
The Astrophysical Journal Letters, 763:L44 (4pp), 2013 February 1 doi:10.1088/2041-8205/763/2/L44
C© 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A NEW WAY OF DETECTING INTERGALACTIC BARYONS

Richard Lieu and Lingze Duan
Department of Physics, University of Alabama, Huntsville, AL 35899, USA

Received 2012 October 12; accepted 2013 January 2; published 2013 January 21

ABSTRACT

For each photon wave packet of extragalactic light, the dispersion by line-of-sight intergalactic plasma causes an
increase in the envelope width and a chirp (drift) in the carrier frequency. It is shown that for continuous emission
of many temporally overlapping wave packets with random epoch phases such as quasars in the radio band, this
in turn leads to quasi-periodic variations in the intensity of the arriving light on timescales between the coherence
time (defined as the reciprocal of the bandwidth of frequency selection, taken here as of order 0.01 GHz for radio
observations) and the stretched envelope, with most of the fluctuation power on the latter scale which is typically
in the millisecond range for intergalactic dispersion. Thus, by monitoring quasar light curves on such short scales,
it should be possible to determine the line-of-sight plasma column along the many directions and distances to the
various quasars, affording one a three-dimensional picture of the ionized baryons in the near universe.
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1. INTRODUCTION

After the reionization epoch, the diffuse baryons of the
universe have a plasma component that for z � 1 redshifts is
predominantly within the “warm” temperature range 105–106 K,
and accounting for 40%–50% of the baryons in the near
universe (Cen & Ostriker 1999; Davé 2001). This form of
matter fills the entire intergalactic medium (IGM) filamentarily,
with concentrations near clusters and groups of galaxies. It still
largely evades detection because the emission is in the EUV and
soft X-rays, a wavelength passband that suffers from Galactic
absorption as well as interstellar and time variable heliospheric
foreground contamination (see, e.g., Takei et al. 2008 on the
last; for up-to-date information on the search of these “missing”
baryons, see Bonamente et al. 2013 and the review of Durret
et al. 2008). For this reason, other ingenious and “orthogonal”
techniques, including and especially the recent search by the
Planck team of “excess” Sunyaev–Zel’dovich (SZ) signals at
the outskirts of clusters (Ade et al. 2012a, 2012b), may be very
important, as both papers reported positive results. In particular,
the “excess” Compton y-parameter at the 2–5 Mpc radii of
the Coma cluster (Ade et al. 2012a) is consistent with the
predictions based upon soft X-ray observations of Coma (Lieu
& Bonamente 2009), as both SZ and X-ray data yielded the
same 5 Mpc limiting radius for the extent of the warm baryons
as well.

Nonetheless, the warm baryons are not necessarily confined
to clusters’ vicinity alone, but they can also structurally fill the
rest of the IGM so that even the SZ technique is unable to deliver
a complete search. This is because the technique suits regions
of high baryonic density and temperature, viz., baryons inside
clusters can exert a large SZ “pressure” along the line-of-sight of
interest, whereas outside the clusters the plasma becomes cooler
and more tenuous, so that this “pressure” can easily fall below
SZ detection thresholds. The search for genuinely intergalactic
baryons must therefore await new approaches.

Here we intend to discuss one of them. Although the primary
difficulty with the potentially very powerful method of utilizing
the light from quasars (the only point sources bright enough
to be visible across cosmological scales) as probes of the
intervening universe is the lack of fast “pulsar-like” intrinsic
variations in their intensity (Lazio 2008; Dennett-Thorpe &

de Bruyn 2002; the latter showed that rapid (hourly or shorter)
variabilities in the quasar light are not intrinsic to the source),
it will be argued in this Letter that the plasma dispersion effect
of photon envelope broadening and carrier wave chirping are
imprinted upon even steady and continuous light signals as they
pass through the vast spans of the IGM. The imprint can be
uncovered by conventional techniques if the observations are
done at radio frequencies. Previous efforts in this vein were
mainly done with non-astrophysical applications in mind. They
include measurements1 of coherence length (Hitzenberger et al.
1999), and calculation of the broadening of wide pulses (Saleh
& Irshid 1982) and pulse distortion to third-order Taylor series
correction (Marcuse 1980) in a dispersive medium. To the best
of the authors’ knowledge, there has not been any treatment of
the time resolved mutual coherence function of continuous light
and its associated noise characteristics in the same.

2. THE DISPERSION OF QUASAR LIGHT

We begin by revisiting the question of how, in an astrophysical
context, a single wave packet of light behaves as it passes
through a dispersive medium. Since the cosmological journey
of light from an unresolvable point source to a small telescope
on earth is principally a one-dimensional problem k = (k, 0, 0),
one can under this scenario ignore the dynamics of the wave
packet in the y- and z-directions, i.e., the spreading of the
packet is only appreciable along x (scattering by plasma clumps
can cause broadening, but for a mean plasma column density
equivalent to 1 Gpc the effect is at the 10−6 s level (Bhat et al.
2004), which as we shall see in Section 3 is ≈104 times below
that of plasma dispersion). The amplitude of a one-dimensional
Gaussian wave packet emitted at t = te (more precisely the
packet’s center is x = xe at t = te) at a point (t, x) “downstream”
may be written as

ψ(t, x) =
∫ ∞

−∞
e
− (k−k0)2

2(Δk)2 ei[k(x−x)−ω(t−te)]dk, (1)

where the spectral filter is ∝ |f (k)|2 with

f (k) = e
− (k−k0)2

2(Δk)2 , (2)

1 For the theory, see http://light.ece.illinois.edu/ECE460/PDF/LCI.pdf.
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and is peaked at k0 of width Δ k. The filter f usually depicts
either line emission at the source or passband selection by the
observer, the two are equivalent because the plasma medium
does not distort the frequency spectrum of the radiation.

An approximate form of Equation (1) that reveals its salient
features is afforded by Taylor expanding ω = ω(k) around k0 to
second order (third and higher order terms can be ignored in the
case of plasma dispersion provided Δ k/k � 1), Equation (1)
then becomes

ψ(t − te, x) = A

[
2π (Δ k)2

1 + iω′′
0(Δ k)2(t − te)

]1/2

× exp [ik0(x − xe) − iω0(t − te)]

× exp

{
− (Δ k)2

2

[x − xe − vg(t − te)]2[1 − iω′′
0(t − te)(Δ k)2]

1 + ω
′′2
0 (Δ k)4(t − te)2

}
,

(3)

where vg = (dω/dk)k=k0 and ω′′
0 = (d2ω/dk2)k=k0 . Details of

the derivation of Equation (3) are given in, e.g., Section 3.5 of
Bohm (1951).

We turn to look at the nature of continuous light from a
cosmological source that is steady on short timescales. The
amplitude of which at some instance t and position r, with t as a
variable and r held fixed, may be expressed as the sum of many
overlapping pulses of amplitudes ψj (t), each depicting a single
photon consisting initially of a harmonic (i.e., unchirped) carrier
wave with random phase and enveloped by the coherence time
τc, viz., i.e.,

ψ(t) =
∑

j

ψj (t), and τc = 1

Δ ω
. (4)

In our present labeling scheme the photon pulses are chrono-
logically ordered in terms of their envelope peaks. The actual
number n of such pulses that significantly influence any given
instance t is finite, however, due to the finite width τc. This
is the situation before dispersion. In fact, n is the “occupation
number,” or the number of arriving photons per bandwidth per
coherence time that becomes an invariant for a given source and
telescope.

The amplitude function of the arriving light, however, may
be quite different. It is still given by the first part of Equation (4)
of course, but the constituent wave function ψj may now be
modified, viz.,

ψj (t) = A

c

√
2π

(1 + iξ )
Δω exp[−a(t − tj )2]

× exp [ib(t − tj )2 − iω0(t − tj ) + φj ], (5)

where

a = (Δ ω)2

2(1 + ξ 2)
, and b = ξa; with ξ = ω′′

0(Δ ω)2(tj − te)

c2
, (6)

and φj a random phase.2 Note that ξ changes very slowly with
time and may be treated as a constant. In an expanding universe,
it is determined by the comoving distance to the source, and the

2 Our treatment here does not apply to the scenario of phase coherence
among many temporally contiguous photons, i.e., the phenomenon of photon
bunching (e.g., Rickett et al. 1975) which is unlikely to apply to intrinsically
slow emitters like quasars.

carrier frequency and average IGM plasma density (with both
evaluated at the present epoch), as we shall find out.

Let us first examine the microscopic variability of the arriving
intensity I = |ψ(t)|2 which may be broken down into two parts,
I = Ī + I1, where

Ī =
n′+1∑
j=1

|ψj (t)|2, and I1 =
n′+1∑
j �=k

ψj (t)ψ∗
k (t). (7)

With the help of Equation (5), one may in turn write Ī as

Ī = |A|2 2π

c2
√

1 + ξ 2
(Δ ω)2

n′+1∑
j=1

e−2a(t−tj )2

= |A|2 π3/2n′

c2
√

2(1 + ξ 2)
(Δ ω)2 = |A|2 π3/2n√

2c2
(Δ ω)2, (8)

where the rightmost expression applies to the limit of large
occupation number n � 1 (hence n′ � 1 necessarily) when Ī
becomes a constant.

Next we work on I1, which appears as

I1 = I1(t) = |A|2 π

c2
√

1 + ξ 2
(Δ ω)2

n′+1∑
j �=k

e−a(t−tj )2
e−a(t−tk )2

× cos [2b(tk − tj )t + ϕjk], (9)

where ϕjk = −ϕkj changes randomly from one distinct pair of
j, k to the next. The mean of I1 obviously vanishes. The variance
is given by

σ 2
I = |A|2 2π2

c4(1 + ξ 2)
(Δ ω)4

n′+1∑
j �=k

e−2a(t−tj )2
e−2a(t−tk )2

× 〈cos2[2b(tk − tj )t + ϕjk]〉. (10)

Again, in the large n limit the double sum may be approximated
by an integral, and 〈cos2〉 = 1/2. The result is

σI = |A|2 π3/2n′

2c2
√

2(1 + ξ 2)
(Δ ω)2 = |A|2 π3/2n

2
√

2c2
(Δ ω)2 = Ī

2
.

(11)

Thus, both Ī and σI are independent of dispersion—they
are only functions of the photon occupation number n and
bandwidth Δ ω (or coherence time τc via the second part of
Equation (4)).

The interesting question is the timescale over which the
intensity I undergoes the random variation about the mean Ī
with the variance of Equation (11). The answer comes from
the cos[2b(tk − tj )t + ϕjk] factor of Equation (9). Under the
scenario of no dispersion, i.e., a = (Δ ω)2/2 and b = 0, the
factor only depends on the set of phase angles {ϕjk}, which
changes to a completely different set when the time t translates
by ∼ one envelope width 1/Δ ω, or τc. Thus, in accordance with
known facts (Mathieu 1975), there is a quasi-periodic variation
in the intensity on the scale of one coherence time, and the
Fourier Transform of I would show a spike at the frequency
∼Δ ω.

After passage through dispersion, however, the cosine fac-
tor will still vary significantly at the level of Equation (11)
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Table 1
Properties of Plasmas on Various Length Scales

Type of Plasma ne Column Length 
 Column Density ne


(cm−3) (cm−2)

IGM 10−7h0.7 3 Gpc 9 × 1020

Rich clusters of galaxies 10−3 2 Mpc 6 × 1021

Interstellar medium (ISM) 0.03 1 kpc 9 × 1019

Interplanetary medium (IPM) 10 100 AU 1.5 × 1016

Earth’s ionosphere 105 300 km 3 × 1012

Notes. On the IGM, the density ne is obtained by assuming that the baryonic IGM consists principally of the
105–107 K plasma (the WHIM, or warm–hot intergalactic medium) of Section 1, with normalized cosmic density
ΩWHIM ≈ 0.02 between z = 0 and at least z = 1 (Cen & Ostriker 1999, Figure 2(b)), where h0.7 denotes
the present Hubble constant H0 in units of 70 km s−1 Mpc−1 and 
 is the comoving distance

∫
dt/a(t). On

the interstellar medium (ISM), the reader should beware of the anisotropy in ne presented by the Galactic disk,
i.e., the column density as tabulated remains representative of any direction including high Galactic latitudes (see,
e.g., Howk et al. 2006), assuming that one avoids the disk when performing cosmological observations.

when {ϕjk} is replaced by a completely different set, except
this now happens on the timescale of one envelope width
a−1/2 ≈ τc

√
2(1 + ξ 2) � τc; moreover, there will also be milder

fluctuations over shorter timescales due to the 2b(tk − tj )t part
of the cosine argument. To elaborate, in

∑
j,k the quantity

tk − tj ranges from ∼τc (the assumed timing accuracy of in-
tensity measurements) to ∼a−1/2. In the former end of the range
2b(tk − tj )δt → 1 when δt ∼ a−1/2, while in the latter end
δt ∼ τc. Since each equal interval of tk − tj has about the same
number of photons, this means fluctuations at the level of a frac-
tion of Equation (11) exist on all scales between the coherence
time τc and the envelope width a−1/2, with the Fourier power
increasing toward the scale of a−1/2 where it reaches the full
level of Equation (11) because of the behavior of {ϕjk}. This is
the observable imprint of dispersion upon the passing light: the
microscopic details of the intensity variation are very different
from the scenario of a non-dispersive medium where only the
characteristic timescale of τc exists.

We conclude this section by presenting a self-consistency
check of the formalism of Equations (7) and (5). They can also
be used to demonstrate a known fact: the independence of the
coherence time of continuous light, defined as the maximum
time delay for observable interference fringe contrasts, on dis-
persion (so long as the medium does not distort the radiation
energy spectrum). The proof involves calculating the autocorre-
lation function (ACF) at the delay τ , or 2

∫
dtRe[ψ(t)ψ∗(t +τ )],

from the two equations in much the same manner as above, to
obtain the result

2
∫

dtRe[ψ(t)ψ∗(t + τ )] = Ī cos ω0τe−τ 2/(4τ 2
c ), (12)

which shows that the periodic fringe pattern cos ω0τ is damped
exponentially away when the delay τ exceeds τc (the van
Cittert–Zernike theorem; see, e.g., Section 10.4.2 of Born &
Wolf 1970), irrespective of dispersion3 as ξ does not appear
anywhere here. Moreover, because in Equation (12) the pattern
as given by the ratio of the ACF to Ī is not a function of n, each
photon interferes only with itself.

3 This is a consequence of the Wiener–Khinchine theorem and the fact that a
dispersive medium does not change the energy spectrum of the radiation, see,
e.g., http://light.ece.illinois.edu/ECE460/PDF/LCI.pdf.

3. MEASUREMENT OF IGM PLASMA
COLUMN DENSITY

For dispersion in a cold plasma, the dimensionless quantity
in the third part of Equation (6) is given by

ξ = ω′′
0(Δk)2 t = 5 × 105

(
Δ ω/ω0

10−2

)2 (
ω0

6 × 109 rad s−1

)−1

×
( ne

10−7 cm−3

)(



1 Gpc

)
. (13)

The central received frequency of ν0 = 1 GHz would correspond
to radio observations. In Equation (13) we ignored a small
relativistic correction due to the fact that the IGM plasma at
redshifts z � 1 is warm. Note also that in Equation (13) we
ignored the expansion of the universe, which does not introduce
significant errors for sources with 
 � 1 Gpc. If account is taken
of the in situ expansion, the dimensionless parameter ξ will
become

ξ =
(

Δ ω

ω0

)2 ω2
p

ω0

∫ t

te

dt ′

a(t ′)
, (14)

where ωp and ω0 are, respectively, the IGM plasma frequency
and the radiation frequency as evaluated at the time of observa-
tion t, te is the time of emission, and a(t) is the expansion pa-
rameter. From Equation (14), it becomes apparent that, although
the value of ξ for sources at large distances require redshift cor-
rection, this is made simply by interpreting 
 in Equation (13)
as the comoving distance

∫ t

te
cdt ′/a(t ′) and the other quantities

in Equation (13) as having assumed their values at time t. This
assumes, of course, that the evolution of ne is caused solely by
the expansion. For sources out to at least z = 1, the warm IGM
indeed maintains its constant baryonic mass fraction of ∼50%,
i.e., additional (evolutionary) corrections are not expected to be
important; see Figure 2 of Cen & Ostriker (1999).

Two features are apparent in Equation (13). First, in calculat-
ing the default value of Equation (13), we assumed Δ ω/ω0 =
0.01, which, in the context of astrophysical sources, is the spec-
tral width of a narrow emission line or the telescope frequency
selection. Second, we list in Table 1 the column density of
the various plasma components that extragalactic light passes
through before reaching a ground-based telescope; it is ev-
ident that apart from directions intercepting rich clusters of
galaxies the IGM delivers the largest effect, which is why we
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expressed Equation (13) in representative units of ne for this
component.

Turning to observational strategy, we shall focus upon distant
quasars, i.e., point sources, to ensure spatial coherence in the
light. From the 5000 quasar sample in Figure 3 of Singal et al.
(2013), one may assume the radio spectral index of 0.6 to obtain
the intrinsic luminosity density of 1031 ergs s−1 Hz−1 at 1 GHz
as a representative estimate for quasars with z � 0.25 (
 �
1 Gpc). Applying a Gaussian spectral filter of Δ ω/ω0 = 0.01
to the arriving continuum radiation (the spectrum of which is
taken as flat), one obtains τc = 1.6 × 10−8 s, ξ ≈ 5 × 105 from
Equation (13), and a = 8 × 103 s−2 and b = 4 × 109 s−2 from
Equation (6). The photon “occupation number” will be n ≈ 20 if
a quasar at 1 Gpc distance is observed by a telescope of diameter
300 m (Arecibo; it should also be mentioned that over the beam
of this telescope the equivalent number of cosmic background
photons is nCMB ≈ 3), and indicates that one is in the classical
(phase) noise limit for the radiation intensity; see the previous
section. An exposure time of 1 hr would yield N ≈ 4 × 1012 as
the number of collected photons.

Thus the numbers all point to the validity of the classical
description of radiation given in the previous section, which also
presented a relatively straightforward means of using the quasar
light to measure line-of-sight dispersion, viz., the microscopic
random fluctuations should have their highest amplitude on
the timescale4 a−1/2 ≈ 10 ms and not the (much shorter)
coherence time τc, although the Fourier transform of the light
curve should reveal fluctuation power on all scales between
a−1/2 and τc, monotonically falling from the former to the latter.
By observationally determining a−1/2 in this way, the line-
of-sight IGM plasma column may then be inferred from the
first part of Equation (6), Equation (13), and knowledge of the
bandwidth Δ ω of frequency selection. The crucial datum here is
the upper cutoff timescale of a−1/2, i.e., one does not expect any
significant variations in the intensity above this scale, until the
scale ∼1 day when genuine changes in the emission properties of

4 In addition to having a sufficient number of photons per such an interval,
radio observations at this timing resolution are also not expected to be a
problem, since the highest resolution ever reached is 4 ns (Hankins et al. 2003).

the quasar source have been noted by, e.g., Eggers et al. (2000).
To the best of the authors’ awareness, no attempt has been made
to monitor quasars on the millisecond time frame. Of course,
if source variability occurs down at this range the proposed
technique will fail. It is extremely difficult to envisage such
phenomena, however, because of the size of the quasar emission
region.

The authors thank T. W. B. Kibble and J. F. McKenzie for
helpful discussions.
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