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A general framework based on the fluctuation-dissipation theorem has been outlined for the study of the
spontaneous thermal fluctuations in optical fibers. The goal is to seek a unified scheme to analyze the two types
of intrinsic noises found in fiber lasers and interferometric fiber-optic sensors, namely, the thermoconductive
noise and the thermomechanical noise. Some outstanding questions in the current theories are addressed. These
include: (a) the underlying relation between the thermoconductive and the thermomechanical noises, (b) the lack
of a fully disclosed theory for the thermoconductive noise in passive fibers, and (c) the low-frequency restriction
in the current theory of the thermomechanical noise. Specific analyses based on the proposed approach find
excellent agreement with existing theories.
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I. INTRODUCTION

Fiber-optic lasers and interferometric sensors have become
pervasively needed for high-sensitivity optical sensing. An
important question concerning their operation is: What sets
the fundamental limit of phase (or frequency) stability in
these instruments? Over the last two decades, overwhelming
experimental evidence has pointed to the spontaneous thermal
fluctuations of optical fibers as the primary source of intrinsic
phase noise [1–7]. Meanwhile, several theoretical models
have been proposed in an effort to understand the underlying
physics [8–15]. Most notable among them are the theories
by Wanser [9], Foster et al. [13], and Duan [14]. Recently,
Bartolo et al. have reported a thorough experimental study
on fiber thermal noises with careful comparisons with these
three theories [7]. It shows that the overall noise spectrum
results from the combination of different types of spontaneous
fluctuations. This finding motivates the present paper in which
a more unified theoretical approach is sought to describe the
different thermal noise mechanisms in optical fibers. It may
prove invaluable in the discussion of intrinsic noise sources of
fiber lasers and precision fiber-optic instruments.

Historically, thermal noise has been studied in both passive
fibers and fiber lasers. For passive fibers, early theoretical work
has focused on the thermal noise due to spontaneous local
temperature fluctuations. Such noise, as will be shown later, is
closely related to energy dissipation caused by thermal conduc-
tion. We will follow the terminology introduced by Foster [15]
and will call it thermoconductive noise throughout this paper.
Glenn first showed numerically that the thermoconductive
phase noise can exceed shot noise over a wide frequency
range [8]. Wanser later proposed an analytical form of the
thermoconductive phase noise in passive fibers [9]. Despite
being presented without a derivation, the Wanser formula has
found very good agreement with experiments in several reports
based on Mach-Zehnder interferometers (MZIs) [2,5–7].
Other authors have applied it to Fabry-Perot (FP) [10] and
Sagnac interferometers [10–12], and experiments have shown
reasonable agreement in a fiber Sagnac interferometer [3] and
a fiber-optic gyro [4]. Meanwhile, a similar thermoconductive
model has also been developed in the context of distributed-
feedback (DFB) fiber lasers by Foster et al. [13] in an
effort to clarify some of the theoretical questions surrounding

the Wanser theory. The spectral density of the temperature
fluctuations in a fiber cavity is derived by solving the Langevin
equation under a fluctuational force. The model gives a slightly
different spectral shape compared to the Wanser theory but
shows excellent agreement with experiments above 1 kHz in
both fiber lasers [13] and passive fibers [7].

A limitation of the Wanser and the Foster theories is
their asymptotic behavior at the low-frequency end. Whereas
both theories predict a nearly frequency-independent noise
spectrum below 1 kHz, data measured with both passive fibers
[7] and fiber lasers [16,17] have consistently shown a 1/f

dependence. Although there is evidence that the 1/f frequency
noise in DFB fiber lasers could be due to nonequilibrium
thermal fluctuations of the gain medium [18], the fact that
the 1/f behavior is observed in passive fibers indicates the
existence of a different type of thermal fluctuation solely asso-
ciated with fibers. Recently, thermomechanical fluctuations of
fiber length have been proposed as a possible source of fiber
thermal noise [14]. Using the fluctuation-dissipation theorem
(FDT) [19], it can be shown that such length fluctuations have
a 1/f spectral density, which can be directly linked to phase
noise in fiber interferometers or frequency noise in fiber lasers.
The recent experimental study by Bartolo et al. has shown
that combining this thermomechanical model and the Wanser
(or Foster) model leads to a theoretical thermal phase noise
spectrum that matches the experimental data from an MZI
all the way down to 30 Hz where residual intensity noise
begins to dominate [7]. A sensing noise floor reaching even
lower frequencies (infrasonic frequencies 10 mHz to 30 Hz)
has been probed by Gagliardi et al. in fiber Bragg grating FP
cavities [20]. However, proper attention should be given to the
ongoing debate over the source of the low-frequency noise in
this paper [21,22].

Despite the recent progress, several theoretical questions
remain to be answered. First, one would question if there is any
underlying connection between the thermoconductive noise
and the thermomechanical noise. The two types of noises have
been analyzed using two completely different approaches.
Their relations are not obvious based on the current theories.
Therefore, a unified theory of fiber thermal noises not only
offers an alternative perspective to the current theories, but
also is a necessary step toward understanding the interrelations
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between the different noise mechanisms. Second, despite small
differences, the two variations of the thermoconductive model
from Wanser and Foster et al., nevertheless, raise a question
in practice: Which one should we use? The Wanser theory
is more generic in the sense that it was developed based on
passive fibers. However, the lack of a derivation undermines
its utility for further discussions. The Foster theory, on the
other hand, was derived for DFB fiber lasers. Although the
result is not restricted to active systems or FP configurations,
it is, nonetheless, desirable to look for a theory completely
based on passive fibers. Finally, the current theory for the
thermomechanical noise is only valid for frequencies much
lower than the first resonance of the longitudinal vibration [14].
It is unclear how the noise behaves beyond this limit. For
fibers longer than a couple of meters, this resonant frequency
falls below 1 kHz. Therefore, it is necessary to search for an
alternative approach, which can extend the theory to a wider
frequency range.

In the present paper, we attempt to bring both types of
thermal noises under a universal framework based on the FDT.
Along the way, we seek to address the questions mentioned
above. The paper is organized as follows. In Sec. II, we will
give a brief overview of the various types of fluctuations
involved and how they are related to the FDT. In Sec. III,
we will offer a new derivation of the thermoconductive phase
noise via the FDT and will compare it with the Wanser and
the Foster theories. In Sec. IV, we will reinvestigate the
thermomechanical noise using a generalized scheme, which
may shed some light on the behavior of the noise beyond the
first mechanical resonance. Finally, in Sec. V, we will give a
theoretical prediction of the overall thermal phase noise and
will discuss the limitations of the current method.

II. A PHYSICAL OVERVIEW

Based on all the evidence available so far, three spontaneous
processes can cause the phase of the light traveling through a
fiber to fluctuate. They are as follows: (a) spontaneous thermal
expansion (STE), i.e. random extension and contraction of
the fiber caused by spontaneous fluctuations of the local
temperatures through a nonzero thermal expansion coefficient,
(b) spontaneous thermo-optic (STO) (or thermorefractive)
effect, i.e., random variations in the refractive index induced
by spontaneous fluctuations of the local temperatures, and (c)
spontaneous expansion originating from mechanical effects,
i.e., random extension and contraction of the fiber due to
internal friction (or structural damping).

Among these three processes, STE and STO both originate
from the random fluctuations of local temperatures. Even in
a global thermodynamic equilibrium, the temperature in any
real object exhibits local fluctuations. These fluctuations cause
extension and contraction of the material as well as changes in
refractive index. Because of their common origins, STE and
STO can be combined into a single parameter when relating
phase noise to temperature fluctuations [13],

Sϕ(ω) = 4π2l2

λ2

(
dn

dT
+ nαL

)2

SδT (ω), (1)

where SδT (ω) and Sϕ(ω) are the power spectral densities of
the local temperature fluctuations and the thermoconductive

phase noise, respectively, ω is the angular frequency, λ is
the wavelength in vacuum, l is the nominal length of the
fiber, n is the refractive index, αL is the linear expansion
coefficient, and T is temperature. The two terms inside the
parentheses correspond to STO and STE, respectively. The
sum of them leads to a simple proportional relation between
the thermoconductive phase noise and the local temperature
fluctuations. According to the classic theory of elasticity,
structural deformation in a solid body is coupled to local
temperature deviation through thermoelasticity [23]. This
coupling causes thermoelastic damping, which is characterized
by a frequency-dependent loss φ = 	ω τ/(1 + ω2τ 2), where
φ is the loss angle in the generalized Hooke’s law, 	 is the
relaxation strength, and τ is the relaxation time [23]. STE and
thermoelasticity are indeed two different views of the same
microscopic process. They are fundamentally linked by the
FDT. This connection has been elegantly demonstrated by
Braginsky et al. in the study of the mirror noise for the Laser
Interferometer Gravitational-Wave Observatory (LIGO) [24].

Experimentally, it has been shown that there is a second type
of internal damping widely existing in solid materials, which
shows weak-frequency dependence over broad spectral ranges
[25–27]. It is commonly called internal friction, or sometimes,
structural damping. Internal friction in a crystalline solid has
been attributed to thermally activated defect motion [28]. The
microscopic picture of internal friction in a noncrystalline
material, such as glass is not as clear, except being generally
associated with the Brownian motion [29]. However, the FDT
predicts that there exists a type of spontaneous structural
fluctuation (under the equilibrium condition) directly linked
to this damping mechanism. This is what we refer to as the
thermomechanical noise, which, so far, can only be analyzed
through the FDT.

From the discussion above, it is evident that the FDT can
provide a universal framework under which all the random
processes involved for fiber thermal noises can be treated in a
similar fashion. In the following, we will outline the general
steps for deriving a thermal noise spectral density using the
FDT.

The general expression for the FDT, according to Callen
and Greene [19], can be written as

Sξ (ω) = kBT

πω2
Re[Yξ (ω)], (2)

where Sξ (ω) is the spectral density of the spontaneous
fluctuations of an extensive parameter ξ of the system, Yξ (ω)
is the admittance function associated with ξ , and kB is the
Boltzmann constant. The FDT allows one to find Sξ (ω) through
the real part of Yξ (ω), which is the loss of the system under a
harmonic external excitation at the frequency ω. This external
excitation, denoted as F̃ (ω) here, is a Fourier component of a
generalized force F (t), which forms a Hamiltonian with ξ as
Hξ = F (t)ξ . The admittance function is related to F̃ (ω) and
ξ through

Yξ (ω) =
(

F̃ (ω)

iωξ̃ (ω)

)−1

, (3)

where ξ̃ (ω) denotes the Fourier component of ξ at the
frequency ω under the excitation of F̃ (ω). As a simple
example, we consider a mechanical oscillator with a spring
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constant satisfying the generalized Hooke’s law, Fr = −k[1 +
iφ(ω)]x, where Fr is the restoring force, k is the ideal spring
constant, φ(ω) is the loss angle, and x is displacement. It is
straightforward to show from (3) that

Yx(ω) = ωkφ(ω) + i(ωk − mω3)

(k − mω2)2 + k2φ2(ω)
, (4)

where m is mass. Substituting (4) into (2), the spectral density
of spontaneous displacement fluctuation can be written as

Sx(ω) = kBT ω2
0φ(ω)

πωm
[(

ω2 − ω2
0

)2 + ω4
0φ

2(ω)
] , (5)

where ω2
0 ≡ k/m is the angular resonant frequency of the

oscillator.
Through the above discussion, the following steps must

be taken when the FDT is used to analyze the spontaneous
fluctuations of a general variable ξ : (i) identify the generalized
force F corresponding to ξ , (ii) determine the admittance
function Yξ (ω) and its real part, and (iii) find the spectral
density of ξ directly through the FDT.

For the aforementioned three spontaneous processes in
fibers, STE and STO are both related to temperature fluc-
tuations as shown by (1). So, they can be treated together
by finding the temperature spectral density SδT (ω). The
generalized force in this case must be in the unit of entropy.
Note that STE can also be treated separately with the fiber
length as the fluctuating variable. But we have chosen not to
pursue this route for the obvious reason of combining STE
and STO in one single formula. Meanwhile, fiber length is
the variable in concern for the thermomechanical noise. The
generalized force, hence, takes the unit of actual force.

For continuous bodies, such as fibers, the main challenge of
using the FDT is how to determine Re[Yξ (ω)]. A conceptually
simple strategy is to decompose the fluctuation of ξ into the
superposition of basis functions or “normal modes” with each
normal mode representing a solution of the eigenvalue problem
for ξ [30]. This mode-expansion approach is particularly suit-
able for one-dimensional (1D) problems involving mechanical
vibrations because each normal mode can be treated as a
simple oscillator whose admittance function takes the form
of (4). The overall spectral density is simply the sum of the
spectral densities of the individual normal modes. We will
use this approach to analyze the thermomechanical noise. One
important advantage of mode expansion, when compared with
the direct method used in Ref. [14], is that it does not require
the frequency to be well below the first mechanical resonance.
This allows the theory to be extended to a wider frequency
range, as is shown in Sec. IV. As for the thermoconductive
noises, finding the admittance function for the temperature
fluctuation is a much more challenging task. Levin has outlined
a scheme that relates the real part of the admittance function to
the dissipated energy under external harmonic driving [31,32].
In Sec. III, we will solve for SδT (ω) using this method.

Before moving on to specific discussions, it should be
stressed here that, throughout this article, we use the following
Fourier transform convention:

f (t) =
∫ ∞

−∞
g(ω)e−iωtdω and g(ω) = 1

2π

∫ ∞

−∞
f (t)eiωtdt.

(6)

In addition, all power spectral densities are two sided. These
choices of conventions account for the 4π difference in
the expression of the FDT, i.e., Eq. (2), from some of the
references, for example, Refs. [14,29–32]. Ultimately, the
scale of the thermal noise spectra critically depends on
the conventions used to derive them. Unfortunately, these
conventions have not been explicitly made clear in some of the
earlier papers on fiber thermal noise. This could contribute to
some of the confusion and inconsistencies in the comparisons
between theories and experiments.

III. THE THERMOCONDUCTIVE NOISE

In this section, we intend to use the FDT to derive
the spectral density of local temperature fluctuations in a
single-mode fiber. To that end, we will follow the thought
experiment proposed by Levin [31,32] for the analysis of
the LIGO mirror noise. In order to calculate the energy
dissipation of the system, we imagine introducing a harmonic
perturbation with the general form of F0 cos(ωt)f (�r), where
F0 is a proportional factor characterizing the amplitude of the
external force and f (�r) is a form factor corresponding to
the spatial distribution of the perturbation. We then calculate
the power dissipation of the system under the external driving.
This power dissipation Wdiss is related to the admittance
function by |Re[Yξ (ω)]| = 2Wdiss/F

2
0 . Thus, the FDT can be

written as

Sξ (ω) = 2kBT

πω2

Wdiss

F 2
0

. (7)

Now, let us consider a section of single-mode fiber with
a laser beam propagating through it. The thermodynamic
temperature fluctuations in the fiber imprint a phase noise on
the transmitted light, which can be probed by a phase detector
at the end of the fiber. As pointed out in Sec. II, the perturbing
force for temperature fluctuations must be in the unit of
entropy. It is also conceivable that this entropy perturbation
must be injected throughout the beam path with the form factor
f (�r) matching the laser beam profile. This is because the laser
beam samples local fluctuations of the fiber throughout its
path, and the detected phase noise is weighted by the Gaussian
power profile of the fiber mode as illustrated in Fig. 1.

For the purpose of analysis, we assume the fiber is a straight
cylindrical glass rod extending along the z axis of a cylindrical
coordinate. The assumption of straight fiber is not absolutely
necessary though because, as long as the fiber is not sharply

l

r0

Phase detector

( , )→
T r t

b

Fiber

FIG. 1. (Color online) A conceptual model for the thermal phase
noises imprinted on a laser beam propagating through a section of
passive fiber due to spontaneous fluctuations in the fiber.
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bent, the laser mode can be treated as symmetrical around the
optical axis and uniform along the fiber. As we will see later,
these are the only requirements needed for the derivation. The
volumetric density of the injected entropy at any moment t and
any radial location r from the optical axis can be expressed as

δS(r,t) = F0

πr2
0 l

e−r2/r2
0 e−iωt , (8)

where r0 is effective radius of the Gaussian power profile
and l is the fiber length as shown in Fig. 1. Note that the
denominator is due to the normalization of the form factor
as

∫
f (�r)d3r = 1. The entropy injection creates heat, which

changes the temperature field inside the fiber through thermal
conduction. Assuming the fiber is in thermal equilibrium
at temperature T without the perturbation, following the
general theory of thermal conduction [33], the equation for
temperature variations can be written as

κ∇2δT − CV

∂ δT

∂t
= T

∂ δS

∂t
, (9)

where δT (�r,t) is the variation in the temperature field induced
by the perturbation, κ is the thermal conductivity, and CV is
the volumetric heat capacity. Since the entropy injection only
depends on r , we can substitute (8) into (9) to yield

∂2δT

∂r2
+ 1

r

∂ δT

∂r
− 1

D

∂ δT

∂t
= − iωF0T

πr2
0 lκ

e−r2/r2
0 e−iωt , (10)

where D ≡ κ/CV is diffusivity. Equation (10) is a nonho-
mogeneous heat conduction equation with a harmonic source
characterized by the term on the right-hand side, and the heat
flow only has the radial component. Such an equation can be
solved using the Green’s function method [34]. The solution
for δT (r,t) is found to be (see details in the Appendix)

δT (r,t) = iωF0T

4πlκ
e−i(ωt+ψ0)

∫ ∞

1
exp

(
iψ0ζ − r2

r2
0 ζ

)
dζ

ζ
,

(11)

where ψ0 ≡ ωr2
0 /(4D) and ζ is defined by (A7). The temper-

ature differences along the radial direction break the thermal
equilibrium. As the system tries to “relax” back to thermal
equilibrium, heat flow is generated along the direction of
−∇ δT = −∂ δT /∂r . This relaxation process via thermal
conduction causes energy dissipation, which, according to the
theory of thermal conduction [35], can be expressed as

Wdiss =
∫

κ

T
〈(∇ δT )2〉dV = κ

2T

∫
∇ δT · ∇ δT ∗dV,

(12)

where the ∗ represents the complex conjugate and the volumet-
ric integration is over the entire fiber. By substituting (11) into
(12) and introducing an independent variable of integration ζ ′
for ∇ δT ∗, the power dissipation due to thermal conduction
can be written as

Wdiss = ω2F 2
0 T

4πr4
0 lκ

∫ ∞

1

∫ ∞

1
V (ζ,ζ ′)

eiψ0(ζ−ζ ′)

ζ 2ζ ′2 dζ dζ ′, (13)

with

V (ζ,ζ ′) =
∫ b

0
exp

[
− r2

r2
0

(
1

ζ
+ 1

ζ ′

)]
r3dr, (14)

where b is the outer radius of the fiber as shown in Fig. 1.
A particularly simple expression of V (ζ,ζ ′) is obtained when
infinite cladding diameter, i.e., b → ∞, is assumed. In this
case, we find V (ζ,ζ ′) = r4

0 /[2(1/ζ + 1/ζ ′)2]. Then, (13) can
be simplified to

Wdiss = ω2F 2
0 T

8πlκ

∫ ∞

1

∫ ∞

1

eiψ0(ζ−ζ ′)

(ζ + ζ ′)2
dζ dζ ′. (15)

The double integral can be conveniently evaluated with a
change in variables as follows:

η = ζ + ζ ′

2
and η′ = ζ − ζ ′

2
. (16)

The integrals to ζ and ζ ′ are then converted to integrals to η

and η′,∫
η

∫
η′

e2iψ0η
′

4η2
|J | dη dη′ =

∫ ∞

1

dη

2η2

∫ η−1

−(η−1)
e2iψ0η

′
dη′, (17)

where |J | is the absolute value of the Jacobian, which, in this
case, is equal to 2. Now, it is straightforward to work out the
integrals. Substituting the result into (15) leads to the final
form of Wdiss,

Wdiss = ω2F 2
0 T

8πlκ
Re[e2iψ0E1(2iψ0)], (18)

where E1(x) is the special function of the exponential integral
[36]. By substituting (18) into (7), the spectral density of
the spontaneous temperature fluctuations in the fiber is found
to be

SδT (ω) = kBT 2

4π2lκ
Re

[
exp

(
iωr2

0

2D

)
E1

(
iωr2

0

2D

)]
. (19)

The actual phase noise acquired by the laser beam can be
obtained by substituting (19) into (1).

It is interesting to compare the above result with the results
obtained by Wanser [9] and Foster et al. [13]. Note that the
fiber mode here is characterized by its power profile radius
r0, which is related to the mode field radius a used by the
other authors through the relation r2

0 = a2/2. Also, rather
than assuming a fiber of unit length as in the Foster theory,
here, fiber length is kept explicit throughout the analysis. With
these considerations, it is immediately obvious that (19) is
identical to the spectral density given by Foster et al. (Eq. (27)
in Ref. [13]). It should also be noted here that the same
Fourier-transform convention has been used in Ref. [13] as
evident from Eq. (20) of the paper.

The fact that the Foster theory, which was initially derived
using the conventional statistical approach, can be reproduced
via the FDT demonstrates the feasibility of the FDT as a
universal framework for analyzing different thermal noises
in optical fibers. The analysis given above confirms that the
Foster theory is also valid for passive fibers. Moreover, it
manifests a deeper relation between the thermoconductive
noise and the thermomechanical noise. From the FDT point
of view, they simply correspond to two different channels of
internal dissipation. For the thermoconductive noise, it is the
temperature relaxation through thermal conduction, and for
the thermomechanical noise, it is the internal friction caused
by Brownian motion.
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IV. THE THERMOMECHANICAL NOISE

The spontaneous reshaping of a continuous solid body due
to mechanical damping can, in principle, be analyzed via
normal mode expansion [30]. Each normal mode can be treated
as a harmonic oscillator whose fluctuation spectral density
is given by (5). The total spectral density is the sum of the
contributions from all the individual modes as expressed by

Sξ (ω) = kBT

πω

∑
N

ω2
NφN (ω)

mN

[(
ω2 − ω2

N

)2 + ω4
Nφ2

N (ω)
] , (20)

where ωN , mN , and φN (ω) are the angular frequency, ef-
fective mass, and loss angle associated with the N th mode,
respectively. For length fluctuations, the fiber can be further
simplified to a 1D system so that only the longitudinal vibration
modes are involved. The validity of the 1D assumption has
been previously demonstrated at low frequencies [14]. Further
discussions about the limitations of this model will be deferred
to the next section. If the fiber is treated as a long thin rod along
the z axis as illustrated in Fig. 1, the longitudinal elastic wave
equation can be written as [33]

∂2uz

∂z2
− ρ

E0

∂2uz

∂t2
= 0, (21)

where uz is longitudinal displacement, ρ is the density,
and E0 is the Young’s modulus without loss. Under the
boundary conditions of two free ends at z = 0 and z = l,
the N th vibration mode is given by uzN (z,t) = wN (z)e−iωN t ,
where wN (z) = cos(Nπz/l) and ωN = (Nπ/l)

√
E0/ρ. The

effective mass for the N th mode can be obtained using the
formula [30],

mN =
∫

ρ(�r)w2
N (�r)dV = ρA

∫ l

0
w2

N (z)dz, (22)

where A is the cross-sectional area of the fiber. It immediately
becomes clear that mN = ρAl/2. Substituting ωN and mN into
(20) yields the general expression for the spectral density of
fiber length fluctuations,

Sl(ω) = 2kBT l

π3AE0ω

∑
N

φN (ω)

N2
[(

1 − ω2
/
ω2

N

)2 + φ2
N (ω)

] . (23)

For the special case of structural damping, if we treat the
loss angle as approximately frequency independent over the
entire spectral range of interest [29], the spectral density is
simplified to

Sl(ω) = 2kBT lφ0

π3AE0ω

∑
N

1

N2
[(

1 − ω2
/
ω2

N

)2 + φ2
0

] . (24)

At the low-frequency end, when the frequency is well
below the first normal mode frequency, i.e., ω2/ω2

1 � 1, the
summation in (24) reduces to

∑
N 1/[N2(1 + φ2

0)]. It can be
further simplified to

∑∞
N=1 1/N2 = π2/6 since φ0 � 1 for

glass [25–27]. Then, the spectral density becomes

Sl(ω) = kBT lφ0

3πAE0ω
. (25)

Taking into account the factor 4π caused by the use of different
conventions as pointed out in Sec. II, (25) is consistent with
the previously reported result, i.e., Eq. (4) in Ref. [14].

FIG. 2. (Color online) The dependence of the normalized noise
power, which is defined as the total noise power over the power of
the first normal mode on the cutoff order. φ0 = 0.01 is assumed in
the computation.

When the frequency is near or above the first normal
mode frequency, (24) must be used to compute the frequency
dependence of the spectral density. This, in general, has to
be performed numerically. The computation of Sl(ω) requires
a cutoff order of the normal modes to set an upper limit on
the summation. Several aspects need to be considered when
evaluating the impact of higher-order modes. One logical
criterion is the contribution of each order to the overall noise
power. This can be performed by integrating each order in
(24) over the entire frequency span. Figure 2 shows how the
total noise power, normalized to the power of the first order,
changes against the cutoff order. It is evident that further
increasing the total number of orders beyond N = 10 makes
only a small difference in the total noise power. This simple
power consideration, however, is not sufficient to characterize
the impact of each individual mode. As (24) shows, each
mode can dominate the noise spectrum near its resonance over
the total contribution from all other modes even when its share
in the total noise power is negligible. For example, the spectral
density at the qth resonant frequency can be written as

Sl(ωq)

= 2kBT lφ0

π3AE0ω1

⎧⎨
⎩

1

q3φ2
0

+
∑
N =q

1

qN2
[
(1 − q2/N2)2 + φ2

0

]
⎫⎬
⎭ ,

(26)

with the first term in the curly braces representing the peak
value of the qth normal mode and the second term representing
the sum of the rest of the modes. Taking φ0 = 0.01 and q = 10,
the first term is roughly a factor of 120 greater than the second
term. However, a close look at (26) reveals that the peak values
at the resonances decline at 1/q3, whereas the nonresonance
floor declines at approximately 1/q (see the dashed curves in
Fig. 3). As a result, the dominance of an individual normal
mode at its resonance will eventually cease as q increases.
This upper limit of the normal mode order can be found
by equating the two terms in the curly braces in (26). For
φ0 = 0.01, this leads to q ≈ 100. Practically, when only the
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FIG. 3. (Color online) The thermal phase noise spectra for red
solid line: thermoconductive noise; blue dotted line: thermomechan-
ical noise with φ0 = 0.01; and brown dotted line: φ0 = 0.1 as well
as the corresponding total phase noise for green solid line: φ0 = 0.01
and purple solid line: φ0 = 0.1.

total noise is of concern, the higher-order mechanical modes
may not play a significant role in the total noise spectrum
due to the dominance of the thermoconductive noise at high
frequencies as shown in Fig. 3. Thus, they can be dropped from
the calculation with little impact to the total noise spectrum.

V. DISCUSSIONS AND CONCLUSIONS

The overall thermal phase noise imprinted on the trans-
mitted laser beam is equal to the sum of the contributions
from the thermoconductive noise and the thermomechanical
noise, i.e.,

Sϕ(ω) = 4π2

λ2

[(
dn

dT
+ nαL

)2

l2SδT (ω) + n2Sl(ω)

]
, (27)

where SδT (ω) and Sl(ω) are given by (19) and (24),
respectively. Taking the example of a 1-m-long single-
mode fiber operating at 1550 nm under a temperature of
298 K, the following optical and thermal properties of
silica are used [7]: n = 1.457, dn/dT = 9.488 × 10−6K−1,
a = 2.605 μm, αL = 5.0 × 10−7K−1, κ = 1.37 W m−1 K−1,
and D = 0.82 × 10−6m2/s. The mechanical properties are
somewhat difficult to identify since an actual optical fiber is
a compound mechanical system consisting of a silica central
core surrounded by a concentric acrylate buffer. Experimental
results on some of the basic mechanical parameters of fibers
are not always consistent [27,37]. Here, we choose the
fiber outer radius of b = 125 μm, an averaged density of
ρ = 1430 kg/m3 [27], and a measured Young’s modulus of
E0 ≈ 68 GPa [37]. Figure 3 shows the calculated phase noise
spectra of the thermoconductive noise, the thermomechanical
noise, and the total noise. A factor of

√
2 has been multiplied

in the calculation to convert the two-sided noise spectra into
one-sided noise spectra. The thermomechanical noise has
been calculated using two different loss angles φ0 = 0.01 and
φ0 = 0.1 with φ0 kept the same across the entire frequency
span in each case. For both values of φ0, the thermoconductive

noise dominates the total noise at high frequencies (e.g.,
>1 kHz) whereas the thermomechanical noise prevails at low
frequencies (e.g., <100 Hz). Such a general behavior agrees
well with experimental observations.

The resonance peaks of the normal modes in the thermo-
mechanical noise spectra cause similar spikes in the total
noise spectra in Fig. 3. Such features, however, have not
been observed experimentally so far. This indicates possible
oversimplifications in the model for the thermomechanical
noise. One obvious limitation of the current model lies in
the assumption of a constant φ0 over several decades of
frequencies. Due to the lack of specific experimental results
about φ0 in this frequency range, we are forced to assume
φ0 = 0.01 based on a measurement performed at 75–200 kHz
[27]. Several factors may weaken or even may invalidate this
assumption. For example, measurements made with uncoated
fused-silica fibers have shown a thermoelastic loss peak
at roughly 10–1000 Hz [26]. Also, the acrylate polymer
coating of optical fibers may exhibit strong viscoelasticity
characterized by frequency-dependent loss angle and modulus
[38]. Another aspect under scrutiny is the limitation of the
1D model. By using (21)–(23), we have assumed that only
longitudinal displacements are involved in the spontaneous
extension and contraction of the fiber. A more refined model
would have to treat a fiber as a three-dimensional body and
would have to consider the lateral motions induced by the
longitudinal displacements. In this case, the inertia of the
lateral motion must be considered, and the equation of motion
is no longer (21) [39]. A similar aspect worth considering
is the excitation of the bending modes. The bending modes
do not contribute to the laser phase noise, but they provide
extra dissipation under external excitation. All these above
effects could potentially raise the loss angle over the entire, or
a portion of the, interested frequency span. Higher loss angles
would suppress the resonance peaks as demonstrated by the
φ0 = 0.1 trace in Fig. 3, and such resonance features could be
too small to be detected under realistic conditions. A complete
thermomechanical model would require a three-dimensional
treatment of a clad rod, which is out of the scope of the present
paper. Despite these limitations, 1D mode expansion is able
to offer a picture of the thermomechanical noise beyond very
low frequencies. This is, nonetheless, one step forward from
the previous model. It should also be pointed out that there
have been very few experiments that report the observation of
the 1/f noise in passive fibers so far [7,20], and some of them
are still up for debate [20–22]. Ultimately, verification of the
theoretical predictions in this frequency range likely requires
experiments specifically designed to answer these questions.

In conclusion, a unified general treatment of the sponta-
neous thermal fluctuations in optical fibers has been presented
based on the FDT. Two types of thermal noises have been
analyzed. For the thermoconductive noise, the spectral density
of the spontaneous temperature fluctuation has been derived
for passive fibers using the FDT. An identical result has been
reached as the Foster theory [13], which was developed using
the statistical method for fiber lasers. The method presented
here not only provides an alternative view of the thermocon-
ductive noise, but also offers an independent confirmation to
the Foster theory as well. For the thermomechanical noise,
a new scheme combining normal-mode expansion and the
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FDT is able to extend the discussion of this noise mechanism
to beyond very low frequencies, although a more refined
model is probably needed to explain the noise behavior
near mechanical resonances. Besides offering independent
confirmations for the existing theories, the general treatment,
based on the FDT, highlights the underlying relation between
the thermoconductive noise and the thermomechanical noise,
i.e., they are simply the manifestation of two different channels
of energy dissipation. In addition, the importance of the
Fourier-transform conventions to the comparison of noise
spectra from different theories and experiments has been
pointed out and has been demonstrated.
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APPENDIX: USING GREEN’S FUNCTION TO SOLVE
RADIAL HEAT FLOW IN A FIBER WITH A GAUSSIAN

HARMONIC SOURCE

The partial differential equation (10) can be solved in closed
form under the assumption that the fiber can be treated as an
infinitely large cylinder. This is generally a valid assumption as
the fiber-mode radius is approximately 5 μm for single-mode
fibers at the 1.5-μm wavelength region and the outer diameter
of the cladding is usually 125 μm. The Green’s function for
radial heat flow in a cylindrical thermal conductor with an
infinite radius is [34]

G(r,t |r ′,t ′) = 1

4πD(t − t ′)
exp

[
− r2 + r ′2

4D (t − t ′)

]

× I0

[
rr ′

2D (t − t ′)

]
, (A1)

where I0(x) is the zeroth-order modified Bessel function of
the first kind. The solution of (10) can be directly expressed
by the following integral:

δT (r,t) = 2πD

∫ t

−∞

∫ ∞

0
G(r,t |r ′,t ′)g(r ′,t ′)r ′dr ′dt ′, (A2)

where g(r ′,t ′) is the external excitation in (10), i.e.,

g(r ′,t ′) = iωF0T

πr2
0 lκ

e−r ′2/r2
0 e−iωt ′ . (A3)

Note that the integration range for t ′ has been changed
from the normal (0, t) to ( − ∞, t) due to the periodic
nature of the integrant. Substituting (A1) and (A3) into (A2)
yields

δT (r,t) = iωF0T

2πr2
0 lκ

e−iωt

∫ ∞

0

h (r,τ )

τ
exp

(
− r2

4Dτ
+ iωτ

)
dτ,

(A4)

where τ ≡ t − t ′ and h(r,τ ) represents the integral,

h(r,τ ) =
∫ ∞

0
J0(αr ′)e−p2r ′2

r ′dr ′, (A5)

with α ≡ ir/(2Dτ ), p2 ≡ 1/r2
0 + 1/(4Dτ ), and J0(x) denot-

ing the zeroth-order Bessel function of the first kind. The
integral of h(r,τ ) can be evaluated with the help of the
Weber’s first exponential integral [40], yielding an analytical
expression,

h(r,τ ) = 2Dτ

ζ
exp

(
r2

4Dτζ

)
, (A6)

where

ζ ≡ 1 + 4Dτ/r2
0 . (A7)

Substituting (A6) into (A4) and changing the variable of the
integral from τ to ζ lead to formula (11).
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