FACT SHEET

Science Goals & Objectives:

•Overall Goal: Explore the geological, physical, and biological aspects of Europa and search for habitable environments for past or present life.

Objectives:

Study the structure and composition of the surface, near-surface, and interior.

Investigate the geologic activities that encompass Europa, and the processes that drives it.

Search for traces of past or present life in a habitable environment.

Engineering Goal:

•To satisfy the science goals.

•To design a cost efficient Spacecraft Mission to Europa under \$800M PI cost.

Design a lander, that will include the telecommunication systems, command data handling system, thermal, propulsion, and power subsystems.

SCIENCE CAMERON SELF PRINCIPLE INVESTIGATOR

BOB JONES or AUSTIN DECATUR PAYLOAD

MAGNETOMETER BOOM MARY ROBINSON

PROJECT MANAGER

Mission Management and Participating Organizations

Collaborative **R**esearch of Europa Through **E**xploration

Mission Overview:

- Launch on Atlas V 551 (C3 of 12.8 kg²/s², 4790 kg)
- Perform Venus-Earth-Earth Gravity Assist (VEEGA) trajectory

FE

- Arrival at Jupiter/Europa ; Perform Braking
- Europa orbit insertion (EOI) in July 2028
- Initial, circular 200 km altitude orbit, 95° inclination
- Detach lander and safely land on Europa.
- •Gather data and communicate results.

Key Spacecraft Characteristics:

■4551 kg wet mass (orbiter + lander)

- •581 kg dry mass for lander (with 30% contingency)
- •709 kg dry mass for orbiter (with 30% contingency)
- Payload (orbiter + lander):
 - •Total Mass: 100 kg
 - Total Power Required: 173 W
- 3 m High Gain Antenna (orbiter)
- Two-way Doppler at both X-/Ka-band capability and
- USO for radio science gravity investigation
- Data rate of ~ 150 kb/s to DSN 34m at Ka-band
 - •Up to 7.3 Gb/day during Europa Science phase
- Data rate of ~ 180 uplink from lander to orbiter.
- Mono-propellant (MR-80B) Lander
- Bi-propellant (HiPAT) Orbiter
- Rad-hardened electronics
- 2 ASRG + Battery (Orbiter + Lander) •9-year lifetime

Lander Instruments						
Instrument	Mass (kg)	Power (W)	Purpose			
Raman	3	18	Study vibrational, rotational, and other low-frequency modes in a system.			
Thermal Emission Spectrometer	3	6	Collect Infrared Data and Measurements			
Mass Spectrometer	3	5	Measure mass to charge ratio of charged particles in determining masses and elemental composition of a molecule			
Panoramic Camera	1	4	Imaging of local environment.			
TOTAL	10	33				

Orbiter Instruments

	Mass Down			
Instrument	(1)	rower	Purpose	
	(kg)	(W)		
Les Donstrating	26	45	Characterize the structure and composition of the	
De der			crust down to 5km. Aid in determining interior	
Kaŭar			structure and processes.	
Lacon	5	15	High resolution mapping tool, determine the	
Altimator			origin of various surface geological structures. Aid	
Altimeter			in determining interior processes.	
Nephelometer	5	12	Measures the amount of particulate matter in the	
			air.	
Magnometer	3	4	Study the induced magnetic field.	
	- and the second	-	Plume composition and regional mapping to	
UV			surface vents.	
Spectrometer	6	5	Detect and characterize biotic and prebiotic	
	16 A	200	compounds.	
Thermal				
Emission	3	6	Collect Infrared Data and Measurements	
Spectrometer	14			
1			Composition of organic and inorganic surface	
1			materials effects of radiation sputtering nature of	
IR	16	25	evogenic materials	
Spectrometer	10	2 ₀	Drosones and characterization of histic and	
			prediotic compounds.	
Narrow Angle	11	14	Take science pictures.	
Camera				
TOTAL	72	120		

Cost in Millions				
Orbiter	\$664			
Lander	\$616			
Launch Vehicle Upgrades	\$68			
NEPA	\$22			
Total	\$1,370			
Total PI Mission Cost Cap	\$800			
Over Budget	\$570			
% Over Budget	71%			

R

C

ETE

