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Locking lasers with large FM noise to high-Q
cavities

Lingze Duan and Kurt Gibble
Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802

Received August 12, 2005; accepted August 25, 2005

We demonstrate that a laser can be directly locked to a cavity when the laser linewidth is much greater than
the cavity linewidth. We lock an external-cavity diode laser with more than 1 MHz of added frequency noise
to a 3.5 kHz wide cavity resonance. Our analog servo acquires lock even though the laser frequency sweeps
through the cavity resonance in less than the cavity buildup time. Our theoretical analysis fully describes
our measurements and explains why lock can be acquired. © 2005 Optical Society of America
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Optical-frequency atomic clocks and experiments to
detect gravitational radiation rely on precisely
matching a laser’s frequency to the resonant fre-
quency of a passive optical cavity.1,2 Passive cavities
currently have quality factors greater than 1011, and
lasers locked to such cavities generate the most-
stable frequencies.3 When locking is to a narrow cav-
ity the free-running laser linewidth may be much
greater than the cavity linewidth, so the laser fre-
quency sweeps through the cavity resonance in less
time than it takes for light to build up in the
cavity.4–6 This leads to severe distortions of the error
signal that is used to control the laser frequency, sug-
gesting that a conventional servo cannot acquire
lock.6 This difficulty has been avoided by first locking
to a prestabilization cavity whose linewidth is
slightly smaller than the laser linewidth.3,6 Here we
show that error signal distortions in fact do not in-
hibit lock acquisition for narrow cavities and analog
servos. Thus prestabilization cavities may be unnec-
essary for some experiments and, for others, can
have a higher Q to better attenuate the frequency
and amplitude noise of the transmitted light.

We lock an external-cavity diode laser to a cavity
with a linewidth of 3.5 kHz, using a conventional
servo. A series of experiments has locked diode lasers
to successively narrower cavity resonances, as nar-
row as 9 kHz.7,8 As cavity linewidths become nar-
rower, the distortion threshold goes down quadrati-
cally. Our cavity resonance is almost a factor of 3
narrower than the previous best, leading to a distor-
tion threshold that is seven times lower for the same
laser noise.5 Here we intentionally added large laser
frequency modulation ��1 MHz� so we can clearly as-
sess lock acquisition in this regime. Previous re-
search for gravity wave detectors analyzed the linear
motion of mirrors in the time domain by solving dif-
ferential equations.4–6 To correct for the large veloci-
ties of suspended interferometer mirrors, a real-time
(digital) analysis of the error signal distortions was
used to acquire lock.2,4,5 Here we analyze this regime
experimentally and theoretically in the frequency do-
main. Our analytic solution shows that, even for
large distortion, the error signal is appropriate for a
conventional analog servo to acquire lock. We first de-
scribe our calculation and measurement of the error
signal and show that they agree well. We then experi-

mentally and theoretically analyze the magnitude
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and phase of the error signal at the frequency of the
noise.

We lock lasers to a cavity with the widely used
Pound–Drever–Hall (PDH) technique.9 It provides a
high signal-to-noise ratio and a large bandwidth. To
analyze the lock acquisition, we treat our real laser,
shown in Fig. 1, as an ideal laser to which frequency
noise is added.11 We decompose the laser frequency
noise into its Fourier components at frequency �. In
Fig. 1, the 780 nm light from laser 1, after passing
through a 2 m optical fiber, acquires frequency side-
bands in an electro-optic phase modulator, EOM1.
Some of the light may be resonant with the cavity,
and the incident light reflected from the cavity inter-
feres with the light coming out of the cavity.9

The electric field at photodiode PD1 is E=�m,n��
+m�EO+n��Jm����Jn��� exp �−i��+m�EO+n��t� / ��
+m�EO+n�+ i���, where � is the detuning from the
cavity resonance; �=2�fn and � describe laser fre-
quency noise f�t�= fFM cos��t�, with �= fFM/ fn; the cav-
ity linewidth is ��=2���; and �EO and �� are the
phase-modulation frequency and depth of EOM1
with �EO	��. We take �� to be small, the mirrors to
be highly reflective, and all frequencies to be much
less than the free spectral range.10

The PDH error signal SPDH comes from mixing the
photodiode current, proportional to E*E, with
sin��EOt� and then low-pass filtering.9 With no fre-

Fig. 1. We treat the real laser 1 as an ideal laser with
added phase noise. We lock it to a high-finesse cavity after
it passes through an optical isolator, acousto-optic modula-
tor AOM1, a 2 m optical fiber, and an electro-optic modula-
tor. The light reflected from the cavity is detected on pho-
todiode PD 1. Laser 2 is phase locked to laser 1 via PD 2
and scanned over the cavity resonance with AOM 2. EOM 1
and EOM 2 operate at 56 and 72 MHz, and servos 1 and 2

have bandwidths of 2 and 4 MHz, respectively.
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quency noise ��=0�, the zero-frequency (dc) signal is
2 2
SPDH=����� / �� +�� �. In the presence of noise, we

linewidth in a cavity lifetime.
take the laser frequency to be bounded around and
centered on the cavity resonance ��=0�, yielding
SPDH = 2�� �
p,k=0




Jk−p���Jk+p+1����2k + 1����

�
��k − p��k + p + 1��2 + ��2�cos��2p + 1��t� + �2p + 1���� sin��2p + 1��t�

��k − p�2�2 + ��2���k + p + 1�2�2 + ��2�
. �1�
Equation (1) gives the general SPDH for high and low
fn and large and small FM noise depths.

After locking laser 1 to our cavity, we measure
SPDH with laser 2 by scanning it over an adjacent cav-
ity mode. We remove the frequency noise of laser 2 by
phase locking it to laser 1 with a frequency offset
(240 MHz), using servo 2 (Fig. 1). We scan laser 2
over a cavity resonance by modulating the frequency
of an acousto-optic modulator, AOM 2, using a direct
digital synthesizer. AOMs 1 and 2 operate near 112
MHz such that the laser frequencies at the cavity are
separated by one free spectral range of 464.59 MHz.
Our cavity’s linewidth is ��=3.46 kHz.

We modulate the frequency of AOM 2 at frequen-
cies fn=� /2�=0.8, 4, and 10 kHz, with FM depths
fFM�2 MHz. In this way we measure SPDH for sinu-
soidal noise in laser 2. In Fig. 2 we show SPDH for fn
=0.8, 10 kHz and several noise depths fFM. The mea-
sured (solid) and calculated [from Eq. (1), dashed]
curves agree well.) For all SPDH we use a single factor
for the photodiode and amplifier gains, a single time
offset for each fn and a dc offset for each curve.

The data in Fig. 2 span seven regions of the re-
sponse of SPDH, which we show in Fig. 3. These seven
regions show five distinct behaviors, which we now
discuss, with smooth transitions among all regions.
Two of the behaviors are in the well-known operating
range when the laser is locked.9 In regions 1L and 1H
the noise is small ���1� and Eq. (1) simplifies to

SPDH � ��fFM

�� cos��t� + fn sin��t�

fn
2 + ��2

. �2�

In Figs. 2(a) and 2(b) the measured SPDH is sinu-
soidal for fFM=0.8 and 10 kHz with a phase lag of
tan−1�fn /���.

In regions 3dc and 2L, any low-frequency noise can
have a large phase-modulation index � because �
= fFM/ fn. For fFM=3.2 kHz��� in region 2L, some dis-
tortion occurs in Fig. 2(a) because the dc response
SPDH=����� / ��2+��2� is not linear in � as the fre-
quency scans back and forth over ±fFM. The distortion
increases as fFM (and �) grows, moving from 2L to 3dc.

In region 3L the low-frequency response of SPDH is
more interesting when the FM depth is so large that
the laser frequency changes by more than the cavity
When frequency velocity v�= �̇ /��2	1, the distor-
tions are large.4–6 In Fig. 2(a) v�=0.85 for fFM
=12.8 kHz shows the onset of a fast beat between the
sweeping incident light and the field stored in the
cavity.4–6 The distortions increase as v� goes to v�

�50 for fFM=819.2 kHz.
In region 3H, the distortion is also large for large

fFM and high fn in Fig. 2(b). For fFM larger than those
in Fig. 2(b), the distortions are similar to those for
fn��� and v��1. However, fn��� means that the

Fig. 2. PDH error signal SPDH for a cavity linewidth of
3.46 kHz and noise at (a) fn=0.8 kHz with depths 0.8, 1.6,
3.2, 6.4, 12.8, 51.2, 204.8, and 819.2 kHz and (b) fn
=10 kHz and noise depths 10, 20, 40, 80, and 200 kHz. Ex-
periment (solid) and theory (dashed) agree well. The theory
curves include the 16.34 kHz pole of the low-pass filter. For
(a) fFM=12.8 kHz corresponds to v�=0.85, and v� increases

linearly with fFM.
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laser frequency returns to the cavity resonance in
less than a lifetime, so v� is not meaningful.

Given the severe distortions for large v� or � in Fig
2, does SPDH have a magnitude and a phase that will
allow a servo to acquire lock? To answer this question
we analyze the magnitude and phase of SPDH,0, the
Fourier component of SPDH at noise frequency fn; this
is the p=0 term in Eq. (1). In Fig. 4 we show the mag-
nitude and phase of SPHD versus fFM or � for several
fn. There are four distinct behaviors for small and
large fn and fFM. For small fn and fFM, SPDH,0 is given
by Eq. (2). It increases linearly with fFM and has a
small phase shift. For small fn and large fFM, SPDH,0
decreases as 1/ fFM, and the phase shift goes to 0 for
large �. Here, Eq. (1) reduces to SPDH,0
�2���� cos��t� / fFM, where the sidebands near the
turning points of the frequency sweep dominate.
Therefore, SPDH,0 is entirely independent of v�. Be-
cause the magnitude falls slowly for large fFM and the
phase lag is small for all fFM, a servo can use SPDH,0
to acquire lock when fn���.

For large fN, there are three distinct behaviors. For
small � , SPDH,0 is again given by Eq. (2) and is pro-

Fig. 3. Regions of the response of Pound–Drever–Hall er-
ror signal SPDH as a function of noise frequency fn and
noise depth fFM, scaled by cavity linewidth ��.

Fig. 4. (a) Magnitude and (b) phase of SPDH at noise fre-
quency �=2�fn as a function of noise depth fFM and �
= fFM/ fn for fn /��=0.23, 1.15, 2.9, 10, 100. Data points are
squares (circles, diamonds) for fn /��=0.23 (1.15, 2.9). The
response falls for large FM depths at all fn. For fn���, the
phase oscillates between a phase lag and a phase lead for
��2.
portional to the amplitude of the FM noise. For most
large �, the leading p=0 term in Eq. (1) is due to the
carrier and first-order sidebands, SPDH,0
�2��J0���sin��t�. It decreases as 1/ fFM�1/�� and
changes sign for every increase of � by �/2. Therefore
the phase of SPDH,0 in Fig. 4(b) regularly switches
from the usual phase lag of nearly � /2 to a phase
lead of nearly � /2. For large �, the minimum magni-
tude of SPDH,0 in Fig. 4(a) is that given above for
small fn and large fFM. Because the phase lag never
exceeds ±� /2, a servo can capture lock.

To demonstrate that a laser with large frequency
noise can acquire a lock to the cavity, we add noise
with fFM�1.5 MHz, much greater than our free-
running laser 1 linewidth, over the full interesting
range of fn. Our capture range of fFM�1.5 MHz is
larger than a prediction from Fig. 4.11 We note that
odd harmonics of � contribute to the gain at �. This
nonlinearity is not included in Fig. 4.

We have demonstrated that a noisy laser can be
locked directly to a high-Q cavity, even for large v�.
Large FM noise distorts the Pound–Drever–Hall er-
ror signal, but the response at the noise frequency
falls slowly for large FM noise, and its phase is
bounded near 0. Therefore a conventional servo can
acquire lock directly to a high-Q cavity. A high-Q pre-
stabilization cavity strongly filters the frequency and
intensity noise of the transmitted light. Thus the cav-
ity transmission, and possibly thermal effects limits
the finesse. Current mirrors offer a finesse of 105

with 50% cavity transmission.
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