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ABSTRACT

The “missing baryons” of the near universe are believed to be principally in a partially ionized state. Although
passing electromagnetic waves are dispersed by the plasma, the effect has hitherto not been utilized as a means of
detection because it is generally believed that a successful observation requires the background source to be highly
variable, i.e., the class of sources that could potentially deliver a verdict is limited. We argue in two stages that this
condition is not necessary. First, by modeling the fluctuations on macroscopic scales as interference between wave
packets, we show that, in accordance with the ideas advanced by Einstein in 1917, both the behavior of photons
as bosons (i.e., the intensity variance has contributions from Poisson and phase noise) and the van-Cittert-Zernike
theorem are a consequence of wave-particle duality. Nevertheless, we then point out that, in general, the variance
on some macroscopic timescale τ consists of (1) a main contributing term ∝1/τ , plus (2) a small negative term
∝1/τ 2 due to the finite size of the wave packets. If the radiation passes through a dispersive medium, this size will
be enlarged well beyond its vacuum minimum value of Δt ≈ 1/Δν, leading to a more negative (2) term (while
(1) remains unchanged), and hence a suppression of the variance wrt the vacuum scenario. The phenomenon, which
is typically at a few parts in 105 level, enables one to measure cosmological dispersion in principle. Signal-to-noise
estimates, along with systematic issues and how to overcome them, will be presented.
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1. INTRODUCTION

The whereabouts of baryons in the low redshift universe
remains a major unsolved problem of cosmology. While at
higher redshifts of z � 2, observations of the Lyα Forest and the
Gunn–Peterson trough (Rauch 1998; Becker et al. 2001) reveal
an adequate amount of baryons, the marked ∼50% deficit at
z � 1 between the observed density and that expected from
nucleosynthesis and the standard cosmological model (Burles
& Tytler 1998; Ade et al. 2013; Komatsu et al. 2011) was pointed
out previously by Fukugita et al. (1998). Contemporaneously,
two other papers, Cen & Ostriker (1999) and Davé et al.
(2001), conjectured by cosmological hydrodynamic simulations
that the missing baryons in question may have taken refuge
in the temperature and density regimes of 105–107 K and
10−4–10−6 cm−3, as “warm” intergalactic gas in this part of
parameter space is difficult to trace for many reasons (such as
Galactic absorption of the emitted radiation or the gas may have
an unusual composition or ionization state).

Nevertheless, because the models predicted a convergence of
warm “filaments” onto the outskirts of clusters of galaxies, the
largest bound systems in the universe that were formed from the
collapse of primordial density fluctuations (Press & Schechter
1974; White & Rees 1978), there has been an intensified search
campaign with nearby clusters as the focal point. The bulk of the
X-ray and Sunyaev–Zeldovich measurements to date (Vikhlinin
et al. 2006; Afshordi et al. 2007; Arnaud et al. 2007; Sun et al.
2009; Ettori et al. 2009), with the notable exceptions of Landry
et al. (2013) and Simionescu et al. (2011), reveal that the mass
ratio of baryons-to-total matter falls below the value predicted
by the standard model, thereby providing an “inside out”
perspective to the existence of baryons beyond the cluster’s virial
radius. In addition to being “warm,” most recently, hints that
dark matter is self-interacting, and hence exhibiting “baryonic”
characteristics, are pointed out by e.g., Zavala et al. (2013). One
way or another, it is clear that the “missing baryon” syndrome

persists, and the evidence uncovered has been circumstantial at
best, with the only report of a direct detection thus far being the
soft X-ray and EUV “excess” emission at ∼106 K from cluster
halos (Mittaz et al. 1998; Bonamente et al. 2002).

Turning to the question of observational techniques, since
most of the baryons at z � 1 (and even higher z ) are par-
tially ionized, any electromagnetic radiation passing through
the intergalactic medium is expected to be dispersed by them,
to varying degrees, depending upon the radiation frequency. In-
deed, the measurement of dispersion of radiation from a distant
source would provide the most reliable means of determining
the line-of-sight column density of all ionized gas components.
However, it is generally thought (but not proven) that for the
method to succeed there must be a “benchmark,” or reference,
signal to enable one to measure the differential dispersive delay
of the various Fourier components constituting the distant emis-
sion, and this will exist only if the source is periodic and fast,
i.e., a pulsar.

Indeed, while pulsars are a powerful tool for mapping the
distribution of Galactic baryons, the fact that they have hitherto
not been detected at cosmological separations means that
nothing can be done to scales beyond the Local Group. In fact, on
such distance scales, the majority of the sources seen are quasars,
which are, for this purpose, steady sources. Note that the very
exciting results on fast radio bursts of possible extragalactic
origin, viz. the confirmation by Thornton et al. (2013) of the
earlier findings of Lorimer et al. (2007), may represent a change
of the observational situation. Nevertheless, the absence of
redshifts from this new class of sources renders it difficult
to convert dispersive column densities of their intervening
intergalactic media (IGM) into average volume densities out
to some specific depths; see Mcquinn (2013). Even if a means
of ascertaining distances is in hand, a detectability analysis by
Lorimer et al. (2013) indicates that such sources may only be
seen out to redshifts of z � 0.5 by surveys below 1 GHz.
There is also the ambiguity introduced by intrinsic dispersion
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at the source itself, as pointed out by Mcquinn (2013), which
is not yet well understood for radio transients. Quasars, on the
other hand, have been extensively studied from this viewpoint.
As can be seen in, e.g., Figure 1 of Elvis (2002), ≈40%–45%
of AGNs show no evidence of warm ionizing absorbers. Since
from McKernan et al. (2007) the lowest detectable ionizing
(H ii) column of warm absorbers is ≈1020 cm−2, which is well
below typical IGM values even to nearby quasars, this means
that a good fraction of quasars can be reliable probes of the IGM
baryons if there is a way of inferring line-of-sight dispersion to
such relatively steady sources.

In spite of all the above, we argued in a recent paper (Lieu &
Duan 2013) that even the electromagnetic radiation of a steady
source could carry imprint signatures of dispersion in a way
that enables one to also recover the total line-of-sight column
density of the ionized baryons. The imprint is embedded and
can be uncovered only after a careful analysis of the statistical
properties of the fluctuations in the arriving radiation, which
are slightly different from normal undispersed radiation. In this
paper, we intend to discuss in detail the difference and how one
might detect it.

The premise of our work is the observation of Einstein
(1917), developed subsequently by Purcell (1956), Hanbury-
Brown & Twiss (1957), and Mandel (1958), that the variance
of photon number fluctuations comprises Poisson and phase
noise components, due, respectively, to the particle and wave
nature of radiation. Indeed, as explained in Lieu & Duan (2013),
the wave packet approach to radiation can account for not
only the coherence length, or spatial extent, of interference
fringe patterns (viz. the van Cittert-Zernike theorem, see, e.g.,
Section 10.4.2 of Born & Wolf (1970)) even in the single photon
limit, but also why this length is not affected by dispersion.
Here we will show by modeling photons semi-classically as
wave packets that the fluctuations of chaotic light from a steady
source are fully consistent with Bose–Einstein statistics, i.e.,
our model is robust as it yields the same results as those from
a formal quantum description of light. In the course of the
analysis, it will become apparent that there exists a higher order
distortion of the variance due to the finite size of the wave packet.
The effect is more severe when dispersion by the medium of
propagation stretches this size, and herein lies the imprint of
the medium. Since we ignored quantum vacuum corrections, it
must be emphasized that the approach we adopted is valid in the
classical domain when the time and length scales of interest far
exceed the wave packet.

2. THE SOURCE

Consider first the radiation at the source, assumed to be at
x = 0. Let us suppose that it comprises a sequence of wave
packets, each of the form

Φ(t, 0) =
∑

j

g(t − tj )eiϕj , (1)

where the emission times tj are randomly distributed with a
constant rate of λ pulses per unit time, and the phases ϕj

randomly distributed between 0 and 2π . Here λ may also be
interpreted as the number of photons arriving at the detector
per unit time. In other words, during a long interval texp
of exposure to the source, the expected number of photons
entering the detector is λtexp. However, there is no one-to-one
correspondence between the two sides, i.e., one cannot say

which of the photons emitted corresponds to which of those
detected.

Next, we can reasonably assume that
∫

dt g(t) = 0. Let us
define

G(t) =
∫

dt ′ g(t ′)g∗(t − t ′), (2)

or equivalently in terms of Fourier transforms

G̃(ω) =
∫

dt G(t)eiωt = |g(ω)|2. (3)

Since the rate λ is uniform, averages such as 〈Φ(t)Φ∗(t ′)〉 or
〈I (t)I (t ′)〉 where I (t) = |Φ(t)|2 are functions only of the time
difference t − t ′. Explicitly, because the emission times tj are
uncorrelated, we need only consider correlations of each wave
packet with itself, so

〈Φ(t, 0)Φ∗(t ′, 0)〉 = λG(t − t ′). (4)

That is equivalent to saying that the Fourier components of Φ
with different frequencies are uncorrelated:

〈Φ̃(ω)Φ̃∗(ω′)〉 = 2πλδ(ω − ω′)G̃(ω), (5)

where 〈 X〉 refers to the average value of X over a time period
much longer than the duration of the wave packets. In particular,
the relation

〈I (t)〉 = λG(0) (6)

is obtained by setting t = t ′.
We turn to the intensity correlation function. Here we have a

product of four fields, each of which is a sum, as in Equation (1).
Any contribution where one tj appears in only a single factor
will always vanish. There are therefore two distinct types of
contribution we need to consider. First, we have those from
pairwise correlations in which two photons j, k (j 
= k)
contribute. In the limit of large λ (i.e., λ � δν, the width of
the distribution G̃) where there is strong overlap between wave
packets, this is the dominant contribution. It is

〈I (t)I (t ′)〉 = λ2[|G(0)|2 + |G(t − t ′)|2], (7)

or equivalently,

〈I (t)I (t ′)〉 − 〈I 〉2 = λ2|G(t − t ′)|2. (8)

So in the large-λ limit, we have

〈I 2(t)〉 = 2λ2|G(0)|2 = 2〈I 〉2, (9)

and the standard deviation in the intensity equals the mean
intensity (if the source is exposed to the observer for a total
time texp, so that the total number of photons is some large
number λtexp, then, strictly speaking, the omission of the j = k

term would mean replacing λ2t2
exp by λtexp(λtexp − 1), but that

correction is negligible if λtexp � 1). Note also that the mean
value 〈Φ(t)Φ(t ′)〉 will vanish when the random phases are taken
into account.

The second type of contribution comes from the case j = k
where all four wave packets are the same. That term is the
dominant one in the opposite limit of small λ. It is

〈I (t)I (t ′)〉 ≈ λ

∫
dt ′′ |g(t + t ′′)|2|g(t ′ + t ′′)|2. (10)

In either case, the correlation function depends only on the time
difference and will tend to zero when t − t ′ is much larger than
the width of the function G(t) (or of g(t)).
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3. A DISTANT OBSERVER AND
GAUSSIAN WAVE PACKETS

We treat the propagation of radiation from an unresolv-
able point source to a small telescope as principally a
one-dimensional problem k = (k, 0, 0) by ignoring the dynam-
ics of the wave packet in the y and z directions. Although disper-
sion broadens the wave packet predominantly along x, another
effect—scattering—does so in all directions. However, as will
be discussed in the end of Section 4, for the purpose of this
paper, scattering is negligible in the radio and even more so at
shorter wavelengths.

Let the observer be located at some distant point x. Clearly,
for a uniform medium of propagation,

Φ(t, x) =
∫

dω

2π
Φ̃(ω)e−iωt+ik(ω)x. (11)

This is equivalent to saying that the photon pulse shape function
g̃(ω) is modified by the effect of dispersion

g̃(ω) → g̃x(ω) = g̃(ω)ei[k(ω)−ω/c]x, (12)

where the final factor allows for the time development in the
absence of dispersion. Note that from Equation (3), this means
that G(t) is unaffected by dispersion. It immediately follows
that there is no change in the correlation function of Φ, given
by Equation (4). Hence, the coherence length of the radiation,
defined as the spatial extent of the interference pattern and not
the size of the wave packet (see the end of Section 1), is invariant
wrt dispersion, as is the large-λ contribution to the intensity
correlation function given by Equation (7) or (8). For more
elaboration on the coherence length and its invariance, see the
end of Section 2 of Lieu & Duan (2013). We shall return to the
effect of dispersion on the small-λ contribution (Equation (10))
below.

To proceed further, it is convenient to choose a particular
form for the function g. Specifically, we shall assume that it
is a monochromatic beam modulated by a Gaussian envelope
function, i.e., a superposition of Fourier components spanning
the frequency range δν at ν

g(t) = ae−iω0t e−t2/2(δt)2
, (13)

where a, ω0 = 2πν, and

δt = 1√
2δω

= 1

2
√

2πδν
(14)

are constants. It follows that

g̃(ω) =
√

2πaδte−[δt(ω−ω0)]2/2. (15)

In this way, a detected photon of chaotic light is treated
classically as a pulse emitted by the source which lasts about
the reciprocal of the larger of the two bandwidths, the receiver’s
and the source’s. Dispersive propagation does not alter the pulse
spectrum but can lengthen the pulse duration after emission. The
fact that we took 1/δν as the intrinsic pulse width, where δν is
the receiver’s bandwidth, means that the source’s emission is
presumed to span a larger range of frequencies than allowed by
the observer’s filter. This seems to be reasonable in the radio,
apart from possibly coherent emission from compact sources
like pulsars (Cordes 1976), since our proposed bandwidth is
narrow (dν/ν ∼ a few ×10−5; see Equation (21)) and radio

sources tend to have continuum spectra. The same is true in
the optical provided one avoids the very narrow, dν/ν < 20%,
emission lines, because our recommended dν/ν is ≈1/6 from
the words below Equation (35).

After dispersion, this becomes

g̃x(ω) =
√

2πaδte−[δt(ω−ω0)]2/2ei[k(ω)−ω/c]x. (16)

Let us assume that the dispersion effect is only slightly nonlinear,
i.e., k(ω) in the neighborhood of the peak frequency ω0 is
approximately a quadratic function3 of ω:

k(ω) = ω

c
+

1

2
β(ω − ω0)2. (17)

Note that c here does not have to be the speed of light in vacuum.
It should represent the velocity of a monochromatic wave of
frequency ω0 in the medium of interest. Thus, g̃ becomes

g̃x(ω) =
√

2πaδt exp −1

2
[(δt)2 − iβx](ω − ω0)2. (18)

Since the effect of dispersion is purely in a phase factor, it does
not affect the mean value of the intensity, which is

〈I 〉 = √
πλδt |a|2. (19)

Turning to the intensity correlation function, including both the
λ2(δt)2 and λδt terms of Equations (8) and (10), it is

〈I (t)I (0)〉 − 〈I 〉2 = λ2|a|4
∣∣∣∣δt

∫
dω e−iωt e−[δt(ω−ω0)]2

∣∣∣∣
2

+
λ|a|4
1 + ξ 2

∫
dt ′e−[(t ′+t)2+t ′2]/[(δt)2(1+ξ 2)]

= 〈I 〉2

{
e−t2/[2(δt)2] +

1

λδt
√

2π (1 + ξ 2)
e−t2/[2(δt)2(1+ξ 2)]

}
,

(20)

where the dispersion stretch factor ξ = βx/(δt)2 may be written
in the context of a uniformly expanding universe as

ξ = 8.89

(
δν/ν

4.22 × 10−5

)2 ( ν

109 Hz

)−1

×
( ne

10−7 cm−3

)(
�

1 Gpc

)
, (21)

with � being the comoving generalization of the propagation
distance x, and ne the mean line-of-sight intergalactic plasma
density to the source (see Section 3 of Lieu & Duan 2013,
where it is also shown in a table that, away from the Galactic
disk directions and neglecting sources with unexpectedly large
intrinsic ionized columns, the intergalactic medium dominates
the column density ne� to a quasar).

Note that Equation (20) was derived in the context of co-
herent pulses of radio waves (not photons) by another au-
thor, as Equation (12) of Cordes (1976). Moreover, in the
t � δt

√
1 + ξ 2 limit, a simplification was noted by the au-

thor in Equation (B6) of Appendix B. When the pulses are as

3 The approximation is correct in the context of plasma dispersion provided
δν � ν; see the discussion before Equation (3) of Lieu & Duan (2013).
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“microscopic” as photons, however, this limit is actually non-
classical because the Heisenberg Uncertainty Principle for finite
ξ is ΔνΔt ∼

√
1 + ξ 2. We shall henceforth use Equation (20)

to predict observable imprints of dispersion by focusing our at-
tention upon intensities measured over timescales � δt

√
1 + ξ 2

where our hitherto classical treatment of radiation applies. There
are two limiting scenarios to discuss. The first is a typical radio
passband with λδt � 1, and the second is the visible band (or
beyond) with λδt � 1. In each case, the signal is also mixed
with noise in different proportion.

4. RADIO OBSERVATIONS

Thus far, we considered a purely signal-limited source detec-
tion environment. In radio telescopes, there also exists a system
noise that can be converted to an equivalent photon counting rate
of μ via the gain of the telescope. Thus, e.g., for Arecibo where
the system noise temperature is ∼35 K and the gain is G ≈
10 K Jy−1 at ν = 1 GHz (1 Jansky = 10−26 W m−2 Hz−1), this
converts to the flux density of 3.5 Jy, or 3.5 × 103 photons s−1

Hz−1 over the entire telescope’s collecting aperture of 300 m
diameter and η = 0.5 efficiency. The value of the dimensionless
quantity μδt is set by Equation (14) at

μδt = 210 at G = 10 K Jy−1. (22)

Assuming μδt � 1 (and λδt � 1) henceforth, and that the
local radiation is not dispersed, Equation (20) is modified to

〈I (t)I (0)〉 − 〈I 〉2 =
[
π (λ + μ)2(δt)2 +

√
π

2
μδt

]
|a|4e−t2/[2(δt)2]

+ λδt |a|4
√

π

2(1 + ξ 2)
e−t2/[2(δt)2(1+ξ 2)]. (23)

In other words, the unwanted noise is replaced here by a local
component of background photons, each being identical in its
pulse shape to an intrinsic wave packet from the source.

As indicated in the previous section, the observable imprint
of dispersion is upon the variance στ of the average intensity
over the macroscopic timescale τ � δt

√
1 + ξ 2, which is

given by

σ 2
τ = (δIτ )2 = 2

τ 2

∫ τ

0
dt(τ − t)[〈I (t)I (0)〉 − Ī 2]. (24)

It will be shown that στ is modified by dispersion to decreasing
degrees as τ → ∞.

An important confirmation of the well understood nature of
photon fluctuations is obtained by ignoring for the moment the
background, i.e., setting μ = 0 in Equation (23), and substi-
tuting the result into Equation (24). Enlisting Equation (19),
one gets

σ 2
τ = π [

√
2πλ2(δt)2 + λδt]|a|4 δt

τ
−

√
2π [

√
2πλ2(δt)2

+ λδt
√

1 + ξ 2]|a|4
(

δt

τ

)2

. (25)

Dropping the higher order (δt)2/τ 2 terms to see if our model
reproduces the standard expression for photon noise in vacuum,
Equation (25) may be rewritten as(

δIτ

Ī

)2

= n̄2
γ + n̄γ√

2πλ2δtτ
, (26)

where the mean photon occupation number per mode is defined
at the same value for all modes across the narrow band δν � ν
as

n̄γ =
√

2πλδt. (27)

Now the mean number of photons N̄γ (t) arriving during the
interval τ is obviously N̄γ (τ ) = λτ , which must also equal the
product of n̄γ and the number of modes Nmode. Equation (27)
therefore leads us to the very reasonable result of

Nmode = τ√
2πδt

, (28)

indicating that the radiation coherence length is indeed ≈δt .
Moreover, since (δIτ /Ī )2 = (δNγ /N̄γ )2 = (δNγ )2/(λ2τ 2),
Equations (26) and (28) imply that

(δNγ )2 = Nmode
(
n̄2

γ + n̄γ

)
. (29)

Apart from the small correction terms of the order of (δt/τ )2,
then Equation (25) leads to Equation (29), which is in full
agreement with Bose–Einstein statistics.

This demonstrates the validity of the classical treatment
presented. In fact, it has been shown that, for ordinary (chaotic)
light from a steady source, the classical and full quantum
calculations of statistical correlations give the same results (see,
e.g., page 1, Chapter 5 of Loudon 2000; also Equation (103) and
the remarks thereafter of Baltz 2003).

In the “radio” limit of n̄γ ≈ λδt � 1,

(
δIτ

Ī

)2

=
(

δNγ

N̄γ

)2

≈ 1

Nmode
= 1

2
√

πτδν
, (30)

or (δIτ /Ī )2 ≈ 1/(τδν), in accordance with the radiometer
equation.

The method of detection utilizes the behavior of σ 2
τ at

τ � δt
√

1 + ξ 2, when Equation (24) can be evaluated with
the aid of Equation (23) to become

σ 2
τ = π [

√
2π (μ + λ)2(δt)2 + (μ + λ)δt]|a|4 δt

τ

− [2π (μ + λ)2(δt)2 +
√

2π (μ + λ
√

1 + ξ 2)δt]|a|4
(

δt

τ

)2

.

(31)

The ratio of the dispersive-dependent correction term that
suppresses the variance (the preceding μδt |a|4 term is usually
negligible wrt this term and can, in any case, be subtracted) to
the main term is

r = − ξλ

π (μ + λ)2τ
= −2.62 × 10−5

(
Ts

10 K

)

×
(

Ts + Tsys

45 K

)−2 (
ξδt/τ

0.1

)
, (32)

where the default value of τ is set at τ = 10ξδt with ξ � 1 as
given in Equation (21), and Ts = 10 K is because we assumed
the default strength of the source to be 1 Jy, i.e., λ = μ and both
are given by Equation (22).

We turn to signal-to-noise issues. Apart from the variance
of the intensity on the timescale τ , the other ingredient to
a successful measurement here is an accurate determination
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of the mean intensity,4 so that all the ξ -independent terms
of Equation (31) are known and can be subtracted from the
variance to find the residual. For this purpose, one can assume
that in the λδt � 1 and μδt � 1 limit, the intensity varies
according to the leading term of Equation (31) as στ ≈ 〈I 〉δt/τ ,
which is � 〈I 〉 for τ � δt . Thus, the fluctuations may be
regarded as normal (Gaussian). From Equations (A5) and (A6),
the variance is the main source of error and is accurate to the
fractional uncertainty of δσ 2

τ /σ 2
τ = √

2/Ns , or 4.47 × 10−6 if
Ns = 1011. Such a value of Ns may be obtained by repeated
sampling to a total exposure time of texp = 104 s, or three
hours, at intervals of τ = 10ξδt ≈ 0.237 ms as suggested in
Equation (32), also using the channel width of δν = 42.2 kHz
in Equation (32) to simultaneously cover a total bandwidth
Δν = 0.1 GHz at the central frequency ν = 1 GHz. In precise
terms, Ns = texpΔν/(τδν) = texpΔν/(10ξδtδν) = 1011 under
this scenario. Note also that since the denominator 10ξδtδν ∼
(δν)2, we have Ns ∼ 1/(δν)2 for fixed texp and Δν, hence the
quality of a detection is favored by using a narrower channel δν
whilst maintaining the ξ � 1 criterion of significant dispersion.
Comparing this uncertainty of

√
2/Ns with the signal strength of

Equation (32), one sees that r can be detected at the significance
of ≈5.91σ , increasing to 8.55σ at the optimal source brightness
of 3.5 Jy where the product of the two temperature dependent
coefficients in Equation (32) is at its maximum.

In fact, using Equation (32), the signal-to-noise ratio may be
written as

|r|
δr

= 5.91

(
Ts

10 K

) (
Ts + Tsys

45 K

)−2 (
ξδt/τ

0.1

)3/2 (
δν

160 kHz

)−1

×
(

Δν

0.1 GHz

)1/2 ( ν

1 GHz

)3/2
(

texp

104 s

)1/2

×
(

ne�

10−7 cm−3 Gpc

)−1/2

. (33)

One caveat to be mindful of is that the weakness of the signal r
means that the actual detection significance will be reduced by
extra (system) noise, including radio frequency interference and
especially gain variations, which have the effect of increasing
the background μ typically by 10%; see Tuccari (2009).

We should also discuss the potential complication of scat-
tering by plasma clumps, which can also broaden radio wave
packets in all three dimensions. However, for a mean intergalac-
tic plasma column density appropriate to a 1 Gpc source, a wave
packet is typically broadened to last the duration of ≈10−6 s,
(Bhat et al. 2004). This is still very small compared with the
≈10−4 s of dispersion effect in the propagation direction x,
viz. (21). We shall therefore neglect it.

Given the formidability of securing a robust detection in the
radio, it may be advisable to first perform a feasibility test
by observing an extragalactic source at low Galactic latitude
b where dispersion by the interstellar medium (ISM) sets a
“bottom line” minimum in the plasma column ne� (hence ξ ) of
the order of

nISM
e � > 10−7 cm−3 Gpc, for � � 1.5 kpc, (34)

4 It is also necessary to know the occupation number of the source and
background, i.e., μδt and λδt , which constitute the second term on the right
side of Equation (31), but this can be determined to the same accuracy as 〈I 〉
provided the passband filter defining δν is stable (which should not be an issue
because neither the spectra of quasars nor the background has sharp features to
enable any drift in the passband to cause a correspondingly large change in the
occupation numbers).

(see, e.g., Table 1 of Davidson & Terzian 1969), which,
according to Table 1 below, is comparable to the IGM column,
thereby affording one a rough idea of what result to expect. We
suggest looking at a low b quasar such as J2109+353, which
has (l, b) = (80.3,−8.35) and a flux of 1.2 Jy at 1.4 GHz;
see Table 1 of Im et al. (2007). The reason for avoiding any
Galactic sources is that these will inevitably have to be pulsars,
except their emission may occur in a highly unusual form as
coherent bunches of photons (Cordes 1976) and therefore the
receiver’s passband 1/δν may underestimate the intrinsic wave
packet size and jeopardize the measurement; see Section 6 for
further discussions.

The conclusion is that even with the largest radio telescope
available, observations in this band can at best yield a marginal
detection of cosmological dispersion with a set of fortuitous and
very fine tuned parameters. It is hard to see how to develop the
technique to become a utility for mapping the baryonic content
of the entire near universe. To achieve that, one must explore
other wavelengths.

5. OPTICAL OBSERVATIONS

In the opposite limit of λδt � 1 and μδt � 1, such as optical
observation of quasars, Equation (23) simplifies to

〈I (t)I (0)〉 − 〈I 〉2 =
√

π

2
μδt |a|4e−t2/[2(δt)2]

+ λδt |a|4
√

π

2(1 + ξ 2)
e−t2/[2(δt)2(1+ξ 2)]. (35)

For typical observation through a Gaussian V-band filter of
ν = 500 THz and δν/ν = 1/6 (or 0.1 μm passband at 0.6 μm
wavelength) one has, by Equations (14) and (21),

δt
√

1 + ξ 2 ≈ 3.75 × 10−13 s, at ξ = 278 (36)

for a source ≈1 Gpc away.
The imprint of dispersion upon the autocorrelation function

is not affected at optical wavelengths by the (undesirable)
λ2(δt)2 and μ2(δt)2 terms, as such terms are negligible in the
Poisson limit of photon noise. There is also the advantage of
the generally higher signal-to-background ratio λ/μ here (see
below). However, the low photon count rate, the narrowness of
the visible band, and the smaller value of ξ present this type of
observations with its own challenges.

Like the radio band, one may proceed to measure the disper-
sive column density via the variance of intensity fluctuations on
timescales longer than δt

√
1 + ξ 2, by applying Equation (35) to

Equation (24) to get

σ 2
τ = (δIτ )2 = π (μ + λ)δt |a|4 δt

τ
−

√
2π (μ + λ

√
1 + ξ 2)δt |a|4

×
(

δt

τ

)2

, for τ � δt
√

1 + ξ 2. (37)

As already discussed in the last section, the O(δt/τ ) term spells
Poisson statistics in this limit. To check this again, note that
when Equation (37) is used in conjunction with Equation (19)
this lowest order contribution to the variance satisfies the relation

(
δIτ

Ī

)2

=
(

δNγ

N̄γ

)2

= 1

(λ + μ)τ
= 1

N̄γ

, (38)
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Table 1
Observation of Dispersion Induced “Photon Anti-bunching” to Determine the Line-of-sight Plasma Column Density to Astrophysical Sources in the V Band

mV Obs. λ Column ne� τ Statistical δn2/n2

of Source (s−1) (cm−3 Gpc) (ns) Significance

10 (star) Lick 3m 4 × 106 10−8 1 47.2σ 6 × 105/8 × 107

13 (3C273) Lick 3m 2.5 × 104 10−7 10 13.5σ 3, 750/38, 642
15 (quasar) Keck 10m 4 × 104 10−7 10 14.0σ 6, 000/91, 592
18 (quasar) Keck 10m 2,560 3 × 10−7 20 7.59σ 576/2, 873

Notes. In each case, the night sky background is assumed to be 2800 photons s−1, and the exposure time is 104 s.
The last column gives the δn2 reduction in the number of double photon time bins (of width τ ) due to dispersion,
and the expected number n2 of such bins in the limit of no dispersion. The statistical significance is computed
with the use of a beam splitter in mind to counter dead time problem (see Section 5.2), i.e., the number of σ is
smaller than δn2/

√
n2 by a factor of

√
2 as a result.

independent of dispersion, where Nγ is the total number of
arriving photons in the interval τ � δt

√
1 + ξ 2. This result is a

direct consequence of Equations (28) and (29) in the “optical”
limit of n̄γ ≈ (μ + λ)δt � 1 (end of Section 2).

Over this same interval τ , however, the imprint of dispersion
is upon the modification to Poisson (σ 2

τ ∝ 1/τ ) fluctuations
from the very last term of Equation (37). Explicitly, the ratio of
this term to the rest of σ 2

τ is, assuming ξ � 1,

r = −
√

2

π

ξλ

μ + λ

δt

τ
= −3 × 10−5

( τ

10 ns

)−1

×
(

δν

83.3 THz

)( ν

500 THz

)−3
(

ne�

10−7 cm−3 Gpc

)
, (39)

which is ξ -dependent5 (the last expression is written with
μ = 0 in mind). Thus, one expects to see a significantly larger
non-Poisson correction to the curve when there is dispersion,
signal-to-noise-permitting, in the form of a suppression of the
variance (δNγ )2 of the photon counts from the Poisson value of
(δNγ )2 = N̄γ .

5.1. Photon Counting on Short Timescales

Our calculation is done in the context of the 10 m telescope
at the Keck Observatory, although the formulae are presented in
such a way as to facilitate adaptation to another environment, and
the final results as shown in Table 1 contain sources observed
by the Lick 3 m as well. Assuming a quantum efficiency of
16% (Hamamatsu Photonics K.K. Editorial Committee 2006)
for the photomultiplier detector, a quasar with V-band (see the
beginning of this section for filter specifics) magnitude mV =
15 would deliver λ = 4×104 photons s−1, against a background
of μ = 2,800 photons s−1 if we assume the dark sky background
has the surface brightness of 20 mV arcsec−2 and a point
spread function of 3′′ diameter for the quasar. Thus the data are
signal-dominated, with λ � μ.

We explore the prospect of using the above parameters for
an observing run. Suppose one of them is exposed6 for a
time texp = 104 s (≈3 hr), with the arrival time of individual
photons recorded at the time resolution of τ = 10 ns (10−8 s,
photomultiplier tubes (PMTs) with this requisite response time
and without dead time issues are available; see below), i.e., there

5 Note that when calculating r, we ignored the μ(δt)3/τ 2 term in
Equation (37) since it is much less than the μ(δt)2/τ term there.
6 The exposure time texp must satisfy the condition λtexp � 1; see Section 1.
The inequality ensures that there are many source photons detected during the
observation.

are Ns = texp/τ ≈ 1012 time bins to measure the variance σ 2
τ .

Neglecting μ in Equation (39), the imprint of dispersion is an
excess of the mean photon count per bin from the variance by the
fractional amount r = −3 × 10−5. Now, from Equation (A12)
of the Appendix, the random error in this fraction is

δr ≈
√

2

Ns

= 1.4 × 10−6
( τ

10 ns

)1/2
(

texp

104 s

)−1/2

. (40)

The signal-to-noise ratio is obtained by combining Equation (39)
with Equation (40), as

|r|
δr

= 19.8

(
λ

4 × 104 s−1

) (
λ + μ

4.28 × 104 s−1

)−1 ( τ

10 ns

)−3/2

×
(

texp

104 s

)1/2 (
δν

83.3 THz

) ( ν

500 THz

)−3

×
(

ne�

10−7 cm−3 Gpc

)
. (41)

Hence, for the prescribed observing conditions, one can expect
a ≈20σ detection of the dispersion signal, and a tight ensuing
constraint on the intervening IGM column density to the quasar
via ξ .

The reader can also verify readily that under the above
scenario the n̄2 ≈ 9.16 × 104 “double photon” bins expected
from a pure Poisson distribution is sufficiently large to enable
a slight reduction in the number n2 of such bins to produce
the corresponding suppression of the variance to a sub-Poisson
value beneath the mean. To be precise, the variance of Nγ will
come down from the mean by the fraction of 3 × 10−5 if the
average number of “double photon” bins is n̄2 = 8.56 × 104

instead of n̄2 = 9.16×104. In another way of understanding why
this decrease is 20σ significant, one could take the difference
between the above two values of n2 and divide it by the statistical
fluctuation of n2, viz.

√
n̄2 ≈ 303. More generally, it can be

shown without too much difficulty that for τ � δt
√

1 + ξ 2,

n̄2 = 1

2
(λ + μ)2τ 2Ns −

√
1 + ξ 2

2π
λδtNs, (42)

from which one can see that the slight sub-Poisson behavior due
to the last term is enhanced by dispersion.

A sensitivity limit of this technique exists, however, when
there are too few arriving photons from a faint source, i.e., if
the mean count per bin m̄ = λτ is so low that the first term on
the right side of Equation (42) becomes as small as the second.
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Since n2 obviously cannot be negative, the dispersion signal is
compromised once this limit is reached, and increasingly more
so beyond it. Explicitly, the smallest variance afforded by any
photon counting data of a given mean m̄ occurs when n̄2 = 0 and
n̄1 = m̄ − m̄2, and the variance of the configuration lies below
the mean by the fractional amount (m̄−σ 2)/m̄ = m̄. If m̄ < |r|
(where r is given by Equation (39)), the measurement will not be
able to recover the full signal. Thus, a faint source will require
large τ to satisfy the n̄2 � 1 criterion for full signal detection,
but Equation (41) asserts that as τ increases the signal-to-noise
ratio deteriorates. The use of too large a time window τ would
also put one closer to the timescales of atmospheric turbulence
effects, which tends to induce super-Poisson variance at the few
percent level over durations of 1 ms to 1 s (Tokovinin et al. 2003),
i.e., although this concern is not imminent it should be kept
in mind. In general, then, a correspondingly longer exposure
time, texp = Nsτ , is needed to maintain the signal-to-noise ratio
|r|/δr . Since, for n̄2 of Equation (42) to stay positive, τ must
at least be sufficiently large to enable λτ to match the constant
≈√

ξλδt , viz.

τ � 7.75 × 10−10

(
λ

4 × 104 s−1

)−1/2 (
δν

83.3 THz

)1/2

×
( ν

500 THz

)−3/2
(

ne�

10−7 cm−3 Gpc

)1/2

s, (43)

one sees from Equation (41) that in order to maintain |r|/δr
the exposure time, texp, must be raised for a faint source
according to the scaling7 texp ∼ 1/λ3/2 (alternatively, the
telescope aperture must enlarge by the same scaling), because
in Equation (41) texp ∼ τ 3 for a given |r|/δr and τmin ∼ λ−1/2

from Equation (43). Moreover, eventually the background μ
will also become significant, in which case texp will have to
be even larger, although the fact that faintness usually implies
remoteness would work in one’s favor because it means |r| is
larger as a result of the column � being so.

Although the visible regime appears more promising than
the radio, it is still advisable to test the effect, which remains
rather feeble, using a “calibration” source as described in the
end of Section 4, where we also explained why a source located
1.5 kpc or more away in the direction of the Galactic disk would
suffice. Specifically, one can enlist here a bright disk star (i.e.,
pulsars are not the only choice even if one observes only sources
within the Galaxy), such as P Cygni (34 Cyg) which is 1.8 kpc
away (Balan et al. 2010) but has mV = 4.8 from the SIMBAD
Astronomical Database. Signal-to-noise estimates for a fainter
(mV = 10) star are given in Table 1, from which it can be seen
that P Cygni should be a relatively easy target.

5.2. An Outline of the Basic Design

Here we present the elements of a feasible observational
scheme. Our intention here is not to define in detail the optimal
technique, however. This is work in progress, which will appear
in a separate publication.

Our goal is to measure the reduction of n2, which can be
done by repeatedly counting the number of photons received by
the detector using a fixed counting cycle (or window span).
After a sufficient number of photons have been received, a
histogram of the per-cycle photon count can be developed and is

7 This scaling is to be contrasted with then exposure texp ∼ 1/λ necessary to
detect a source photometrically to a certain level of significance under the
same signal-limited condition as here.

compared to the Poisson distribution. The temporal width of the
counting cycle has to be chosen in such a way that the expected
number of “double photon” cycles is statistically robust while
the random noise is kept low to ensure an appropriate signal-to-
noise ratio, as already explained. Note that the latter requirement
usually implies that the “triple photon” probability has to be
prohibitively low, which leaves n2 as the only parameter that
carries the signature of the sub-Poisson distribution.

Several practical issues associated with photon counters
should be taken into account, including dead time, afterpulsing,
and dark counts. The dead time of a photon counter tends to
make a perfect Poisson distribution appear to be sub-Poisson.
Such an effect could mask the sub-Poisson distribution due to
dispersion if proper care is not taken. For example, the counting
circuits of a PMT usually introduce a dead time of a few tens
of nanoseconds. Such a photon counter would not be able to
capture any “double photon” counts if a 1–10 ns counting cycle
is used. To address this problem, we propose to use two identical
PMT counters separated by a 50:50 beamsplitter. The outputs
of the two counters are combined with a sub-ns timing error
to form one single stream of photon counts before being gated
by a clock. To simplify the data analysis, we can further make
the counting cycle same as the counter dead time (by adjusting
the PMT electronics and the clock frequency). Such a detection
system in principle can capture all the “single photon” counts
and half of the “double photon” counts. The latter is because
50% of the photon pairs arriving within a counting cycle fall onto
different PMTs and therefore can effectively be tallied with a
worsening in the signal-to-noise by the factor of

√
2.

On the other hand, afterpulsing and dark counts tend to
make a perfect Poisson distribution appear to be super-Poisson
by adding artificial multi-photon counts. However, with the
help of an ideal Poisson source, both effects can be fairly
well calibrated and subsequently taken out of the dispersion
measurement. The recent development of hybrid photodetectors
also offers a detector with almost zero afterpulsing (Suyama
2008). The counter calibration can be done off-line in the lab.
Alternatively, the task can also be done on site by pointing the
telescope first to a nearby star and attenuating the incoming
photon intensity to a level comparable to the intended quasar.

In Table 1, we show the typical plasma column density ne�
to various astrophysical sources, the first of which is non-
cosmological (a nearby star), and the recommended parameters
at the Lick or Keck Observatory (the former restricted to stars
and the brightest quasar 3C273 as test beds) to measure ne�
via ξ .

6. CONCLUSION

In respect of the quest for the missing baryons in the near
universe, an effort at the forefront of contemporary cosmology,
we proposed and developed a new technique that complements
the current reliance on fast radio transients. By examining the
detailed statistical fluctuations of the electromagnetic radiation
arriving from distant quasars, we showed that it is possible to
detect the imprint of dispersion and infer the total line-of-sight
column density of partially ionized (i.e., the bulk of the missing)
baryons to the source.

The technique as applied to the radio and visible bands is
discussed. For each case it is found that different challenges
exist. In the radio, systematic noises like the broad band
interference must be kept to a minimum, and random errors
reduced by adequate exposure using simultaneously many

7
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frequency channels. In the visible, the background is less of a
problem, rather the scarcity of photons and the relatively smaller
effect of dispersion. However, all these issues can potentially be
overcome, and the prospect of success is reachable. Overall, the
visible band appears more promising, and could be developed
into a widely applicable utility for mapping the low z plasma
columns across the sky.

The authors acknowledge Eric Korpela, Michael Lampton,
and Stuart Bowyer for discussions.

APPENDIX

SAMPLE VARIANCE DISTRIBUTION: CORRELATION
BETWEEN SAMPLE MEAN AND VARIANCE

For Ns samples (each is in the context of this paper a
measurement of either radio intensity or optical photon counts
over some small interval of time) of a variate n drawn from a
parent population of central moments μm,m = 1, 2, · · ·, viz.

μj = 〈(m − μ)j 〉 = 1

Ns

Ns∑
i=1

(ni − m)j , (A1)

where μ = 〈m〉 is the true mean (not to be confused with the
background count rate μ of Section 4), and the sample mean
and variance are denoted by m and σ 2, respectively, and are
defined as

m = 1

Ns

Ns∑
i=1

ni; σ 2 =
(

1

Ns

Ns∑
i=1

n2
i

)
− m2. (A2)

The expectation value for the sample variance, 〈σ 2〉 = (Ns −
1)μ2/Ns is ≈μ2 to a fractional error ≈1/Ns , and that of the
variance of the sample variance is

〈(δσ 2)2〉 = (Ns − 1)2

N3
s

μ4 − (Ns − 1)(Ns − 3)

N3
s

μ2
2, (A3)

which also simplifies to

〈(δσ 2)2〉 = μ4 − μ2
2

Ns

, (A4)

again to correct a fractional error ≈1/Ns .
Let us now apply Equation (A4). For a normal distribution

where μ2 = σ 2 and μ4 = 3σ 4, it implies, adopting slightly
loose notations,

δσ 2

〈σ 2〉 =
√

2

Ns

. (A5)

This is to be contrasted with the standard expression for the
uncertainty in the mean,

δm

〈m〉 = σ√
Ns

, (A6)

which is much smaller in the limit σ � μ.
For Poisson fluctuations, the variance μ2 = σ 2 = μ and

μ4 = μ(1 + 3μ), and it readily follows from Equation (A4) that
the relative uncertainty δσ 2/σ 2 in the sample variance σ 2 is

δσ 2

〈σ 2〉 = 1√
Nsμ

, (A7)

and correct to the relative accuracy ≈1/Ns . Equation (A7) is the
same as the relative uncertainty in the sample mean, δm/〈m〉,
and this peculiar feature is specific to the μ � 1 limit only. In
the opposite limit, the sample variance fluctuates much more
than the mean.

For completeness, even though the next result is not used
in the paper, we include phase-noise fluctuations of radio
observations, i.e., the μ � 1 limit of Bose–Einstein statistics
where μ2 = μ2 and μ4 = μ(1 + μ)(1 + 9μ + 9μ2) ≈ 9μ4, one
instead obtains the relation

δσ 2

〈σ 2〉 =
√

8

Ns

(A8)

for the relative uncertainty in 〈σ 2〉 from Equation (A4).
We are also interested in the relative uncertainty in the

difference between the sample mean and variance, viz. δ(m −
σ 2)/σ 2 of a Poisson distribution. To begin, let us express the
variance of x = m − σ 2 as

〈(δx)2〉 = 〈(δm)2〉 + 〈(δσ 2)2〉 − 2 cov (m, σ 2), (A9)

where the covariance function of two variates y and z is defined
in the usual manner as

cov(y, z) = 〈yz〉 − 〈y〉〈z〉.

In this case, since the Poisson 〈m〉 = 〈σ 2〉 = μ, we may write

cov(m, σ 2) = 〈mσ 2〉 − μ2.

This equation may be recast in terms of the new variates
ñi = ni − μ and m̃ = m − μ, as

cov(m, σ 2) = 〈m̃σ 2〉 = 〈ñ1σ
2〉 = 1

Ns

〈ñ1w〉, (A10)

where

w =
Ns∑
i=1

(ñi − m̃)2.

Now w is a sum of the products ñ2
i and ñi ñj for i 
= j . Most of

these products actually do not affect the calculation of 〈ñ1w〉,
since, e.g., 〈ñ1ñi ñj 〉 = 0 for i 
= j and 〈ñ1ñ

2
i 〉 = 0 for i 
= 1.

The quantity 〈ñ1w〉 may therefore be simplified to read
〈ñ1w〉 = α〈ñ3

1〉, where α = 1 is accurate to the relative error of
1/Ns and 〈ñ3

1〉 = μ3 = μ is the third moment of the Poisson
distribution. Substituting into Equation (A10), we obtain

cov(m, σ 2) = μ

Ns

. (A11)

Since 〈(δm)2〉 = 〈σ 2〉/Ns = μ/Ns and 〈(δσ 2)2〉 = (μ +
2μ2)/Ns from Equation (A4) and the fact that the Poisson
μ4 = μ + 3μ2 and μ2 = μ, these results may be applied along
with Equation (A11) to Equation (A9) to arrive at

〈(δx)2〉 = 2μ2

Ns

. (A12)

In the limit of small counts per bin, i.e., n ≈ μ � 1, the variance
〈(δx)2〉 in the difference between the sample mean and variance
of a Poisson distribution, n−σ 2 is much smaller than the μ/Ns

variance in the sample mean and variance themselves.
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