vector misaligmentOrbiter3031214Push lander out of lunar orbitLander20231-20015Slow lander to allow for reasonable approach speedSolid Rocket Motor1699294.216Slow lander enough for minimum 9g landingLander76231-20017Divert to a suitable landing spot determined by ALHATLander19231-200	Maneuver	Purpose	Performed By	$\Delta V (m/s)$	lsp (s)	m _p (kg)
2Slow payload to allow entry into lunar orbitSolid Rocket Motor1080294.213Correct any solid rocket motor thrust vector misaligmentOrbiter303124Push lander out of lunar orbitLander20231-2005Slow lander to allow for reasonable approach speedSolid Rocket Motor1699294.216Slow lander enough for minimum 9g landingLander76231-20017Divert to a suitable landing spot determined by ALHATLander19231-200	1	Correct trajectory after centaur jettison	Orbiter	50	312	105.7
3Correct any solid rocket motor thrust vector misaligmentOrbiter303124Push lander out of lunar orbitLander20231-2005Slow lander to allow for reasonable approach speedSolid Rocket Motor1699294.216Slow lander enough for minimum 9g landingLander76231-2007Divert to a suitable landing spot determined by ALHATLander19231-200	2	Slow payload to allow entry into lunar orbit	Solid Rocket Motor	1080	294.2	1973.35
4Push lander out of lunar orbitLander20231-2005Slow lander to allow for reasonable approach speedSolid Rocket Motor1699294.216Slow lander enough for minimum 9g landingLander76231-2007Divert to a suitable landing spot determined by ALHATLander19231-200	3	Correct any solid rocket motor thrust vector misaligment	Orbiter	30	312	39.9
5Slow lander to allow for reasonable approach speedSolid Rocket Motor1699294.216Slow lander enough for minimum 9g landingLander76231-2007Divert to a suitable landing spot determined by ALHATLander19231-200	4	Push lander out of lunar orbit	Lander	20	231-200	34.3
6Slow lander enough for minimum 9g landingLander76231-2007Divert to a suitable landing spot determined by ALHATLander19231-200	5	Slow lander to allow for reasonable approach speed	Solid Rocket Motor	1699	294.2	1609.51
7 Divert to a suitable landing spot determined by ALHAT Lander 19 231-200	6	Slow lander enough for minimum 9g landing	Lander	76	231-200	62.8
	7	Divert to a suitable landing spot determined by ALHAT	Lander	19	231-200	15.1

ESTACA ÉCOLE D'INGÉNIEURS

COLLEGE of CHARLESTON