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MATLAB is a high-level language and interactive environment for numerical 
computation, visualization, and programming.  It is an excellent tool for prototyping 
codes for solving engineering problems and allows matrix manipulations, plotting of 
functions and data, implementation of algorithms, creation of user interfaces, and 
interfacing with programs written in other languages.  However, code performance is 
limited when utilized on desktop and laptop platforms.  These limitations are what I am 
seeking to explore.  The limitations will be found by determining what the scaling 
(computational time, problem size) is for running test cases using a three dimensional 
fluid code on MATLAB as a function of platform (laptop, workstation, supercomputer).  A 
new three dimensional code developed by Dr. Jason Cassibry and his graduate 
students will be utilized to run classic test cases.  Resolution will be increased to study 
convergence, wall clock computational time, and problem size limitations on several 
computing platforms.  Results will be compared against number of processors, RAM 
and similar figures of merit.  In this process, the validity of the code itself could also be 
explored. 

 

Nomenclature 

 
UAH = University of Alabama in Huntsville 

MAE = Mechanical and Aerospace Engineering 

SPH = Smoothed Particle Hydrodynamics 

kg = kilogram 

m = meter 

s = second 

N = number of particles 

x = position 

v = velocity 

ρ = density 

T = temperature 

ms = millisecond 

K = Kelvin 

     = trivial identity of a particle field 

r = position of the particles 

   = velocity of the particles 

       = interpolating kernel 

h = smoothed length 

k = volume element 

   = position of the center of mass of the given particle 
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   = mass 

i = particle 
   

  
 = momentum equation 

P = pressure 

u = unit mass 
   

  
 = rate of change of the thermal energy 

    = arbitrary integers 

  ̅  = average speed sound 

  = clipping function 

 ̅  = average density of the given particle 

 

 

 

I. Introduction 

MATLAB (matrix laboratory) is a numerical computing environment that is 

widely used in academic and research institutions, such as UAH.  Dr. Jason Cassibry and his 

graduate students at UAH have developed a new three dimensional fluid code using the smooth 

particle hydrodynamic method that pushes the limitations of MATLAB on some machines.  This 

new code has created a need to take an in-depth look at the limitations of MATLAB as they vary 

from system to system and have never been firmly established.  In order to do this, a Square 

Wave Test case problem was run on a Dell Precision M6500 laptop, Dell Alienware Aurora 

ALX, and Dell Precision T7600 workstation to compare wall clock computational time.   

 

II. Numerical Model 
 

Smoothed particle hydrodynamics (SPH) is a computational method that was originally 

developed to deal with problems in astrophysics involving fluid masses moving arbitrarily in 

three dimensions in the absence of boundaries.  SPH involves the motion of a set of points at 

which velocity and thermal energy are known at any point.  These points are also assigned a 

mass and are therefore referred to as particles.  In order for the particles to move correctly 

through a time step it is necessary to construct the forces which an element of fluid would 

experience.  These forces are constructed from the information carried by the particles and begin 

with the approximation  

 

⟨    ⟩   ∫                                     

 

where w(u,h) is an interpolating kernel with the properties 
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 ∫                             

 

and        
      
→              Assuming we have a fluid of density ρ(r), Equation 1 becomes 

 

⟨    ⟩   ∫ 
     

     
                                      

 

The contribution to the integral from the volume element k then leads to an approximation given 

by 

 

⟨    ⟩   ∑   

  

  
          

 

   

                   

 

where         .  If the particles are equi-separated and their masses are equal then Equation 4 

is a simple Riemann sum.  Using Equation 4 we can approximate any field A by an analytical 

function ⟨    ⟩.  The density estimate, which is sometimes interpreted as the smoothing of the 

particle’s point mass by the kernel so as to obtain a continuous density field from a set of 

particles, is given by 

⟨    ⟩   ∑            

 

   

                   

  

To follow the motion of an arbitrary particle i we need an estimate of the change in 

pressure over density.  Combining this estimate with Equation 4, we can then write the 

momentum equation for particle i as 
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where    means take the gradient with respect to the coordinates of particle i and          
     .  The rate of change of the thermal energy per unit mass u can be written in many ways to 

be suitable for computation.  One of these ways is to use Equation 4 to estimate ρv and ρ.  The 

rate of change of the thermal energy per unit mass u for a particle i can then be written as 

 

   

  
  

  

  
 
∑                

 

   

                   

 

In order to estimate Equations 6 and 7, ρ must first be calculated using Equation 5.  This process 

can be lengthy and it is sometimes useful to find ρ from matter conservation in the form 
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           ∑               

 

                   

 

At this point, the right hand sides of Equations 6, 7, and 8 can be calculated simultaneously. 

 However, these equations do not correctly simulate clouds of gas interacting 

supersonically.  This is because the particles from one cloud penetrate the other and then stream 

through each other.  This difficulty can be removed with the introduction of an artificial 

viscosity.  For instance, Equation 6 can be replaced by 
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where the notation  ̅   
 

 
                 , C is the sound speed if          

 

         
   

         
                    

 

Otherwise,      .  The energy equation consistent with Equation 9 is  
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 Once Equations 5, 8, 9, and 11 are known, we may begin to solve the problems of galaxy 

and star formation, binary star interactions, comet and asteroid impacts and self-gravitating disks 

(Monaghan). 

 

III. Technical Approach 
 

The square wave test is a problem with a square wave in density initialized in a gas moving 

with uniform velocity bounded by walls, in which the two wall faces with unit normals parallel 

to the flow direction move with the flow.  The temperature is initialized to be reciprocal to the 

density (i.e. the temperature dips when the density spikes) such that the pressure is constant.  In a 

typical fluid solver, the sharp discontinuity in density and temperature will cause local 

oscillations or smearing of the wave (numerical dispersion and diffusion errors), so the sharp 

boundaries are not maintained as the wave propagates (Cassibry).  Below is a graph of the initial 

density (left) and temperature (right) for the square wave problem. The initial density is 1 or 2 

kg/m
3
, temperature is 300 or 150 K, and the velocity is a constant 1000 m/s. The run stops at 10

-4 

s, after the wave has propagated 1 unit length of the wave. 
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For this problem, the wave should remain a square with errors around 10
-8

. This code was 

written such that advection should be accurate to floating point precision, which it appears to do.  

The case has been run for 343, 1728, and 10,648 particles representing the gas on a Dell 

Precision M6500 laptop, Dell Alienware Aurora ALX, and Dell Precision T7600 workstation. 

 

 
 

 

IV. Results and Discussion 

 
Table 1: Wall Clock Computational Time 

Machine N Time (s) 

M6500 Laptop 

343 14.9 

1,728 57.1 

10,648 504.2 

Alienware 

343 9.77 

1,728 32.6 

10,648 259.8 

T7600 workstation 

343 10.2 

1,728 37.7 

10,648 273.1 

 

Figure 1: Initial Density of a Square Wave Figure 2: Initial Temperature of a Square Wave 
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Figure 3: Graph comparing the computational time per 
number of particles for each machine. 

Figure 4: Various properties of the Square Wave Test 
with 343 particles observed on the M6500 Laptop 
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Figure 5: Various properties of the Square Wave Test 
with 1728 particles observed on the M6500 Laptop 
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Figure 6: Various properties of the Square Wave Test 
with 10648 particles observed on the M6500 Laptop 

Figure 7: Various properties of the Square Wave Test 
with 343 particles observed on Alienware 
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Figure 9: Various properties of the Square Wave Test 
with 10648 particles observed on Alienware 
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Figure 10: Various properties of the Square Wave Test 
with 343 particles observed on the T7600 Workstation 

Figure 11: Various properties of the Square Wave Test 
with 1728 particles observed on the T7600 Workstation 
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 Both Table 1 and Figure 3 show the wall clock computational time in regards to the 

number of particles for each machine.  The time in seconds for the M6500 Laptop to run the 

square wave test was 14.9, 57.1, and 504.2 for 343 particles, 1,728 particles, and 10,648 

particles, respectively.  The time in seconds for the Alienware to run the square wave test was 

9.77, 32.6, and 259.8 for 343 particles, 1,728 particles, and 10,648 particles, respectively.  The 

time in seconds for the T7600 Workstation to run the square wave test was 10.2, 37.7, and 273.1 

for 343 particles, 1,728 particles, and 10,648 particles, respectively.  The machine that ran the 

fastest in all three cases was the Alienware.  The Alienware was far faster than the M6500 

Laptop while only barely beating out the T7600 workstation.  When a smaller number of 

particles are run in the Square Wave Test, the differences between the computational times are 

not that large.  Where the machines really show what they are capable of is when the number of 

particles increase immensely.   

Figures 4 through 12 show the position in the x direction, velocity in the x direction, 

density, and temperature of the Square Wave as it moves through time.  The results for the 

M6500 Laptop are shown in Figures 4, 5, and 6 for 343 particles, 1,728 particles, and 10,648 

particles, respectively.  The results for the Alienware are shown in Figures 7, 8, and 9 for 343 

particles, 1,728 particles, and 10,648 particles, respectively.  The results for the T7600 

workstation are shown in Figures 10, 11, and 12 for 343 particles, 1,728 particles, and 10,648 

particles, respectively.  For every case, the velocity in the x direction, density, and temperature 

remained constant throughout time at 1000 m/s, 1 to 2 kg/s, and 150 to 300 K, respectively.  

These do not visibly change because the SPH code advects square waves accurately.  Also, the 

bottom of the wave and the top of the wave became closer as the number of particles increased.  I 

think it is interesting to note that in every case, the graphs look relatively the same.  This shows 

that the code is accurate no matter how long it takes to run or how many particles it is evaluating. 

 

V. Conclusion 
 

MATLAB is a tool used by many institutions to simulate a variety of test cases that may not 

be easily observable.  The code developed by Dr. Cassibry and his graduate students is meant to 

take a look at how a gas behaves in space.  By using the square wave test case, this code can be 

tested for accuracy as well as testing the limitations that may be encountered on certain 

machines.  The square wave test was run on each of the three machines for three different cases 

which were determined by the number of particles.  The results of these tests were all very 

similar with the velocity in the x direction, density, and temperature remaining constant 

throughout time at 1000 m/s, 1 to 2 kg/s, and 150 to 300 K, respectively as shown in Figures 4 

through 12.  The results were all constant because the SPH code advects square waves quite 

accurately.  In terms of computational time, the Alienware machine performed the best with 9.77 
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seconds, 32.6 seconds, and 259.8 seconds for 343 particles, 1,728 particles, and 10,648 particles, 

respectively.  As the number of particles increased so did the time difference between the three 

machines.  The final observation that can be made is that the SPH code is very precise as the 

results were similar in all 9 cases no matter the number of particles or computational time. 
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