UWB SAR

Ultra-Wideband Synthetic-Aperture Radar

Final Presentation

Thu Truong, Michael Jones, George Bekken

Outline

- Team
- Senior Design Goal
- UWB and SAR
- Design Specifications
- Design Constraints
- Technical Approach
- Work Breakdown Structure
- Schedule
- Budget
- Open Floor

Team

Thu Truong
Graduation: May 2013

George BekkenGraduation: May 2013

Michael JonesGraduation: December 2012

Senior Design Goal

- Indoor radar imaging
- Combine ultra-wideband technology and synthetic aperture radar
- "See-through-wall"

UWB - What is it?

- Ultra Wideband Radio
 - Uses wide frequency bandwidth
 - Low power spectral density
 - Almost no regulation
 - Don't need a license to use
 - Can use indoors
 - Can safely use around people

Our Radar

- PulsOn 410 module
 - Developed by Time Domain
 - 4.3 GHz center frequency
 - Transmits across 2.2 GHz bandwidth

Radar Scans

- Radar Signal
 - Pulsed output for this project
- Transmit pulse
- Wait
- Receive pulse
- Correlate time to distance
- Can find objects by increased power (spike) on scan

Radar Imaging

- Radar scan is one dimensional
- Want a two dimensional image
- Combine several scans
 - Precise location of each scan
 - More scans improves image quality
- Type of imaging
 - SAR
 - Moving radar
 - One set of antennae
 - Combine scans from different locations

SAR – How It Works

- Take scans at different positions
 - Need to know the distance between two scans as precisely as possible
- Create an imaging grid
 - Calculate distance between radar and each grid point
 - Map out scan into grid points
- Overlay scans on each other
 - Values are added together to form relative intensity plot
 - More scans make the image more clear

Design Constraints

- High Initial Cost
- Cluttered Environment
- Legal and Health Issues
 - Will radar be legal?
 - Will radar be safe?

- Social Issues
 - Advantages
 - Search and rescue missions
 - Hostage negotiations
 - Disadvantages
 - Low power
 - Limited range

Design Specifications

- Software
 - MATLAB Code
 - Stepper Motor Driver Code
 - Autohotkey Code
- Hardware
 - Radar
 - Antenna Type
 - Housing or No Housing?
 - Track

Our Journey

Suppressing initial noise

Different antenna types

Mobile platform

Radar Range Equation

$$P_r = \frac{P_s * G^2 * \sigma * \lambda^2}{(4\pi)^3 * R^4}$$

- P_r = received power (W)
- P_s = transmitted power (W)
- G = antenna gain (dB)
- σ = radar cross section of target (m²)
- λ = wavelength of signal (m)
- R = distance of target from radar (m)

Normalized Power vs distance

Distance	Actual	Ideal			
1	1/1	1/1			
2	1/13.3	1/16			
3	1/104	1/81			

Down Range Resolution

• Down Range Resolution is calculated as:

$$\Delta r = \frac{c}{2B}$$

- Where $c = \text{speed of light } (3.0 \text{ x } 10^8 \text{ m/s})$ B = bandwidth (2.2 GHz)
- For the PulsOn 410, the down range resolution is

$$\frac{3.0 * 10^8 \, m/s}{2*(2.2*10^9 \, Hz)} = 6.82 \, cm$$

Down range resolution

At 3 cm apart

At 7 cm apart

At 6 cm apart

At 10 cm apart

Cross Range Resolution

Cross Range Resolution for SAR is calculated as:

$$\Delta cr = \frac{\lambda R}{2 \times SA}$$

- Where λ = wavelength of signal (0.069767m)
 R = Range of target
 - SA = synthetic aperture created by moving radar
- By increasing the synthetic aperture, you can improve the cross range resolution (resulting in a clearer image)

For R=1.5m and Δ cr = 35cm

For R=3.0m and $\Delta cr = 35cm$

For R=3.0m and $\Delta cr = 70cm$

The Sidelobe Phenomenon

Distance between scans affects sidelobe appearance

 Greater distance between two pulses results in phase differences that create destructive and constructive interference

Metal Sphere at 4 m

Scans every 1 cm

Scans every 5 cm

Spelling out UAH

Aluminum cans

Adding drywall

Final Work Breakdown Structure (WBS)

Final Schedule

Month	August	September			October				November					
Week	27	4	10	17	24	1	8	15	22	29	5	12	19	26
Project	X													
Research		X	X	X	X									
Project Summary		X												
Project Proposal		X	X											
Stationary Radar				X	X	X	X	X						
Stationary Software				X	X	X	X	X						
Preliminary Design								X						
Synthetic Aperture Radar									X	X	X	X		
Synthetic Aperture Radar Design									X	X	X	X		
Test Functionality								X	X		X	X		
Improvements												X	X	X
Final Presentation													X	X

Final Expenditures

Materials	Estimated Cost	Payment Method
UWB Radar	\$1,500	Loaned by Brandon
Poster Board Display	\$120	Bought by the group
Mobile Track	\$100	Loaned by Dr. Kulick
Stepper Motor and other Track Accessories	\$87	Bought by the group
Detected Materials	\$10	Bought by the group
Tape Measure	\$3	Bought by the group

Open Floor

• Questions?

• Comments?

• Have a great day!

Special Thanks To:

- Dr. Corsetti
- Brandon Dewberry
- Time Domain
- Dr. Joiner
- Dr. Kulick
- Professor Hite