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The spontaneous length fluctuation of optical fibres caused by mechan-
ical dissipation is analysed using a one-dimensional model based on
the Fluctuation-Dissipation Theorem. Scale estimate shows evidence
that the 1/f thermal noise originated from this fluctuation dominates
at low frequencies in fibre interferometers and fibre cavities.

Introduction: The intrinsic thermal noise of optical fibres has long been
a focus of study in the development of fibre interferometers, fibre-optic
sensors and distributed feedback fibre lasers owing to its implications for
the fundamental phase noise limit in fibre interferometric systems [1–5].
A widely cited model of fibre thermal noise is based upon the analysis of
the random fluctuation of the instantaneous local temperature inside a
fibre [1]. It has been shown to have excellent agreement with experiment
over a broad frequency range [2]. However, a number of recent reports
have pointed out discrepancies between the thermodynamic model and
the measured data at low frequencies [3–5]. Below 1 kHz, a 1/f
frequency noise has been generally observed in fibre-optic cavities
while the thermodynamic model predicts a frequency-independent
noise behaviour. Such a fundamental disagreement indicates the poss-
ible existence of a different type of intrinsic noise that has not been
accounted for by the thermodynamic model. Previous effort to model
the 1/f noise has yet to provide conclusive evidence [6].

In the current work, we attempt to provide an alternative route towards
understanding the 1/f noise in fibre cavities. The approach is based upon
the direct use of the Fluctuation-Dissipation Theorem (FDT) [7], which
links spontaneous mechanical thermal fluctuation with mechanical dis-
sipation in solid bodies. Similar approaches have been extensively used
in the study of mirror thermal noise for the development of the Laser
Interferometer Gravitational-Wave Observatory (LIGO) [8] and have
also been applied in the evaluation of frequency stability limit of rigid
Fabry-Perot (FP) cavities [9]. To the best of our knowledge, however,
such dissipation-induced thermal noise has not been explored in
optical fibres. Compared to LIGO mirrors and rigid FP cavities,
optical fibres feature a very large aspect ratio between longitudinal
and transverse dimensions, which allows the use of a one-dimensional
(1D) model that can lead to a closed-form expression of the thermal
noise spectrum.

Fig. 1 One-dimensional model of optical fibres

Fibre treated as glass rod spanning from 2L/2 to L/2 along z-axis. Cross-section
area of fibre is A. To compute longitudinal thermal fluctuation using FDT, ima-
ginary periodic forces F0cosvt and 2F0cosvt are applied onto two ends of the
fibre along the z-axis

Model of fibre thermal fluctuation: We shall first derive a general
formula for the spontaneous fluctuation of fibre length. To this end,
we directly use the FDT formulated by Levin [8]:

Sx( f ) = 2kBT
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where Sx( f ) is the spectral density of the thermal fluctuation of a spatial
variable x (e.g. the displacement of a mirror surface), f is frequency, kB is
Boltzmann’s constant, T is the temperature of the body under study, F0

is the amplitude of an external oscillating force that drives x, and Wdiss is
the energy dissipation rate of the body under this force. In the current
case, the longitudinal deformation of the fibre is the variable of interest.
If a fibre is treated as a long thin homogeneous glass rod, to the first-
order approximation, the only elastic vibration involving the change of
total length is the longitudinal vibration [10]. As a result, the fibre can
be treated as a 1D object. We can further simplify the model by assum-
ing the fibre is straight and choosing a co-ordinate system as shown in
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Fig. 1. To evaluate Wdiss, we artificially apply two harmonic forces uni-
formly on the two ends of the fibre with the same amplitude but exactly
opposite phase. These forces create periodic longitudinal deformation
without altering the position of the centre of gravity and hence serve
as valid driving forces in the study of fibre length fluctuation [8].

With the above 1D configuration, it is straightforward to solve the
wave equation for a longitudinal elastic wave driven by the external har-
monic forces in the absence of loss [10]. The maximum density of elastic
energy due to the driving forces is

Emax(z) =
F2
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where E0 is the Young’s modulus without loss and k = 2pf
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the wave propagation constant, with r being the material density and
vl =
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E0/r

√
the speed of sound. When mechanical dissipation is

present, the Young’s modulus has to be written in a complex form,
E = E0[1 + if( f , z)], where loss angle f( f , z) characterises the mech-
anical dissipation and in general depends on both frequency and pos-
ition. However, it has been found that the loss angles for most
common materials (including glass) have very weak frequency depen-
dence over a wide range of frequencies [7]. We further assume homo-
geneous dissipation throughout the fibre so that f( f , z) can be
replaced by a constant f0. The total energy dissipation rate can be
related to the loss angle and the elastic energy by
Wdiss = 2pf f0

�
Emax(z)dV , where the volumetric integration is over

the entire fibre. By using (2) and the low frequency condition (i.e.
small kL), the energy dissipation rate is found to be

Wdiss ≃
pf f0LF2

0
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Substituting (3) into the FDT (1), the spectral density of the spontaneous
fibre length fluctuation can be written as

SL( f ) = 2kBTLf0

3pE0A
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f
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It must be noted here that (4) is valid only for small kL, which means the
fluctuation of concern is much slower than the time it takes for the sound
wave to travel across the length of the fibre, i.e. L/vl ≪ 1/f .

Scale of thermal noise: According to (4), the thermal fluctuation of fibre
length due to mechanical dissipation has a 1/f characteristic (at low
frequencies). The length fluctuation leads to a 1/f phase noise in fibre
interferometers or a 1/f frequency noise in fibre cavities. The scale of
this thermal noise can be estimated by using typical parameters of sin-
glemode (SM) fibres. However, an actual optical fibre is not a homo-
geneous glass rod. Instead, it consists of a silica inner rod (core and
cladding), 125 mm in diameter for a typical SM fibre, and a concentric
acrylate buffer layer with a 250 mm outer diameter. Using a lumped-
element model, it has been shown that the effective overall Young’s
modulus of SM fibres is 19.0 GPa [11]. Meanwhile, experimental data
for the effective loss angle of SM fibres are available between 75 and
200 kHz, which are approximately 1 × 10−2 [11]. Although there is
no direct evidence that this value is valid at frequencies below 1 kHz,
since many materials (e.g. glass) display a frequency-independent loss
over a broad frequency range [7], we nonetheless assume
f0 ≃ 1 × 10−2 for the sake of making a numerical estimate. From
(4), we can compute the spectral distribution of the length fluctuation
amplitude, d̃L( f ) ;
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, at room temperature. Fig. 2 shows d̃L( f )

from 1 Hz to 1 kHz with fibre lengths of 0.1, 1, and 10 m. The
thermal phase noise caused by the length fluctuation can be obtained
with d̃f( f ) = 2pd̃L( f )/l. For instance, with L = 10 m and
l = 1300 nm, d̃w ≃ 1.5 × 10−7rad/Hz1/2 at 100 Hz, which is compar-
able to or above the shot noise-limited minimum detectable phase shift
[1]. This indicates the possibility that dissipation-induced thermal phase
noise becomes the dominant noise in fibre interferometers at low
frequencies.
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Fig. 2 Spectra of spontaneous length fluctuation of optical fibres, with
various fibre lengths L ¼ 0.1, 1, 10 m

In the case of fibre cavities, the change of fibre length results in the
variation of the resonance frequencies. The spectral density of the
thermal frequency noise is related to the length fluctuation by
Sn( f ) = (n/L)2 × SL( f ), where n is the optical resonance frequency.
In distributed feedback fibre lasers, the laser cavities, which are
formed by fibre Bragg gratings, can be approximately viewed as FP cav-
ities with an effective cavity length Lc determined by the grating par-
ameters. Using typical values of Lc = 1cm and l = 1550nm, we can
estimate the thermal frequency noise of such lasers at low frequencies
as

������
Sn( f )

√
≃ 187 × f −1/2 Hz/Hz1/2. This appears to fall into a

similar scale as the 1/f frequency noise discussed in [4] and [5].
Thus, the 1/f noise widely observed in distributed feedback fibre
lasers may have been caused by the slow fluctuation of fibre cavity
length due to mechanical dissipation.

Conclusion: A 1D model offers clear evidence that thermal noise due to
mechanical dissipation in optical fibres can be the dominating intrinsic
noise at low frequencies in fibre interferometers and fibre cavities.
Future work will focus on the development of a 3D model, which
takes into account the effects of bending and fibre structure.
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